NetBSD/sys/dev/ic/rt2661.c
degroote 0e9691e3e3 Fix a number of driver which doesn't check wep flag in *_tx_mgt.
It is incorrect because we need to encrypt some management frame in case of
shared authentification.
2007-10-21 17:03:37 +00:00

3133 lines
80 KiB
C

/* $NetBSD: rt2661.c,v 1.20 2007/10/21 17:03:37 degroote Exp $ */
/* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
/* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
/*-
* Copyright (c) 2006
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2561, RT2561S and RT2661 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.20 2007/10/21 17:03:37 degroote Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_rssadapt.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/rt2661reg.h>
#include <dev/ic/rt2661var.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/firmload.h>
#ifdef RAL_DEBUG
#define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
int rt2661_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static int rt2661_alloc_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *, int);
static void rt2661_reset_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *);
static void rt2661_free_tx_ring(struct rt2661_softc *,
struct rt2661_tx_ring *);
static int rt2661_alloc_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *, int);
static void rt2661_reset_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *);
static void rt2661_free_rx_ring(struct rt2661_softc *,
struct rt2661_rx_ring *);
static struct ieee80211_node *
rt2661_node_alloc(struct ieee80211_node_table *);
static int rt2661_media_change(struct ifnet *);
static void rt2661_next_scan(void *);
static void rt2661_iter_func(void *, struct ieee80211_node *);
static void rt2661_rssadapt_updatestats(void *);
static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
static void rt2661_tx_intr(struct rt2661_softc *);
static void rt2661_tx_dma_intr(struct rt2661_softc *,
struct rt2661_tx_ring *);
static void rt2661_rx_intr(struct rt2661_softc *);
static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
static void rt2661_mcu_wakeup(struct rt2661_softc *);
static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
int rt2661_intr(void *);
#if NBPFILTER > 0
static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
#endif
static int rt2661_ack_rate(struct ieee80211com *, int);
static uint16_t rt2661_txtime(int, int, uint32_t);
static uint8_t rt2661_plcp_signal(int);
static void rt2661_setup_tx_desc(struct rt2661_softc *,
struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
const bus_dma_segment_t *, int, int);
static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
struct ieee80211_node *);
static struct mbuf *
rt2661_get_rts(struct rt2661_softc *,
struct ieee80211_frame *, uint16_t);
static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void rt2661_start(struct ifnet *);
static void rt2661_watchdog(struct ifnet *);
static int rt2661_reset(struct ifnet *);
static int rt2661_ioctl(struct ifnet *, u_long, void *);
static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
static void rt2661_select_antenna(struct rt2661_softc *);
static void rt2661_enable_mrr(struct rt2661_softc *);
static void rt2661_set_txpreamble(struct rt2661_softc *);
static void rt2661_set_basicrates(struct rt2661_softc *,
const struct ieee80211_rateset *);
static void rt2661_select_band(struct rt2661_softc *,
struct ieee80211_channel *);
static void rt2661_set_chan(struct rt2661_softc *,
struct ieee80211_channel *);
static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
static void rt2661_update_promisc(struct rt2661_softc *);
#if 0
static int rt2661_wme_update(struct ieee80211com *);
#endif
static void rt2661_update_slot(struct ifnet *);
static const char *
rt2661_get_rf(int);
static void rt2661_read_eeprom(struct rt2661_softc *);
static int rt2661_bbp_init(struct rt2661_softc *);
static int rt2661_init(struct ifnet *);
static void rt2661_stop(struct ifnet *, int);
static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
int);
#ifdef notyet
static void rt2661_rx_tune(struct rt2661_softc *);
static void rt2661_radar_start(struct rt2661_softc *);
static int rt2661_radar_stop(struct rt2661_softc *);
#endif
static int rt2661_prepare_beacon(struct rt2661_softc *);
static void rt2661_enable_tsf_sync(struct rt2661_softc *);
static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset rt2661_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset rt2661_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset rt2661_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* Default values for MAC registers; values taken from the reference driver.
*/
static const struct {
uint32_t reg;
uint32_t val;
} rt2661_def_mac[] = {
{ RT2661_TXRX_CSR0, 0x0000b032 },
{ RT2661_TXRX_CSR1, 0x9eb39eb3 },
{ RT2661_TXRX_CSR2, 0x8a8b8c8d },
{ RT2661_TXRX_CSR3, 0x00858687 },
{ RT2661_TXRX_CSR7, 0x2e31353b },
{ RT2661_TXRX_CSR8, 0x2a2a2a2c },
{ RT2661_TXRX_CSR15, 0x0000000f },
{ RT2661_MAC_CSR6, 0x00000fff },
{ RT2661_MAC_CSR8, 0x016c030a },
{ RT2661_MAC_CSR10, 0x00000718 },
{ RT2661_MAC_CSR12, 0x00000004 },
{ RT2661_MAC_CSR13, 0x0000e000 },
{ RT2661_SEC_CSR0, 0x00000000 },
{ RT2661_SEC_CSR1, 0x00000000 },
{ RT2661_SEC_CSR5, 0x00000000 },
{ RT2661_PHY_CSR1, 0x000023b0 },
{ RT2661_PHY_CSR5, 0x060a100c },
{ RT2661_PHY_CSR6, 0x00080606 },
{ RT2661_PHY_CSR7, 0x00000a08 },
{ RT2661_PCI_CFG_CSR, 0x3cca4808 },
{ RT2661_AIFSN_CSR, 0x00002273 },
{ RT2661_CWMIN_CSR, 0x00002344 },
{ RT2661_CWMAX_CSR, 0x000034aa },
{ RT2661_TEST_MODE_CSR, 0x00000200 },
{ RT2661_M2H_CMD_DONE_CSR, 0xffffffff }
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
static const struct {
uint8_t reg;
uint8_t val;
} rt2661_def_bbp[] = {
{ 3, 0x00 },
{ 15, 0x30 },
{ 17, 0x20 },
{ 21, 0xc8 },
{ 22, 0x38 },
{ 23, 0x06 },
{ 24, 0xfe },
{ 25, 0x0a },
{ 26, 0x0d },
{ 34, 0x12 },
{ 37, 0x07 },
{ 39, 0xf8 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 60, 0x10 },
{ 61, 0x04 },
{ 62, 0x04 },
{ 75, 0xfe },
{ 86, 0xfe },
{ 88, 0xfe },
{ 90, 0x0f },
{ 99, 0x00 },
{ 102, 0x16 },
{ 107, 0x04 }
};
/*
* Default settings for RF registers; values taken from the reference driver.
