565 lines
17 KiB
C
565 lines
17 KiB
C
/* bpf.c
|
|
|
|
BPF socket interface code, originally contributed by Archie Cobbs. */
|
|
|
|
/*
|
|
* Copyright (c) 1996-2000 Internet Software Consortium.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of The Internet Software Consortium nor the names
|
|
* of its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INTERNET SOFTWARE CONSORTIUM AND
|
|
* CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE INTERNET SOFTWARE CONSORTIUM OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* This software was contributed to the Internet Software Consortium
|
|
* by Archie Cobbs, and is now maintained by Ted Lemon in cooperation
|
|
* with Nominum, Inc. To learn more about the Internet Software
|
|
* Consortium, see ``http://www.isc.org/''. To learn more about Vixie
|
|
* Enterprises, see ``http://www.vix.com''. To learn more about
|
|
* Nominum, Inc., see ``http://www.nominum.com''.
|
|
*
|
|
* Patches for FDDI support on Digital Unix were written by Bill
|
|
* Stapleton, and maintained for a while by Mike Meredith before he
|
|
* managed to get me to integrate them.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char copyright[] =
|
|
"$Id: bpf.c,v 1.11 2001/06/18 19:01:53 drochner Exp $ Copyright (c) 1995-2000 The Internet Software Consortium. All rights reserved.\n";
|
|
#endif /* not lint */
|
|
|
|
#include "dhcpd.h"
|
|
#if defined (USE_BPF_SEND) || defined (USE_BPF_RECEIVE) \
|
|
|| defined (USE_LPF_RECEIVE)
|
|
# if defined (USE_LPF_RECEIVE)
|
|
# include <asm/types.h>
|
|
# include <linux/filter.h>
|
|
# define bpf_insn sock_filter /* Linux: dare to be gratuitously different. */
|
|
# else
|
|
# include <sys/ioctl.h>
|
|
# include <sys/uio.h>
|
|
# include <net/bpf.h>
|
|
# if defined (NEED_OSF_PFILT_HACKS)
|
|
# include <net/pfilt.h>
|
|
# endif
|
|
# endif
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include "includes/netinet/ip.h"
|
|
#include "includes/netinet/udp.h"
|
|
#include "includes/netinet/if_ether.h"
|
|
#endif
|
|
|
|
/* Reinitializes the specified interface after an address change. This
|
|
is not required for packet-filter APIs. */
|
|
|
|
#ifdef USE_BPF_SEND
|
|
void if_reinitialize_send (info)
|
|
struct interface_info *info;
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_BPF_RECEIVE
|
|
void if_reinitialize_receive (info)
|
|
struct interface_info *info;
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Called by get_interface_list for each interface that's discovered.
|
|
Opens a packet filter for each interface and adds it to the select
|
|
mask. */
|
|
|
|
#if defined (USE_BPF_SEND) || defined (USE_BPF_RECEIVE)
|
|
int if_register_bpf (info)
|
|
struct interface_info *info;
|
|
{
|
|
int sock;
|
|
char filename[50];
|
|
int b;
|
|
|
|
/* Open a BPF device */
|
|
for (b = 0; 1; b++) {
|
|
#ifndef NO_SNPRINTF
|
|
snprintf(filename, sizeof(filename), BPF_FORMAT, b);
|
|
#else
|
|
sprintf(filename, BPF_FORMAT, b);
|
|
#endif
|
|
sock = open (filename, O_RDWR, 0);
|
|
if (sock < 0) {
|
|
if (errno == EBUSY) {
|
|
continue;
|
|
} else {
|
|
if (!b)
|
|
log_fatal ("No bpf devices.%s%s%s",
|
|
" Please read the README",
|
|
" section for your operating",
|
|
" system.");
|
|
log_fatal ("Can't find free bpf: %m");
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Set the BPF device to point at this interface. */
|
|
if (ioctl (sock, BIOCSETIF, info -> ifp) < 0)
|
|
log_fatal ("Can't attach interface %s to bpf device %s: %m",
|
|
info -> name, filename);
|
|
|
|
return sock;
|
|
}
|
|
#endif /* USE_BPF_SEND || USE_BPF_RECEIVE */
|
|
|
|
#ifdef USE_BPF_SEND
|
|
void if_register_send (info)
|
|
struct interface_info *info;
|
|
{
|
|
/* If we're using the bpf API for sending and receiving,
|
|
we don't need to register this interface twice. */
|
|
#ifndef USE_BPF_RECEIVE
|
|
info -> wfdesc = if_register_bpf (info, interface);
|
|
#else
|
|
info -> wfdesc = info -> rfdesc;
|
|
#endif
|
|
if (!quiet_interface_discovery)
|
|
log_info ("Sending on BPF/%s/%s%s%s",
|
|
info -> name,
|
|
print_hw_addr (info -> hw_address.hbuf [0],
|
|
info -> hw_address.hlen - 1,
|
|
&info -> hw_address.hbuf [1]),
|
|
(info -> shared_network ? "/" : ""),
|
|
(info -> shared_network ?
