NetBSD/sys/arch/alpha/tc/zs_ioasic.c
2000-03-24 08:24:29 +00:00

888 lines
20 KiB
C

/* $NetBSD: zs_ioasic.c,v 1.11 2000/03/24 08:24:29 nisimura Exp $ */
/*-
* Copyright (c) 1996, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Gordon W. Ross, Ken Hornstein, and by Jason R. Thorpe of the
* Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
__KERNEL_RCSID(0, "$NetBSD: zs_ioasic.c,v 1.11 2000/03/24 08:24:29 nisimura Exp $");
/*
* Zilog Z8530 Dual UART driver (machine-dependent part). This driver
* handles Z8530 chips attached to the Alpha IOASIC. Modified for
* NetBSD/alpha by Ken Hornstein and Jason R. Thorpe.
*
* Runs two serial lines per chip using slave drivers.
* Plain tty/async lines use the zstty slave.
*/
#include "opt_ddb.h"
#include "opt_dec_3000_300.h"
#include "opt_zs_ioasic_dma.h"
#include "zskbd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/syslog.h>
#include <machine/autoconf.h>
#include <machine/z8530var.h>
#include <dev/cons.h>
#include <dev/ic/z8530reg.h>
#include <dev/tc/tcvar.h>
#include <dev/tc/ioasicreg.h>
#include <dev/tc/ioasicvar.h>
#include <dev/dec/zskbdvar.h>
#include <alpha/tc/zs_ioasicvar.h>
#if 1
#define SPARSE
#endif
/*
* Helpers for console support.
*/
int zs_ioasic_cngetc __P((dev_t));
void zs_ioasic_cnputc __P((dev_t, int));
void zs_ioasic_cnpollc __P((dev_t, int));
struct consdev zs_ioasic_cons = {
NULL, NULL, zs_ioasic_cngetc, zs_ioasic_cnputc,
zs_ioasic_cnpollc, NULL, NODEV, CN_NORMAL,
};
tc_offset_t zs_ioasic_console_offset;
int zs_ioasic_console_channel;
int zs_ioasic_console;
int zs_ioasic_isconsole __P((tc_offset_t, int));
struct zs_chanstate zs_ioasic_conschanstate_store;
struct zs_chanstate *zs_ioasic_conschanstate;
int zs_getc __P((struct zs_chanstate *));
void zs_putc __P((struct zs_chanstate *, int));
void zs_ioasic_cninit __P((tc_addr_t, tc_offset_t, int));
/*
* Some warts needed by z8530tty.c
*/
int zs_def_cflag = (TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
int zs_major = 15;
/*
* The Alpha provides a 7.372 MHz clock to the ZS chips.
*/
#define PCLK (9600 * 768) /* PCLK pin input clock rate */
/* The layout of this is hardware-dependent (padding, order). */
struct zshan {
volatile u_int zc_csr; /* ctrl,status, and indirect access */
#ifdef SPARSE
u_int zc_pad0;
#endif
volatile u_int zc_data; /* data */
#ifdef SPARSE
u_int sc_pad1;
#endif
};
struct zsdevice {
/* Yes, they are backwards. */
struct zshan zs_chan_b;
struct zshan zs_chan_a;
};
static u_char zs_ioasic_init_reg[16] = {
0, /* 0: CMD (reset, etc.) */
0, /* 1: No interrupts yet. */
0xf0, /* 2: IVECT */
ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
ZSWR4_CLK_X16 | ZSWR4_ONESB,
ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
0, /* 6: TXSYNC/SYNCLO */
0, /* 7: RXSYNC/SYNCHI */
0, /* 8: alias for data port */
ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
0, /*10: Misc. TX/RX control bits */
ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
22, /*12: BAUDLO (default=9600) */
0, /*13: BAUDHI (default=9600) */
ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
ZSWR15_BREAK_IE,
};
struct zshan *zs_ioasic_get_chan_addr __P((tc_addr_t, int));
struct zshan *
zs_ioasic_get_chan_addr(zsaddr, channel)
tc_addr_t zsaddr;
int channel;
{
struct zsdevice *addr;
struct zshan *zc;
addr = (struct zsdevice *) zsaddr;
#ifdef SPARSE
addr = (struct zsdevice *) TC_DENSE_TO_SPARSE((tc_addr_t) addr);
#endif
if (channel == 0)
zc = &addr->zs_chan_a;
else
zc = &addr->zs_chan_b;
return (zc);
}
/****************************************************************
* Autoconfig
****************************************************************/
/* Definition of the driver for autoconfig. */
int zs_ioasic_match __P((struct device *, struct cfdata *, void *));
void zs_ioasic_attach __P((struct device *, struct device *, void *));
int zs_ioasic_print __P((void *, const char *name));
struct cfattach zsc_ioasic_ca = {
sizeof(struct zsc_softc), zs_ioasic_match, zs_ioasic_attach
};
/* Interrupt handlers. */
int zs_ioasic_hardintr __P((void *));
void zs_ioasic_softintr __P((void));
/* Misc. */
void zs_ioasic_enable __P((int));
volatile int zs_ioasic_soft_scheduled;
extern struct cfdriver ioasic_cd;
extern struct cfdriver zsc_cd;
/*
* Is the zs chip present?