*/
static const struct rfprog {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r3;
uint32_t r4;
} rt2661_rf5225_1[] = {
{ 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
{ 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
{ 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
{ 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
{ 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
{ 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
{ 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
{ 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
{ 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
{ 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
{ 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
{ 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
{ 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
{ 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
{ 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
{ 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
{ 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
{ 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
{ 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
{ 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
{ 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
{ 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
}, rt2661_rf5225_2[] = {
{ 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
{ 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
{ 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
{ 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
{ 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
{ 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
{ 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
{ 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
{ 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
{ 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
{ 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
{ 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
{ 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
{ 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
{ 36, 0x00b35, 0x11206, 0x26014, 0x30280 },
{ 40, 0x00b34, 0x111a0, 0x26014, 0x30280 },
{ 44, 0x00b34, 0x111a1, 0x26014, 0x30286 },
{ 48, 0x00b34, 0x111a3, 0x26014, 0x30282 },
{ 52, 0x00b34, 0x111a4, 0x26014, 0x30288 },
{ 56, 0x00b34, 0x111a6, 0x26014, 0x30284 },
{ 60, 0x00b34, 0x111a8, 0x26014, 0x30280 },
{ 64, 0x00b34, 0x111a9, 0x26014, 0x30286 },
{ 100, 0x00b35, 0x11226, 0x2e014, 0x30280 },
{ 104, 0x00b35, 0x11228, 0x2e014, 0x30280 },
{ 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 },
{ 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 },
{ 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 },
{ 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 },
{ 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 },
{ 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 },
{ 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 },
{ 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 },
{ 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 },
{ 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 },
{ 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 },
{ 157, 0x00b35, 0x11242, 0x2e014, 0x30285 },
{ 161, 0x00b35, 0x11244, 0x2e014, 0x30285 },
{ 165, 0x00b35, 0x11246, 0x2e014, 0x30285 }
};
int
rt2661_attach(void *xsc, int id)
{
struct rt2661_softc *sc = xsc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
uint32_t val;
int error, i, ntries;
sc->sc_id = id;
callout_init(&sc->scan_ch, 0);
callout_init(&sc->rssadapt_ch, 0);
/* wait for NIC to initialize */
for (ntries = 0; ntries < 1000; ntries++) {
if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
break;
DELAY(1000);
}
if (ntries == 1000) {
aprint_error("%s: timeout waiting for NIC to initialize\n",
sc->sc_dev.dv_xname);
return EIO;
}
/* retrieve RF rev. no and various other things from EEPROM */
rt2661_read_eeprom(sc);
aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(ic->ic_myaddr));
aprint_normal("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
rt2661_get_rf(sc->rf_rev));
/*
* Allocate Tx and Rx rings.