|
|
info -> shared_network -> name : ""));
|
|
}
|
|
|
|
void if_deregister_send (info)
|
|
struct interface_info *info;
|
|
{
|
|
/* If we're using the bpf API for sending and receiving,
|
|
we don't need to register this interface twice. */
|
|
#ifndef USE_BPF_RECEIVE
|
|
close (info -> wfdesc);
|
|
#endif
|
|
info -> wfdesc = -1;
|
|
|
|
if (!quiet_interface_discovery)
|
|
log_info ("Disabling output on BPF/%s/%s%s%s",
|
|
info -> name,
|
|
print_hw_addr (info -> hw_address.hbuf [0],
|
|
info -> hw_address.hlen - 1,
|
|
&info -> hw_address.hbuf [1]),
|
|
(info -> shared_network ? "/" : ""),
|
|
(info -> shared_network ?
|
|
info -> shared_network -> name : ""));
|
|
}
|
|
#endif /* USE_BPF_SEND */
|
|
|
|
#if defined (USE_BPF_RECEIVE) || defined (USE_LPF_RECEIVE)
|
|
/* Packet filter program...
|
|
XXX Changes to the filter program may require changes to the constant
|
|
offsets used in if_register_send to patch the BPF program! XXX */
|
|
|
|
struct bpf_insn dhcp_bpf_filter [] = {
|
|
/* Make sure this is an IP packet... */
|
|
BPF_STMT (BPF_LD + BPF_H + BPF_ABS, 12),
|
|
BPF_JUMP (BPF_JMP + BPF_JEQ + BPF_K, ETHERTYPE_IP, 0, 8),
|
|
|
|
/* Make sure it's a UDP packet... */
|
|
BPF_STMT (BPF_LD + BPF_B + BPF_ABS, 23),
|
|
BPF_JUMP (BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_UDP, 0, 6),
|
|
|
|
/* Make sure this isn't a fragment... */
|
|
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, 20),
|
|
BPF_JUMP(BPF_JMP + BPF_JSET + BPF_K, 0x1fff, 4, 0),
|
|
|
|
/* Get the IP header length... */
|
|
BPF_STMT (BPF_LDX + BPF_B + BPF_MSH, 14),
|
|
|
|
/* Make sure it's to the right port... */
|
|
BPF_STMT (BPF_LD + BPF_H + BPF_IND, 16),
|
|
BPF_JUMP (BPF_JMP + BPF_JEQ + BPF_K, 67, 0, 1), /* patch */
|
|
|
|
/* If we passed all the tests, ask for the whole packet. */
|
|
BPF_STMT(BPF_RET+BPF_K, (u_int)-1),
|
|
|
|
/* Otherwise, drop it. */
|
|
BPF_STMT(BPF_RET+BPF_K, 0),
|
|
};
|
|
|
|
#if defined(DEC_FDDI) || defined(NETBSD_FDDI)
|
|
struct bpf_insn *bpf_fddi_filter;
|
|
#endif
|
|
|
|
int dhcp_bpf_filter_len = sizeof dhcp_bpf_filter / sizeof (struct bpf_insn);
|
|
#if defined (HAVE_TR_SUPPORT)
|
|
struct bpf_insn dhcp_bpf_tr_filter [] = {
|
|
/* accept all token ring packets due to variable length header */
|
|
/* if we want to get clever, insert the program here */
|
|
|
|
/* If we passed all the tests, ask for the whole packet. */
|
|
BPF_STMT(BPF_RET+BPF_K, (u_int)-1),
|
|
|
|
/* Otherwise, drop it. */
|
|
BPF_STMT(BPF_RET+BPF_K, 0),
|
|
};
|
|
|
|
int dhcp_bpf_tr_filter_len = (sizeof dhcp_bpf_tr_filter /
|
|
sizeof (struct bpf_insn));
|
|
#endif /* HAVE_TR_SUPPORT */
|
|
#endif /* USE_LPF_RECEIVE || USE_BPF_RECEIVE */
|
|
|
|
#if defined (USE_BPF_RECEIVE)
|
|
void if_register_receive (info)
|
|
struct interface_info *info;
|
|
{
|
|
int flag = 1;
|
|
struct bpf_version v;
|
|
u_int32_t addr;
|
|
struct bpf_program p;
|
|
u_int32_t bits;
|
|