*/
int
zs_ioasic_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct ioasicdev_attach_args *d = aux;
void *zs_addr;
if (parent->dv_cfdata->cf_driver != &ioasic_cd)
return (0);
/*
* Make sure that we're looking for the right kind of device.
*/
if (strncmp(d->iada_modname, "z8530 ", TC_ROM_LLEN) != 0 &&
strncmp(d->iada_modname, "scc", TC_ROM_LLEN) != 0)
return (0);
/*
* Check user-specified offset against the ioasic offset.
* Allow it to be wildcarded.
*/
if (cf->cf_loc[IOASICCF_OFFSET] != IOASICCF_OFFSET_DEFAULT &&
cf->cf_loc[IOASICCF_OFFSET] != d->iada_offset)
return (0);
/*
* Find out the device address, and check it for validity.
*/
zs_addr = (void *) d->iada_addr;
#ifdef SPARSE
zs_addr = (void *) TC_DENSE_TO_SPARSE((tc_addr_t) zs_addr);
#endif
if (tc_badaddr(zs_addr))
return (0);
return (1);
}
/*
* Attach a found zs.
*/
void
zs_ioasic_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct zsc_softc *zs = (void *) self;
struct zsc_attach_args zs_args;
struct zs_chanstate *cs;
struct ioasicdev_attach_args *d = aux;
volatile struct zshan *zc;
tc_addr_t zs_addr;
int s, channel;
printf("\n");
/*
* Initialize software state for each channel.
*/
for (channel = 0; channel < 2; channel++) {
zs_args.channel = channel;
zs_args.hwflags = 0;
cs = &zs->zsc_cs_store[channel];
zs->zsc_cs[channel] = cs;
/*
* If we're the console, copy the channel state, and
* adjust the console channel pointer.
*/
if (zs_ioasic_isconsole(d->iada_offset, channel)) {
bcopy(zs_ioasic_conschanstate, cs,
sizeof(struct zs_chanstate));
zs_ioasic_conschanstate = cs;
zs_args.hwflags |= ZS_HWFLAG_CONSOLE;
} else {
zs_addr = d->iada_addr;
zc = zs_ioasic_get_chan_addr(zs_addr, channel);
cs->cs_reg_csr = (volatile u_char *)&zc->zc_csr;
cs->cs_reg_data = (volatile u_char *)&zc->zc_data;
bcopy(zs_ioasic_init_reg, cs->cs_creg, 16);
bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
cs->cs_defcflag = zs_def_cflag;
cs->cs_defspeed = 9600; /* XXX */
(void) zs_set_modes(cs, cs->cs_defcflag);
}
cs->cs_channel = channel;
cs->cs_ops = &zsops_null;
cs->cs_brg_clk = PCLK / 16;
/*
* DCD and CTS interrupts are only meaningful on
* SCC 0/B.
*
* XXX This is sorta gross.
*/
if (d->iada_offset == 0x00100000 && channel == 1)
(u_long)cs->cs_private = ZIP_FLAGS_DCDCTS;
else
cs->cs_private = NULL;
/*
* Clear the master interrupt enable.
* The INTENA is common to both channels,
* so just do it on the A channel.
*/
if (channel == 0) {
zs_write_reg(cs, 9, 0);
}
#ifdef notyet /* XXX thorpej */
/*
* Set up the flow/modem control channel pointer to
* deal with the weird wiring on the TC Alpha and
* DECstation.
*/
if (channel == 1)
cs->cs_ctl_chan = zs->zsc_cs[0];
else
cs->cs_ctl_chan = NULL;
#endif
/*
* Look for a child driver for this channel.
* The child attach will setup the hardware.