*/
error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Tx ring 0\n",
sc->sc_dev.dv_xname);
goto fail1;
}
error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Tx ring 1\n",
sc->sc_dev.dv_xname);
goto fail2;
}
error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Tx ring 2\n",
sc->sc_dev.dv_xname);
goto fail3;
}
error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Tx ring 3\n",
sc->sc_dev.dv_xname);
goto fail4;
}
error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Mgt ring\n",
sc->sc_dev.dv_xname);
goto fail5;
}
error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
if (error != 0) {
aprint_error("%s: could not allocate Rx ring\n",
sc->sc_dev.dv_xname);
goto fail6;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2661_init;
ifp->if_ioctl = rt2661_ioctl;
ifp->if_start = rt2661_start;
ifp->if_watchdog = rt2661_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WPA; /* 802.11i */
if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = rt2661_node_alloc;
ic->ic_updateslot = rt2661_update_slot;
ic->ic_reset = rt2661_reset;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rt2661_newstate;
ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
#endif
ieee80211_announce(ic);
return 0;
fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
fail1: return ENXIO;
}
int
rt2661_detach(void *xsc)
{
struct rt2661_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
callout_stop(&sc->scan_ch);
callout_stop(&sc->rssadapt_ch);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
rt2661_free_tx_ring(sc, &sc->txq[0]);
rt2661_free_tx_ring(sc, &sc->txq[1]);
rt2661_free_tx_ring(sc, &sc->txq[2]);
rt2661_free_tx_ring(sc, &sc->txq[3]);
rt2661_free_tx_ring(sc, &sc->mgtq);
rt2661_free_rx_ring(sc, &sc->rxq);
return 0;
}
static int
rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
int count)
{
int i, nsegs, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error("%s: could not create desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map desc DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
ring->physaddr = ring->map->dm_segs->ds_addr;
ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
M_NOWAIT);
if (ring->data == NULL) {
aprint_error("%s: could not allocate soft data\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
for (i = 0; i < count; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
&ring->data[i].map);
if (error != 0) {
aprint_error("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
return 0;
fail: rt2661_free_tx_ring(sc, ring);
return error;
}
static void
rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
{
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
}
static void
rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
{
struct rt2661_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
ring->count * RT2661_TX_DESC_SIZE);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
}
static int
rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
int count)
{
struct rt2661_rx_desc *desc;
struct rt2661_rx_data *data;
int i, nsegs, error;
ring->count = count;
ring->cur = ring->next = 0;
error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error("%s: could not create desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map desc DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not load desc DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
ring->physaddr = ring->map->dm_segs->ds_addr;
ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
M_NOWAIT);
if (ring->data == NULL) {
aprint_error("%s: could not allocate soft data\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
for (i = 0; i < count; i++) {
desc = &sc->rxq.desc[i];
data = &sc->rxq.data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
printf("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load rx buf DMA map",
sc->sc_dev.dv_xname);
goto fail;
}
desc->flags = htole32(RT2661_RX_BUSY);
desc->physaddr = htole32(data->map->dm_segs->ds_addr);
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2661_free_rx_ring(sc, ring);
return error;
}
static void
rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++)
ring->desc[i].flags = htole32(RT2661_RX_BUSY);
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
static void
rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
{
struct rt2661_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
ring->count * RT2661_RX_DESC_SIZE);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
}
static struct ieee80211_node *
rt2661_node_alloc(struct ieee80211_node_table *nt)
{
struct rt2661_node *rn;
rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
M_NOWAIT | M_ZERO);
return (rn != NULL) ? &rn->ni : NULL;
}
static int
rt2661_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
rt2661_init(ifp);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
rt2661_next_scan(void *arg)
{
struct rt2661_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
/*
* This function is called for each neighbor node.
*/
static void
rt2661_iter_func(void *arg, struct ieee80211_node *ni)
{
struct rt2661_node *rn = (struct rt2661_node *)ni;
ieee80211_rssadapt_updatestats(&rn->rssadapt);
}
/*
* This function is called periodically (every 100ms) in RUN state to update
* the rate adaptation statistics.
*/
static void
rt2661_rssadapt_updatestats(void *arg)
{
struct rt2661_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_rssadapt_updatestats,
sc);
}
static int
rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp;
int error = 0;
ostate = ic->ic_state;
callout_stop(&sc->scan_ch);
switch (nstate) {
case IEEE80211_S_INIT:
callout_stop(&sc->rssadapt_ch);
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_SCAN:
rt2661_set_chan(sc, ic->ic_curchan);
callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
rt2661_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
rt2661_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2661_enable_mrr(sc);
rt2661_set_txpreamble(sc);
rt2661_set_basicrates(sc, &ni->ni_rates);
rt2661_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS) {
if ((error = rt2661_prepare_beacon(sc)) != 0)
break;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
callout_reset(&sc->rssadapt_ch, hz / 10,
rt2661_rssadapt_updatestats, sc);
rt2661_enable_tsf_sync(sc);
}
break;
}
return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2661_EEPROM_CTL(sc, 0);
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
RT2661_EEPROM_CTL(sc, RT2661_S);
/* write start bit (1) */
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
/* write READ opcode (10) */
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RT2661_EEPROM_CTL(sc, RT2661_S |
(((addr >> n) & 1) << RT2661_SHIFT_D));
RT2661_EEPROM_CTL(sc, RT2661_S |
(((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
}
RT2661_EEPROM_CTL(sc, RT2661_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
RT2661_EEPROM_CTL(sc, RT2661_S);
}
RT2661_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2661_EEPROM_CTL(sc, RT2661_S);
RT2661_EEPROM_CTL(sc, 0);
RT2661_EEPROM_CTL(sc, RT2661_C);
return val;
}
static void
rt2661_tx_intr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct rt2661_tx_ring *txq;
struct rt2661_tx_data *data;
struct rt2661_node *rn;
uint32_t val;
int qid, retrycnt;
for (;;) {
val = RAL_READ(sc, RT2661_STA_CSR4);
if (!(val & RT2661_TX_STAT_VALID))
break;
/* retrieve the queue in which this frame was sent */
qid = RT2661_TX_QID(val);
txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
/* retrieve rate control algorithm context */
data = &txq->data[txq->stat];
rn = (struct rt2661_node *)data->ni;
/* if no frame has been sent, ignore */
if (rn == NULL)
continue;
switch (RT2661_TX_RESULT(val)) {
case RT2661_TX_SUCCESS:
retrycnt = RT2661_TX_RETRYCNT(val);
DPRINTFN(10, ("data frame sent successfully after "
"%d retries\n", retrycnt));
if (retrycnt == 0 && data->id.id_node != NULL) {
ieee80211_rssadapt_raise_rate(ic,
&rn->rssadapt, &data->id);
}
ifp->if_opackets++;
break;
case RT2661_TX_RETRY_FAIL:
DPRINTFN(9, ("sending data frame failed (too much "
"retries)\n"));
if (data->id.id_node != NULL) {
ieee80211_rssadapt_lower_rate(ic, data->ni,
&rn->rssadapt, &data->id);
}
ifp->if_oerrors++;
break;
default:
/* other failure */
printf("%s: sending data frame failed 0x%08x\n",
sc->sc_dev.dv_xname, val);
ifp->if_oerrors++;
}
ieee80211_free_node(data->ni);
data->ni = NULL;
DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
txq->queued--;
if (++txq->stat >= txq->count) /* faster than % count */
txq->stat = 0;
}
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
rt2661_start(ifp);
}
static void
rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
{
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
for (;;) {
desc = &txq->desc[txq->next];
data = &txq->data[txq->next];
bus_dmamap_sync(sc->sc_dmat, txq->map,
txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
BUS_DMASYNC_POSTREAD);
if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
!(le32toh(desc->flags) & RT2661_TX_VALID))
break;
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
/* node reference is released in rt2661_tx_intr() */
/* descriptor is no longer valid */
desc->flags &= ~htole32(RT2661_TX_VALID);
bus_dmamap_sync(sc->sc_dmat, txq->map,
txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
BUS_DMASYNC_PREWRITE);
DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
if (++txq->next >= txq->count) /* faster than % count */
txq->next = 0;
}
}
static void
rt2661_rx_intr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct rt2661_rx_desc *desc;
struct rt2661_rx_data *data;
struct rt2661_node *rn;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int error;
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
BUS_DMASYNC_POSTREAD);
if (le32toh(desc->flags) & RT2661_RX_BUSY)
break;
if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled TXRX_CSR0.