#if defined(DEC_FDDI) || defined(NETBSD_FDDI)
|
|
int link_layer;
|
|
#endif /* DEC_FDDI || NETBSD_FDDI */
|
|
|
|
/* Open a BPF device and hang it on this interface... */
|
|
info -> rfdesc = if_register_bpf (info);
|
|
|
|
/* Make sure the BPF version is in range... */
|
|
if (ioctl (info -> rfdesc, BIOCVERSION, &v) < 0)
|
|
log_fatal ("Can't get BPF version: %m");
|
|
|
|
if (v.bv_major != BPF_MAJOR_VERSION ||
|
|
v.bv_minor < BPF_MINOR_VERSION)
|
|
log_fatal ("BPF version mismatch - recompile DHCP!");
|
|
|
|
/* Set immediate mode so that reads return as soon as a packet
|
|
comes in, rather than waiting for the input buffer to fill with
|
|
packets. */
|
|
if (ioctl (info -> rfdesc, BIOCIMMEDIATE, &flag) < 0)
|
|
log_fatal ("Can't set immediate mode on bpf device: %m");
|
|
|
|
#ifdef NEED_OSF_PFILT_HACKS
|
|
/* Allow the copyall flag to be set... */
|
|
if (ioctl(info -> rfdesc, EIOCALLOWCOPYALL, &flag) < 0)
|
|
log_fatal ("Can't set ALLOWCOPYALL: %m");
|
|
|
|
/* Clear all the packet filter mode bits first... */
|
|
bits = 0;
|
|
if (ioctl (info -> rfdesc, EIOCMBIS, &bits) < 0)
|
|
log_fatal ("Can't clear pfilt bits: %m");
|
|
|
|
/* Set the ENBATCH, ENCOPYALL, ENBPFHDR bits... */
|
|
bits = ENBATCH | ENCOPYALL | ENBPFHDR;
|
|
if (ioctl (info -> rfdesc, EIOCMBIS, &bits) < 0)
|
|
log_fatal ("Can't set ENBATCH|ENCOPYALL|ENBPFHDR: %m");
|
|
#endif
|
|
/* Get the required BPF buffer length from the kernel. */
|
|
if (ioctl (info -> rfdesc, BIOCGBLEN, &info -> rbuf_max) < 0)
|
|
log_fatal ("Can't get bpf buffer length: %m");
|
|
info -> rbuf = dmalloc (info -> rbuf_max, MDL);
|
|
if (!info -> rbuf)
|
|
log_fatal ("Can't allocate %ld bytes for bpf input buffer.",
|
|
(long)(info -> rbuf_max));
|
|
info -> rbuf_offset = 0;
|
|
info -> rbuf_len = 0;
|
|
|
|
/* Set up the bpf filter program structure. */
|
|
p.bf_len = dhcp_bpf_filter_len;
|
|
|
|
#if defined(DEC_FDDI) || defined(NETBSD_FDDI)
|
|
/* See if this is an FDDI interface, flag it for later. */
|
|
if (ioctl(info -> rfdesc, BIOCGDLT, &link_layer) >= 0 &&
|
|
link_layer == DLT_FDDI) {
|
|
if (!bpf_fddi_filter) {
|
|
bpf_fddi_filter = dmalloc (sizeof bpf_fddi_filter,
|
|
MDL);
|
|
if (!bpf_fddi_filter)
|
|
log_fatal ("No memory for FDDI filter.");
|
|
memcpy (bpf_fddi_filter,
|
|
dhcp_bpf_filter, sizeof dhcp_bpf_filter);
|
|
/* Patch the BPF program to account for the difference
|
|
in length between ethernet headers (14), FDDI and
|
|
802.2 headers (16 +8=24, +10).
|
|
XXX changes to filter program may require changes to
|
|
XXX the insn number(s) used below! */
|
|
bpf_fddi_filter[0].k += 10;
|
|
bpf_fddi_filter[2].k += 10;
|
|
bpf_fddi_filter[4].k += 10;
|
|
bpf_fddi_filter[6].k += 10;
|
|
bpf_fddi_filter[7].k += 10;
|
|
}
|
|
p.bf_insns = bpf_fddi_filter;
|
|
} else
|
|
#endif /* DEC_FDDI || NETBSD_FDDI */
|
|
p.bf_insns = dhcp_bpf_filter;
|
|
|
|
/* Patch the server port into the BPF program...