*/
if (config_found(self, (void *)&zs_args, zs_ioasic_print)
== NULL) {
/* No sub-driver. Just reset it. */
u_char reset = (channel == 0) ?
ZSWR9_A_RESET : ZSWR9_B_RESET;
s = splhigh();
zs_write_reg(cs, 9, reset);
splx(s);
}
}
/*
* Set up the ioasic interrupt handler.
*/
ioasic_intr_establish(parent, d->iada_cookie, TC_IPL_TTY,
zs_ioasic_hardintr, (void *) zs);
/*
* Set the master interrupt enable and interrupt vector. The
* Sun does this only on one channel. The old Alpha SCC driver
* did it on both. We'll do it on both.
*/
s = splhigh();
/* interrupt vector */
zs_write_reg(zs->zsc_cs[0], 2, zs_ioasic_init_reg[2]);
zs_write_reg(zs->zsc_cs[1], 2, zs_ioasic_init_reg[2]);
/* master interrupt control (enable) */
zs_write_reg(zs->zsc_cs[0], 9, zs_ioasic_init_reg[9]);
zs_write_reg(zs->zsc_cs[1], 9, zs_ioasic_init_reg[9]);
/* ioasic interrupt enable */
zs_ioasic_enable(1);
splx(s);
}
int
zs_ioasic_print(aux, name)
void *aux;
const char *name;
{
struct zsc_attach_args *args = aux;
if (name != NULL)
printf("%s:", name);
if (args->channel != -1)
printf(" channel %d", args->channel);
return (UNCONF);
}
/*
* Enable the SCC interrupts in the ioasic.
*/
void
zs_ioasic_enable(onoff)
int onoff;
{
if (onoff) {
*(volatile u_int *)(ioasic_base + IOASIC_IMSK) |=
IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0;
#if !defined(DEC_3000_300) && defined(ZS_IOASIC_DMA)
*(volatile u_int *)(ioasic_base + IOASIC_CSR) |=
IOASIC_CSR_DMAEN_T1 | IOASIC_CSR_DMAEN_R1 |
IOASIC_CSR_DMAEN_T2 | IOASIC_CSR_DMAEN_R2;
#endif
} else {
*(volatile u_int *)(ioasic_base + IOASIC_IMSK) &=
~(IOASIC_INTR_SCC_1 | IOASIC_INTR_SCC_0);
#if !defined(DEC_3000_300) && defined(ZS_IOASIC_DMA)
*(volatile u_int *)(ioasic_base + IOASIC_CSR) &=
~(IOASIC_CSR_DMAEN_T1 | IOASIC_CSR_DMAEN_R1 |
IOASIC_CSR_DMAEN_T2 | IOASIC_CSR_DMAEN_R2);
#endif
}
tc_mb();
}
/*
* Hardware interrupt handler.
*/
int
zs_ioasic_hardintr(arg)
void *arg;
{
struct zsc_softc *zs = arg;
int softreq;
/*
* Call the upper-level MI hardware interrupt handler.
*/
zsc_intr_hard(zs);
/*
* Check to see if we need to schedule any software-level
* processing interrupts.
*/
softreq = zs->zsc_cs[0]->cs_softreq | zs->zsc_cs[1]->cs_softreq;
if (softreq && (zs_ioasic_soft_scheduled == 0)) {
zs_ioasic_soft_scheduled = 1;
setsoftserial();
}
return (1);
}
/*
* Software-level interrupt (character processing, lower priority).
*/
void
zs_ioasic_softintr()
{
struct zsc_softc *zsc;
int i, s;
s = spltty();
if (zs_ioasic_soft_scheduled == 0) {
splx(s);
return;
}
zs_ioasic_soft_scheduled = 0;
for (i = 0; i < zsc_cd.cd_ndevs; i++) {
zsc = zsc_cd.cd_devs[i];
if (zsc == NULL)
continue;
(void) zsc_intr_soft(zsc);
}
splx(s);
}
/*
* MD functions for setting the baud rate and control modes.