*/
DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
le32toh(desc->flags)));
ifp->if_ierrors++;
goto skip;
}
if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load it
* before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the old
* mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
sc->sc_dev.dv_xname);
}
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
desc->physaddr = htole32(data->map->dm_segs->ds_addr);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
(le32toh(desc->flags) >> 16) & 0xfff;
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_lo, tsf_hi;
/* get timestamp (low and high 32 bits) */
tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
tap->wr_tsf =
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
tap->wr_rate = rt2661_rxrate(desc);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antsignal = desc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
#endif
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* give rssi to the rate adatation algorithm */
rn = (struct rt2661_node *)ni;
ieee80211_rssadapt_input(ic, ni, &rn->rssadapt,
rt2661_get_rssi(sc, desc->rssi));
/* node is no longer needed */
ieee80211_free_node(ni);
skip: desc->flags |= htole32(RT2661_RX_BUSY);
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
BUS_DMASYNC_PREWRITE);
DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
}
/*
* In HostAP mode, ieee80211_input() will enqueue packets in if_snd
* without calling if_start().
*/
if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
rt2661_start(ifp);
}
/* ARGSUSED */
static void
rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
{
/* do nothing */
}
static void
rt2661_mcu_wakeup(struct rt2661_softc *sc)
{
RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
/* send wakeup command to MCU */
rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
}
static void
rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
{
RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
}
int
rt2661_intr(void *arg)
{
struct rt2661_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
uint32_t r1, r2;
/* disable MAC and MCU interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
/* don't re-enable interrupts if we're shutting down */
if (!(ifp->if_flags & IFF_RUNNING))
return 0;
r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
if (r1 & RT2661_MGT_DONE)
rt2661_tx_dma_intr(sc, &sc->mgtq);
if (r1 & RT2661_RX_DONE)
rt2661_rx_intr(sc);
if (r1 & RT2661_TX0_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[0]);
if (r1 & RT2661_TX1_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[1]);
if (r1 & RT2661_TX2_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[2]);
if (r1 & RT2661_TX3_DMA_DONE)
rt2661_tx_dma_intr(sc, &sc->txq[3]);
if (r1 & RT2661_TX_DONE)
rt2661_tx_intr(sc);
if (r2 & RT2661_MCU_CMD_DONE)
rt2661_mcu_cmd_intr(sc);
if (r2 & RT2661_MCU_BEACON_EXPIRE)
rt2661_mcu_beacon_expire(sc);
if (r2 & RT2661_MCU_WAKEUP)
rt2661_mcu_wakeup(sc);
/* re-enable MAC and MCU interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
return 1;
}
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10 /* us */
/*
* This function is only used by the Rx radiotap code. It returns the rate at
* which a given frame was received.
*/
#if NBPFILTER > 0
static uint8_t
rt2661_rxrate(struct rt2661_rx_desc *desc)
{
if (le32toh(desc->flags) & RT2661_RX_OFDM) {
/* reverse function of rt2661_plcp_signal */
switch (desc->rate & 0xf) {
case 0xb: return 12;
case 0xf: return 18;
case 0xa: return 24;
case 0xe: return 36;
case 0x9: return 48;
case 0xd: return 72;
case 0x8: return 96;
case 0xc: return 108;
}
} else {
if (desc->rate == 10)
return 2;
if (desc->rate == 20)
return 4;
if (desc->rate == 55)
return 11;
if (desc->rate == 110)
return 22;
}
return 2; /* should not get there */
}
#endif
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
static int
rt2661_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
rt2661_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RAL_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
static uint8_t
rt2661_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
static void
rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate,
const bus_dma_segment_t *segs, int nsegs, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int i, remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(len << 16);
desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
desc->xflags = htole16(xflags);
desc->xflags |= htole16(nsegs << 13);
desc->wme = htole16(
RT2661_QID(ac) |
RT2661_AIFSN(2) |
RT2661_LOGCWMIN(4) |
RT2661_LOGCWMAX(10));
/*
* Remember in which queue this frame was sent. This field is driver
* private data only. It will be made available by the NIC in STA_CSR4
* on Tx interrupts.