|
|
XXX changes to filter program may require changes
|
|
to the insn number(s) used below! XXX */
|
|
dhcp_bpf_filter [8].k = ntohs (local_port);
|
|
|
|
if (ioctl (info -> rfdesc, BIOCSETF, &p) < 0)
|
|
log_fatal ("Can't install packet filter program: %m");
|
|
if (!quiet_interface_discovery)
|
|
log_info ("Listening on BPF/%s/%s%s%s",
|
|
info -> name,
|
|
print_hw_addr (info -> hw_address.hbuf [0],
|
|
info -> hw_address.hlen - 1,
|
|
&info -> hw_address.hbuf [1]),
|
|
(info -> shared_network ? "/" : ""),
|
|
(info -> shared_network ?
|
|
info -> shared_network -> name : ""));
|
|
}
|
|
|
|
void if_deregister_receive (info)
|
|
struct interface_info *info;
|
|
{
|
|
close (info -> rfdesc);
|
|
info -> rfdesc = -1;
|
|
|
|
if (!quiet_interface_discovery)
|
|
log_info ("Disabling input on BPF/%s/%s%s%s",
|
|
info -> name,
|
|
print_hw_addr (info -> hw_address.hbuf [0],
|
|
info -> hw_address.hlen - 1,
|
|
&info -> hw_address.hbuf [1]),
|
|
(info -> shared_network ? "/" : ""),
|
|
(info -> shared_network ?
|
|
info -> shared_network -> name : ""));
|
|
}
|
|
#endif /* USE_BPF_RECEIVE */
|
|
|
|
#ifdef USE_BPF_SEND
|
|
ssize_t send_packet (interface, packet, raw, len, from, to, hto)
|
|
struct interface_info *interface;
|
|
struct packet *packet;
|
|
struct dhcp_packet *raw;
|
|
size_t len;
|
|
struct in_addr from;
|
|
struct sockaddr_in *to;
|
|
struct hardware *hto;
|
|
{
|
|
unsigned hbufp = 0, ibufp = 0;
|
|
double hw [4];
|
|
double ip [32];
|
|
struct iovec iov [3];
|
|
int result;
|
|
int fudge;
|
|
|
|
if (!strcmp (interface -> name, "fallback"))
|
|
return send_fallback (interface, packet, raw,
|
|
len, from, to, hto);
|
|
|
|
/* Assemble the headers... */
|
|
assemble_hw_header (interface, (unsigned char *)hw, &hbufp, hto);
|
|
assemble_udp_ip_header (interface,
|
|
(unsigned char *)ip, &ibufp, from.s_addr,
|
|
to -> sin_addr.s_addr, to -> sin_port,
|
|
(unsigned char *)raw, len);
|
|
|
|
/* Fire it off */
|
|
iov [0].iov_base = ((char *)hw);
|
|
iov [0].iov_len = hbufp;
|
|
iov [1].iov_base = ((char *)ip);
|
|
iov [1].iov_len = ibufp;
|
|
iov [2].iov_base = (char *)raw;
|
|
iov [2].iov_len = len;
|
|
|
|
result = writev(interface -> wfdesc, iov, 3);
|
|
if (result < 0)
|
|
log_error ("send_packet: %m");
|
|
return result;
|
|
}
|
|
#endif /* USE_BPF_SEND */
|
|
|
|
#ifdef USE_BPF_RECEIVE
|
|
ssize_t receive_packet (interface, buf, len, from, hfrom)
|
|
struct interface_info *interface;
|
|
unsigned char *buf;
|
|
size_t len;
|
|
struct sockaddr_in *from;
|
|
struct hardware *hfrom;
|
|
{
|
|
int length = 0;
|
|
int offset = 0;
|
|
struct bpf_hdr hdr;
|
|
|
|
/* All this complexity is because BPF doesn't guarantee
|
|
that only one packet will be returned at a time. We're
|
|
getting what we deserve, though - this is a terrible abuse
|
|
of the BPF interface. Sigh. */
|
|
|
|
/* Process packets until we get one we can return or until we've
|
|
done a read and gotten nothing we can return... */
|
|
|
|
do {
|
|
/* If the buffer is empty, fill it. */
|
|
if (interface -> rbuf_offset == interface -> rbuf_len) {
|
|
length = read (interface -> rfdesc,
|
|
interface -> rbuf,
|
|
interface -> rbuf_max);
|
|
if (length <= 0) {
|
|
if (errno == EIO) {
|
|
dhcp_interface_remove
|
|
((omapi_object_t *)interface,
|
|
(omapi_object_t *)0);
|
|
}
|
|
return length;
|
|
}
|
|
interface -> rbuf_offset = 0;
|
|
interface -> rbuf_len = BPF_WORDALIGN (length);
|
|
}
|
|
|
|
/* If there isn't room for a whole bpf header, something went
|
|