*/
int
zs_set_speed(cs, bps)
struct zs_chanstate *cs;
int bps; /* bits per second */
{
int tconst, real_bps;
if (bps == 0)
return (0);
#ifdef DIAGNOSTIC
if (cs->cs_brg_clk == 0)
panic("zs_set_speed");
#endif
tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
if (tconst < 0)
return (EINVAL);
/* Convert back to make sure we can do it. */
real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
/* XXX - Allow some tolerance here? */
if (real_bps != bps)
return (EINVAL);
cs->cs_preg[12] = tconst;
cs->cs_preg[13] = tconst >> 8;
/* Caller will stuff the pending registers. */
return (0);
}
int
zs_set_modes(cs, cflag)
struct zs_chanstate *cs;
int cflag; /* bits per second */
{
u_long privflags = (u_long)cs->cs_private;
int s;
/*
* Output hardware flow control on the chip is horrendous:
* if carrier detect drops, the receiver is disabled, and if
* CTS drops, the transmitter is stoped IN MID CHARACTER!
* Therefore, NEVER set the HFC bit, and instead use the
* status interrupt to detect CTS changes.
*/
s = splzs();
if ((cflag & (CLOCAL | MDMBUF)) != 0)
cs->cs_rr0_dcd = 0;
else
cs->cs_rr0_dcd = ZSRR0_DCD;
if ((cflag & CRTSCTS) != 0) {
cs->cs_wr5_dtr = ZSWR5_DTR;
cs->cs_wr5_rts = ZSWR5_RTS;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & CDTRCTS) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_CTS;
} else if ((cflag & MDMBUF) != 0) {
cs->cs_wr5_dtr = 0;
cs->cs_wr5_rts = ZSWR5_DTR;
cs->cs_rr0_cts = ZSRR0_DCD;
} else {
cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
cs->cs_wr5_rts = 0;
cs->cs_rr0_cts = 0;
}
if ((privflags & ZIP_FLAGS_DCDCTS) == 0) {
cs->cs_rr0_dcd &= ~(ZSRR0_CTS|ZSRR0_DCD);
cs->cs_rr0_cts &= ~(ZSRR0_CTS|ZSRR0_DCD);
}
splx(s);
/* Caller will stuff the pending registers. */
return (0);
}
/*
* Read or write the chip with suitable delays.
*/
u_char
zs_read_reg(cs, reg)
struct zs_chanstate *cs;
u_char reg;
{
u_char val;
*((volatile unsigned int *) cs->cs_reg_csr) =
((volatile unsigned int) reg) << 8;
tc_mb();
DELAY(5);
val = ((*(volatile unsigned int *) cs->cs_reg_csr) >> 8) & 0xff;
tc_mb();
DELAY(5);
return (val);
}
void
zs_write_reg(cs, reg, val)
struct zs_chanstate *cs;
u_char reg, val;
{
*((volatile unsigned int *) cs->cs_reg_csr) =
((volatile unsigned int) reg) << 8;
tc_mb();
DELAY(5);
*((volatile unsigned int *) cs->cs_reg_csr) =
((volatile unsigned int) val) << 8;
tc_mb();
DELAY(5);
}
u_char
zs_read_csr(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = (*((volatile unsigned int *) cs->cs_reg_csr) >> 8) & 0xff;
tc_mb();
DELAY(5);
return (val);
}
void
zs_write_csr(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*((volatile unsigned int *) cs->cs_reg_csr) =
((volatile unsigned int) val) << 8;
tc_mb();
DELAY(5);
}
u_char
zs_read_data(cs)
struct zs_chanstate *cs;
{
register u_char val;
val = (*((volatile unsigned int *) cs->cs_reg_data) >> 8) & 0xff;
tc_mb();
DELAY(5);
return (val);
}
void
zs_write_data(cs, val)
struct zs_chanstate *cs;
u_char val;
{
*((volatile unsigned int *) cs->cs_reg_data) =
((volatile unsigned int) val) << 8;
tc_mb();
DELAY(5);
}
/****************************************************************
* Console support functions (Alpha TC specific!)
****************************************************************/
/*
* Handle user request to enter kernel debugger.
*/
void
zs_abort(cs)
struct zs_chanstate *cs;
{
int rr0;
/* Wait for end of break. */
/* XXX - Limit the wait? */
do {
rr0 = zs_read_csr(cs);
} while (rr0 & ZSRR0_BREAK);
#if defined(KGDB)
zskgdb(cs);
#elif defined(DDB)
Debugger();
#else
printf("zs_abort: ignoring break on console\n");
#endif
}
/*
* Polled input char.
*/
int
zs_getc(cs)
struct zs_chanstate *cs;
{
int s, c, rr0;
s = splhigh();
/* Wait for a character to arrive. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_RX_READY) == 0);
c = zs_read_data(cs);
splx(s);
/*
* This is used by the kd driver to read scan codes,
* so don't translate '\r' ==> '\n' here...