*/
desc->qid = ac;
/* setup PLCP fields */
desc->plcp_signal = rt2661_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RAL_RATE_IS_OFDM(rate)) {
desc->flags |= htole32(RT2661_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2661_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
/* RT2x61 supports scatter with up to 5 segments */
for (i = 0; i < nsegs; i++) {
desc->addr[i] = htole32(segs[i].ds_addr);
desc->len [i] = htole16(segs[i].ds_len);
}
}
static int
rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint16_t dur;
uint32_t flags = 0;
int rate, error;
desc = &sc->mgtq.desc[sc->mgtq.cur];
data = &sc->mgtq.data[sc->mgtq.cur];
/* send mgt frames at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
data->m = m0;
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2661_TX_NEED_ACK;
dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp in probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2661_TX_TIMESTAMP;
}
rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
RT2661_QID_MGT);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->mgtq.cur, rate));
/* kick mgt */
sc->mgtq.queued++;
sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
return 0;
}
/*
* Build a RTS control frame.
*/
static struct mbuf *
rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
uint16_t dur)
{
struct ieee80211_frame_rts *rts;
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
sc->sc_ic.ic_stats.is_tx_nobuf++;
printf("%s: could not allocate RTS frame\n",
sc->sc_dev.dv_xname);
return NULL;
}
rts = mtod(m, struct ieee80211_frame_rts *);
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
IEEE80211_FC0_SUBTYPE_RTS;
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)rts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
return m;
}
static int
rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2661_tx_ring *txq = &sc->txq[ac];
struct rt2661_tx_desc *desc;
struct rt2661_tx_data *data;
struct rt2661_node *rn;
struct ieee80211_rateset *rs;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct mbuf *mnew;
uint16_t dur;
uint32_t flags = 0;
int rate, error;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rs = &ic->ic_sup_rates[ic->ic_curmode];
rate = rs->rs_rates[ic->ic_fixed_rate];
} else {
rs = &ni->ni_rates;
rn = (struct rt2661_node *)ni;
ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
wh, m0->m_pkthdr.len, -1, NULL, 0);
rate = rs->rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/*
* IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
* for directed frames only when the length of the MPDU is greater
* than the length threshold indicated by [...]" ic_rtsthreshold.
*/
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
m0->m_pkthdr.len > ic->ic_rtsthreshold) {
struct mbuf *m;
int rtsrate, ackrate;
rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
ackrate = rt2661_ack_rate(ic, rate);
dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
3 * RAL_SIFS;
m = rt2661_get_rts(sc, wh, dur);
desc = &txq->desc[txq->cur];
data = &txq->data[txq->cur];
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
m_freem(m0);
return error;
}
/* avoid multiple free() of the same node for each fragment */
ieee80211_ref_node(ni);
data->m = m;
data->ni = ni;
/* RTS frames are not taken into account for rssadapt */
data->id.id_node = NULL;
rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
data->map->dm_segs, data->map->dm_nsegs, ac);
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, txq->map,
txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
BUS_DMASYNC_PREWRITE);
txq->queued++;
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
/*
* IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
* asynchronous data frame shall be transmitted after the CTS
* frame and a SIFS period.
*/
flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
}
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
printf("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
/* packet header have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
#endif
data->m = m0;
data->ni = ni;
/* remember link conditions for rate adaptation algorithm */
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
data->id.id_len = m0->m_pkthdr.len;
data->id.id_rateidx = ni->ni_txrate;
data->id.id_node = ni;
data->id.id_rssi = ni->ni_rssi;
} else
data->id.id_node = NULL;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2661_TX_NEED_ACK;
dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
}
rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
data->map->dm_segs, data->map->dm_nsegs, ac);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, txq->cur, rate));
/* kick Tx */
txq->queued++;
txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
return 0;
}
static void
rt2661_start(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni = NULL;
int ac;
/*
* net80211 may still try to send management frames even if the
* IFF_RUNNING flag is not set...
*/
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 == NULL)
break;
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (rt2661_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (struct ether_header) &&
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
/* there is no place left in this ring */
ifp->if_flags |= IFF_OACTIVE;
break;
}
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
#endif
if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
if (ni != NULL)
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
rt2661_watchdog(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
rt2661_init(ifp);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
/*
* This function allows for fast channel switching in monitor mode (used by
* kismet). In IBSS mode, we must explicitly reset the interface to
* generate a new beacon frame.
*/
static int
rt2661_reset(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
rt2661_set_chan(sc, ic->ic_curchan);
return 0;
}
static int
rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
rt2661_update_promisc(sc);
else
rt2661_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
rt2661_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX no h/w multicast filter? --dyoung */
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
error = 0;
break;
case SIOCS80211CHANNEL:
/*
* This allows for fast channel switching in monitor mode
* (used by kismet). In IBSS mode, we must explicitly reset
* the interface to generate a new beacon frame.