wrong, but we'll ignore it and hope it goes away... XXX */
|
|
if (interface -> rbuf_len -
|
|
interface -> rbuf_offset < sizeof hdr) {
|
|
interface -> rbuf_offset = interface -> rbuf_len;
|
|
continue;
|
|
}
|
|
|
|
/* Adjust for any padding BPF inserted between the packets. */
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset);
|
|
|
|
/* Copy out a bpf header... */
|
|
memcpy (&hdr, &interface -> rbuf [interface -> rbuf_offset],
|
|
sizeof hdr);
|
|
|
|
/* If the bpf header plus data doesn't fit in what's left
|
|
of the buffer, stick head in sand yet again... */
|
|
if (interface -> rbuf_offset +
|
|
hdr.bh_hdrlen + hdr.bh_caplen > interface -> rbuf_len) {
|
|
interface -> rbuf_offset = interface -> rbuf_len;
|
|
continue;
|
|
}
|
|
|
|
/* If the captured data wasn't the whole packet, or if
|
|
the packet won't fit in the input buffer, all we
|
|
can do is drop it. */
|
|
if (hdr.bh_caplen != hdr.bh_datalen) {
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset +
|
|
hdr.bh_hdrlen + hdr.bh_caplen);
|
|
continue;
|
|
}
|
|
|
|
/* Skip over the BPF header... */
|
|
interface -> rbuf_offset += hdr.bh_hdrlen;
|
|
|
|
/* Decode the physical header... */
|
|
offset = decode_hw_header (interface,
|
|
interface -> rbuf,
|
|
interface -> rbuf_offset,
|
|
hfrom);
|
|
|
|
/* If a physical layer checksum failed (dunno of any
|
|
physical layer that supports this, but WTH), skip this
|
|
packet. */
|
|
if (offset < 0) {
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset +
|
|
hdr.bh_caplen);
|
|
continue;
|
|
}
|
|
interface -> rbuf_offset += offset;
|
|
hdr.bh_caplen -= offset;
|
|
|
|
/* Decode the IP and UDP headers... */
|
|
offset = decode_udp_ip_header (interface,
|
|
interface -> rbuf,
|
|
interface -> rbuf_offset,
|
|
from,
|
|
(unsigned char *)0,
|
|
hdr.bh_caplen);
|
|
|
|
/* If the IP or UDP checksum was bad, skip the packet... */
|
|
if (offset < 0) {
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset +
|
|
hdr.bh_caplen);
|
|
continue;
|
|
}
|
|
interface -> rbuf_offset = interface -> rbuf_offset + offset;
|
|
hdr.bh_caplen -= offset;
|
|
|
|
/* If there's not enough room to stash the packet data,
|
|
we have to skip it (this shouldn't happen in real
|
|
life, though). */
|
|
if (hdr.bh_caplen > len) {
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset +
|
|
hdr.bh_caplen);
|
|
continue;
|
|
}
|
|
|
|
/* Copy out the data in the packet... */
|
|
memcpy (buf, interface -> rbuf + interface -> rbuf_offset,
|
|
hdr.bh_caplen);
|
|
interface -> rbuf_offset =
|
|
BPF_WORDALIGN (interface -> rbuf_offset +
|
|
hdr.bh_caplen);
|
|
return hdr.bh_caplen;
|
|
} while (!length);
|
|
return 0;
|
|
}
|
|
|
|
int can_unicast_without_arp (ip)
|
|
struct interface_info *ip;
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int can_receive_unicast_unconfigured (ip)
|
|
struct interface_info *ip;
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int supports_multiple_interfaces (ip)
|
|
struct interface_info *ip;
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void maybe_setup_fallback ()
|
|
{
|
|
isc_result_t status;
|
|
struct interface_info *fbi = (struct interface_info *)0;
|
|
if (setup_fallback (&fbi, MDL)) {
|
|
if_register_fallback (fbi);
|
|
status = omapi_register_io_object ((omapi_object_t *)fbi,
|
|
if_readsocket, 0,
|
|
fallback_discard, 0, 0);
|
|
if (status != ISC_R_SUCCESS)
|
|
log_fatal ("Can't register I/O handle for %s: %s",
|
|
fbi -> name, isc_result_totext (status));
|
|
interface_dereference (&fbi, MDL);
|
|
}
|
|
}
|
|
#endif
|