*/
return (c);
}
/*
* Polled output char.
*/
void
zs_putc(cs, c)
struct zs_chanstate *cs;
int c;
{
register int s, rr0;
s = splhigh();
/* Wait for transmitter to become ready. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_TX_READY) == 0);
zs_write_data(cs, c);
/* Wait for the character to be transmitted. */
do {
rr0 = zs_read_csr(cs);
} while ((rr0 & ZSRR0_TX_READY) == 0);
splx(s);
}
/*****************************************************************/
/*
* zs_ioasic_cninit --
* Initialize the serial channel for console use--either the
* primary keyboard or as the serial console.
*/
void
zs_ioasic_cninit(ioasic_addr, zs_offset, channel)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel;
{
struct zs_chanstate *cs;
tc_addr_t zs_addr;
struct zshan *zc;
/*
* Initialize the console finder helpers.
*/
zs_ioasic_console_offset = zs_offset;
zs_ioasic_console_channel = channel;
zs_ioasic_console = 1;
/*
* Pointer to channel state. Later, the console channel
* state is copied into the softc, and the console channel
* pointer adjusted to point to the new copy.
*/
zs_ioasic_conschanstate = cs = &zs_ioasic_conschanstate_store;
/*
* Compute the physical address of the chip, "map" it via
* K0SEG, and then get the address of the actual channel.
*/
zs_addr = ALPHA_PHYS_TO_K0SEG(ioasic_addr + zs_offset);
zc = zs_ioasic_get_chan_addr(zs_addr, channel);
/* Setup temporary chanstate. */
cs->cs_reg_csr = (volatile u_char *)&zc->zc_csr;
cs->cs_reg_data = (volatile u_char *)&zc->zc_data;
/* Initialize the pending registers. */
bcopy(zs_ioasic_init_reg, cs->cs_preg, 16);
cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS);
/*
* DCD and CTS interrupts are only meaningful on
* SCC 0/B.
*
* XXX This is sorta gross.
*/
if (zs_offset == 0x00100000 && channel == 1)
(u_long)cs->cs_private = ZIP_FLAGS_DCDCTS;
else
cs->cs_private = NULL;
/* Clear the master interrupt enable. */
zs_write_reg(cs, 9, 0);
/* Reset the whole SCC chip. */
zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
/* Copy "pending" to "current" and H/W. */
zs_loadchannelregs(cs);
}
/*
* zs_ioasic_cnattach --
* Initialize and attach a serial console.
*/
int
zs_ioasic_cnattach(ioasic_addr, zs_offset, channel, rate, cflag)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel, rate, cflag;
{
zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
zs_ioasic_conschanstate->cs_defspeed = rate;
zs_ioasic_conschanstate->cs_defcflag = cflag;
/* Point the console at the SCC. */
cn_tab = &zs_ioasic_cons;
return (0);
}
/*
* zs_ioasic_lk201_cnattach --
* Initialize and attach the primary keyboard.
*/
int
zs_ioasic_lk201_cnattach(ioasic_addr, zs_offset, channel)
tc_addr_t ioasic_addr;
tc_offset_t zs_offset;
int channel;
{
#if (NZSKBD > 0)
zs_ioasic_cninit(ioasic_addr, zs_offset, channel);
zs_ioasic_conschanstate->cs_defspeed = 4800;
zs_ioasic_conschanstate->cs_defcflag =
(TTYDEF_CFLAG & ~(CSIZE | PARENB)) | CS8;
zs_ioasic_conschanstate->cs_brg_clk = PCLK / 16;
return (zskbd_cnattach(zs_ioasic_conschanstate));
#else
return (ENXIO);
#endif
}
int
zs_ioasic_isconsole(offset, channel)
tc_offset_t offset;
int channel;
{
if (zs_ioasic_console &&
offset == zs_ioasic_console_offset &&
channel == zs_ioasic_console_channel)
return (1);
return (0);
}
/*
* Polled console input putchar.
*/
int
zs_ioasic_cngetc(dev)
dev_t dev;
{
return (zs_getc(zs_ioasic_conschanstate));
}
/*
* Polled console output putchar.
*/
void
zs_ioasic_cnputc(dev, c)
dev_t dev;
int c;
{
zs_putc(zs_ioasic_conschanstate, c);
}
/*
* Set polling/no polling on console.
*/
void
zs_ioasic_cnpollc(dev, onoff)
dev_t dev;
int onoff;
{
/* XXX ??? */
}