*/
error = ieee80211_ioctl(ic, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
rt2661_set_chan(sc, ic->ic_ibss_chan);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rt2661_init(ifp);
error = 0;
}
splx(s);
return error;
}
static void
rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
return;
}
tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
}
static uint8_t
rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
return 0;
}
val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
RAL_WRITE(sc, RT2661_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2661_PHY_CSR3);
if (!(val & RT2661_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
return 0;
}
static void
rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
return;
}
tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
(reg & 3);
RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
}
static int
rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
{
if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
return EIO; /* there is already a command pending */
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
return 0;
}
static void
rt2661_select_antenna(struct rt2661_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rt2661_bbp_read(sc, 4);
bbp77 = rt2661_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
rt2661_bbp_write(sc, 4, bbp4);
rt2661_bbp_write(sc, 77, bbp77);
/* restore Rx filter */
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
static void
rt2661_enable_mrr(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
tmp &= ~RT2661_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
tmp |= RT2661_MRR_CCK_FALLBACK;
tmp |= RT2661_MRR_ENABLED;
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
}
static void
rt2661_set_txpreamble(struct rt2661_softc *sc)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
tmp &= ~RT2661_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2661_SHORT_PREAMBLE;
RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
}
static void
rt2661_set_basicrates(struct rt2661_softc *sc,
const struct ieee80211_rateset *rs)
{
#define RV(r) ((r) & IEEE80211_RATE_VAL)
uint32_t mask = 0;
uint8_t rate;
int i, j;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
if (!(rate & IEEE80211_RATE_BASIC))
continue;
/*
* Find h/w rate index. We know it exists because the rate
* set has already been negotiated.
*/
for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
mask |= 1 << j;
}
RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
#undef RV
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
static void
rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
rt2661_bbp_write(sc, 17, bbp17);
rt2661_bbp_write(sc, 96, bbp96);
rt2661_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rt2661_bbp_write(sc, 75, 0x80);
rt2661_bbp_write(sc, 86, 0x80);
rt2661_bbp_write(sc, 88, 0x80);
}
rt2661_bbp_write(sc, 35, bbp35);
rt2661_bbp_write(sc, 97, bbp97);
rt2661_bbp_write(sc, 98, bbp98);
tmp = RAL_READ(sc, RT2661_PHY_CSR0);
tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2661_PA_PE_2GHZ;
else
tmp |= RT2661_PA_PE_5GHZ;
RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
}
static void
rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
int8_t power;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we've yet to select a channel, or we are switching from the
* 2GHz band to the 5GHz band or vice-versa, BBP registers need to
* be reprogrammed.
*/
if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
rt2661_select_band(sc, c);
rt2661_select_antenna(sc);
}
sc->sc_curchan = c;
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(200);
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(200);
rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rt2661_bbp_read(sc, 3);
bbp3 &= ~RT2661_SMART_MODE;
if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
bbp3 |= RT2661_SMART_MODE;
rt2661_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2661_BBPR94_DEFAULT)
rt2661_bbp_write(sc, 94, bbp94);
/* 5GHz radio needs a 1ms delay here */
if (IEEE80211_IS_CHAN_5GHZ(c))
DELAY(1000);
}
static void
rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
}
static void
rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
}
static void
rt2661_update_promisc(struct rt2661_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t tmp;
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
tmp &= ~RT2661_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2661_DROP_NOT_TO_ME;
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
#if 0
/*
* Update QoS (802.11e) settings for each h/w Tx ring.
*/
static int
rt2661_wme_update(struct ieee80211com *ic)
{
struct rt2661_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
/* XXX: not sure about shifts. */
/* XXX: the reference driver plays with AC_VI settings too. */
/* update TxOp */
RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
wmep[WME_AC_BE].wmep_txopLimit << 16 |
wmep[WME_AC_BK].wmep_txopLimit);
RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
wmep[WME_AC_VI].wmep_txopLimit << 16 |
wmep[WME_AC_VO].wmep_txopLimit);
/* update CWmin */
RAL_WRITE(sc, RT2661_CWMIN_CSR,
wmep[WME_AC_BE].wmep_logcwmin << 12 |
wmep[WME_AC_BK].wmep_logcwmin << 8 |
wmep[WME_AC_VI].wmep_logcwmin << 4 |
wmep[WME_AC_VO].wmep_logcwmin);
/* update CWmax */
RAL_WRITE(sc, RT2661_CWMAX_CSR,
wmep[WME_AC_BE].wmep_logcwmax << 12 |
wmep[WME_AC_BK].wmep_logcwmax << 8 |
wmep[WME_AC_VI].wmep_logcwmax << 4 |
wmep[WME_AC_VO].wmep_logcwmax);
/* update Aifsn */
RAL_WRITE(sc, RT2661_AIFSN_CSR,
wmep[WME_AC_BE].wmep_aifsn << 12 |
wmep[WME_AC_BK].wmep_aifsn << 8 |
wmep[WME_AC_VI].wmep_aifsn << 4 |
wmep[WME_AC_VO].wmep_aifsn);
return 0;
}
#endif
static void
rt2661_update_slot(struct ifnet *ifp)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
tmp = RAL_READ(sc, RT2661_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
}
static const char *
rt2661_get_rf(int rev)
{
switch (rev) {
case RT2661_RF_5225: return "RT5225";
case RT2661_RF_5325: return "RT5325 (MIMO XR)";
case RT2661_RF_2527: return "RT2527";
case RT2661_RF_2529: return "RT2529 (MIMO XR)";
default: return "unknown";
}
}
static void
rt2661_read_eeprom(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int i;
/* read MAC address */
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
/* XXX: test if different from 0xffff? */
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF(("RF revision=%d\n", sc->rf_rev));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
/* adjust RSSI correction for external low-noise amplifier */
if (sc->ext_2ghz_lna)
sc->rssi_2ghz_corr -= 14;
if (sc->ext_5ghz_lna)
sc->rssi_5ghz_corr -= 14;
DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
if ((val >> 8) != 0xff)
sc->rfprog = (val >> 8) & 0x3;
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
/* read Tx power for all a/b/g channels */
for (i = 0; i < 19; i++) {
val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
DPRINTF(("Channel=%d Tx power=%d\n",
rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
DPRINTF(("Channel=%d Tx power=%d\n",
rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
}
/* read vendor-specific BBP values */
for (i = 0; i < 16; i++) {
val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
if (val == 0 || val == 0xffff)
continue; /* skip invalid entries */
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val));
}
}
static int
rt2661_bbp_init(struct rt2661_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
uint8_t val;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
val = rt2661_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
DELAY(100);
}
if (ntries == 100) {
printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2661_def_bbp); i++) {
rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
rt2661_def_bbp[i].val);
}
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0)
continue;
rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
#undef N
}
static int
rt2661_init(struct ifnet *ifp)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
const char *name = NULL; /* make lint happy */
uint8_t *ucode;
size_t size;
uint32_t tmp, star[3];
int i, ntries;
firmware_handle_t fh;
/* for CardBus, power on the socket */
if (!(sc->sc_flags & RT2661_ENABLED)) {
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
printf("%s: could not enable device\n",
sc->sc_dev.dv_xname);
return EIO;
}
sc->sc_flags |= RT2661_ENABLED;
}
rt2661_stop(ifp, 0);
if (!(sc->sc_flags & RT2661_FWLOADED)) {
switch (sc->sc_id) {
case PCI_PRODUCT_RALINK_RT2561:
name = "ral-rt2561";
break;
case PCI_PRODUCT_RALINK_RT2561S:
name = "ral-rt2561s";
break;
case PCI_PRODUCT_RALINK_RT2661:
name = "ral-rt2661";
break;
}
if (firmware_open("ral", name, &fh) != 0) {
printf("%s: could not open microcode %s\n",
sc->sc_dev.dv_xname, name);
rt2661_stop(ifp, 1);
return EIO;
}
size = firmware_get_size(fh);
if (!(ucode = firmware_malloc(size))) {
printf("%s: could not alloc microcode memory\n",
sc->sc_dev.dv_xname);
firmware_close(fh);
rt2661_stop(ifp, 1);
return ENOMEM;
}
if (firmware_read(fh, 0, ucode, size) != 0) {
printf("%s: could not read microcode %s\n",
sc->sc_dev.dv_xname, name);
firmware_free(ucode, 0);
firmware_close(fh);
rt2661_stop(ifp, 1);
return EIO;
}
if (rt2661_load_microcode(sc, ucode, size) != 0) {
printf("%s: could not load 8051 microcode\n",
sc->sc_dev.dv_xname);
firmware_free(ucode, 0);
firmware_close(fh);
rt2661_stop(ifp, 1);
return EIO;
}
firmware_free(ucode, 0);
firmware_close(fh);
sc->sc_flags |= RT2661_FWLOADED;
}
/* initialize Tx rings */
RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
/* initialize Mgt ring */
RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
/* initialize Rx ring */
RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
/* initialize Tx rings sizes */
RAL_WRITE(sc, RT2661_TX_RING_CSR0,
RT2661_TX_RING_COUNT << 24 |
RT2661_TX_RING_COUNT << 16 |
RT2661_TX_RING_COUNT << 8 |
RT2661_TX_RING_COUNT);
RAL_WRITE(sc, RT2661_TX_RING_CSR1,
RT2661_TX_DESC_WSIZE << 16 |
RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
RT2661_MGT_RING_COUNT);
/* initialize Rx rings */
RAL_WRITE(sc, RT2661_RX_RING_CSR,
RT2661_RX_DESC_BACK << 16 |
RT2661_RX_DESC_WSIZE << 8 |
RT2661_RX_RING_COUNT);
/* XXX: some magic here */
RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
/* load base address of Rx ring */
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
/* initialize MAC registers to default values */
for (i = 0; i < N(rt2661_def_mac); i++)
RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
rt2661_set_macaddr(sc, ic->ic_myaddr);
/* set host ready */
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 1000; ntries++) {
if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
break;
DELAY(1000);
}
if (ntries == 1000) {
printf("timeout waiting for BBP/RF to wakeup\n");
rt2661_stop(ifp, 1);
return EIO;
}
if (rt2661_bbp_init(sc) != 0) {
rt2661_stop(ifp, 1);
return EIO;
}
/* select default channel */
sc->sc_curchan = ic->ic_curchan;
rt2661_select_band(sc, sc->sc_curchan);
rt2661_select_antenna(sc);
rt2661_set_chan(sc, sc->sc_curchan);
/* update Rx filter */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
RT2661_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2661_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2661_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
/* clear STA registers */
RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
/* initialize ASIC */
RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
/* clear any pending interrupt */
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
/* kick Rx */
RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
#undef N
}
static void
rt2661_stop(struct ifnet *ifp, int disable)
{
struct rt2661_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
/* abort Tx (for all 5 Tx rings) */
RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
/* disable Rx (value remains after reset!) */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
/* reset ASIC */
RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
/* clear any pending interrupt */
RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
/* reset Tx and Rx rings */
rt2661_reset_tx_ring(sc, &sc->txq[0]);
rt2661_reset_tx_ring(sc, &sc->txq[1]);
rt2661_reset_tx_ring(sc, &sc->txq[2]);
rt2661_reset_tx_ring(sc, &sc->txq[3]);
rt2661_reset_tx_ring(sc, &sc->mgtq);
rt2661_reset_rx_ring(sc, &sc->rxq);
/* for CardBus, power down the socket */
if (disable && sc->sc_disable != NULL) {
if (sc->sc_flags & RT2661_ENABLED) {
(*sc->sc_disable)(sc);
sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
}
}
}
static int
rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
{
int ntries;
/* reset 8051 */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
/* cancel any pending Host to MCU command */
RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
/* write 8051's microcode */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
/* kick 8051's ass */
RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
/* wait for 8051 to initialize */
for (ntries = 0; ntries < 500; ntries++) {
if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
break;
DELAY(100);
}
if (ntries == 500) {
printf("timeout waiting for MCU to initialize\n");
return EIO;
}
return 0;
}
#ifdef notyet
/*
* Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
* false CCA count. This function is called periodically (every seconds) when
* in the RUN state. Values taken from the reference driver.
*/
static void
rt2661_rx_tune(struct rt2661_softc *sc)
{
uint8_t bbp17;
uint16_t cca;
int lo, hi, dbm;
/*
* Tuning range depends on operating band and on the presence of an
* external low-noise amplifier.
*/
lo = 0x20;
if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
lo += 0x08;
if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
lo += 0x10;
hi = lo + 0x20;
/* retrieve false CCA count since last call (clear on read) */
cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
if (dbm >= -35) {
bbp17 = 0x60;
} else if (dbm >= -58) {
bbp17 = hi;
} else if (dbm >= -66) {
bbp17 = lo + 0x10;
} else if (dbm >= -74) {
bbp17 = lo + 0x08;
} else {
/* RSSI < -74dBm, tune using false CCA count */
bbp17 = sc->bbp17; /* current value */
hi -= 2 * (-74 - dbm);
if (hi < lo)
hi = lo;
if (bbp17 > hi) {
bbp17 = hi;
} else if (cca > 512) {
if (++bbp17 > hi)
bbp17 = hi;
} else if (cca < 100) {
if (--bbp17 < lo)
bbp17 = lo;
}
}
if (bbp17 != sc->bbp17) {
rt2661_bbp_write(sc, 17, bbp17);
sc->bbp17 = bbp17;
}
}
/*
* Enter/Leave radar detection mode.
* This is for 802.11h additional regulatory domains.
*/
static void
rt2661_radar_start(struct rt2661_softc *sc)
{
uint32_t tmp;
/* disable Rx */
tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
rt2661_bbp_write(sc, 82, 0x20);
rt2661_bbp_write(sc, 83, 0x00);
rt2661_bbp_write(sc, 84, 0x40);
/* save current BBP registers values */
sc->bbp18 = rt2661_bbp_read(sc, 18);
sc->bbp21 = rt2661_bbp_read(sc, 21);
sc->bbp22 = rt2661_bbp_read(sc, 22);
sc->bbp16 = rt2661_bbp_read(sc, 16);
sc->bbp17 = rt2661_bbp_read(sc, 17);
sc->bbp64 = rt2661_bbp_read(sc, 64);
rt2661_bbp_write(sc, 18, 0xff);
rt2661_bbp_write(sc, 21, 0x3f);
rt2661_bbp_write(sc, 22, 0x3f);
rt2661_bbp_write(sc, 16, 0xbd);
rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
rt2661_bbp_write(sc, 64, 0x21);
/* restore Rx filter */
RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
}
static int
rt2661_radar_stop(struct rt2661_softc *sc)
{
uint8_t bbp66;
/* read radar detection result */
bbp66 = rt2661_bbp_read(sc, 66);
/* restore BBP registers values */
rt2661_bbp_write(sc, 16, sc->bbp16);
rt2661_bbp_write(sc, 17, sc->bbp17);
rt2661_bbp_write(sc, 18, sc->bbp18);
rt2661_bbp_write(sc, 21, sc->bbp21);
rt2661_bbp_write(sc, 22, sc->bbp22);
rt2661_bbp_write(sc, 64, sc->bbp64);
return bbp66 == 1;
}
#endif
static int
rt2661_prepare_beacon(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2661_tx_desc desc;
struct mbuf *m0;
struct ieee80211_beacon_offsets bo;
int rate;
m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
if (m0 == NULL) {
printf("%s: could not allocate beacon frame\n",
sc->sc_dev.dv_xname);
return ENOBUFS;
}
/* send beacons at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
/* copy the first 24 bytes of Tx descriptor into NIC memory */
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
/* copy beacon header and payload into NIC memory */
RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
mtod(m0, uint8_t *), m0->m_pkthdr.len);
m_freem(m0);
return 0;
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
static void
rt2661_enable_tsf_sync(struct rt2661_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
}
tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2661_TSF_MODE(1);
else
tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
}
/*
* Retrieve the "Received Signal Strength Indicator" from the raw values
* contained in Rx descriptors. The computation depends on which band the
* frame was received. Correction values taken from the reference driver.
*/
static int
rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
{
int lna, agc, rssi;
lna = (raw >> 5) & 0x3;
agc = raw & 0x1f;
rssi = 2 * agc;
if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
rssi += sc->rssi_2ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 74;
else if (lna == 3)
rssi -= 90;
} else {
rssi += sc->rssi_5ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 86;
else if (lna == 3)
rssi -= 100;
}
return rssi;
}