1083f0866d
our last 4.1 branch import, plus a few other changes: c/27718 26242 c++/27451 c/26818 tree-optimization/26622 target/27758 middle-end/27743 middle-end/27620 tree-optimization/27549 tree-optimization/27283 target/26600 c++/26757 driver/26885 tree-optimization/27603 rtl-optimization/14261 rtl-optimization/22563 middle-end/26729 rtl-optimization/27335 target/27421 middle-end/27384 middle-end/27488 target/27158 bootstrap/26872 target/26545 tree-optimization/27136 tree-optimization/27409 middle-end/27260 tree-optimization/27151 target/26481 target/26765 target/26481 tree-optimization/27285 optimization/25985 tree-optimization/27364 c/25309 target/27387 target/27374 middle-end/26565 target/26826 tree-optimization/27236 middle-end/26869 tree-optimization/27218 rtl-optimization/26685 tree-optimization/26865 target/26961 target/21283 c/26774 c/25875 mudflap/26789
3851 lines
106 KiB
C
3851 lines
106 KiB
C
/* Tree based points-to analysis
|
|
Copyright (C) 2005 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "obstack.h"
|
|
#include "bitmap.h"
|
|
#include "flags.h"
|
|
#include "rtl.h"
|
|
#include "tm_p.h"
|
|
#include "hard-reg-set.h"
|
|
#include "basic-block.h"
|
|
#include "output.h"
|
|
#include "errors.h"
|
|
#include "diagnostic.h"
|
|
#include "tree.h"
|
|
#include "c-common.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-inline.h"
|
|
#include "varray.h"
|
|
#include "c-tree.h"
|
|
#include "tree-gimple.h"
|
|
#include "hashtab.h"
|
|
#include "function.h"
|
|
#include "cgraph.h"
|
|
#include "tree-pass.h"
|
|
#include "timevar.h"
|
|
#include "alloc-pool.h"
|
|
#include "splay-tree.h"
|
|
#include "tree-ssa-structalias.h"
|
|
#include "params.h"
|
|
|
|
/* The idea behind this analyzer is to generate set constraints from the
|
|
program, then solve the resulting constraints in order to generate the
|
|
points-to sets.
|
|
|
|
Set constraints are a way of modeling program analysis problems that
|
|
involve sets. They consist of an inclusion constraint language,
|
|
describing the variables (each variable is a set) and operations that
|
|
are involved on the variables, and a set of rules that derive facts
|
|
from these operations. To solve a system of set constraints, you derive
|
|
all possible facts under the rules, which gives you the correct sets
|
|
as a consequence.
|
|
|
|
See "Efficient Field-sensitive pointer analysis for C" by "David
|
|
J. Pearce and Paul H. J. Kelly and Chris Hankin, at
|
|
http://citeseer.ist.psu.edu/pearce04efficient.html
|
|
|
|
Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
|
|
of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
|
|
http://citeseer.ist.psu.edu/heintze01ultrafast.html
|
|
|
|
There are three types of constraint expressions, DEREF, ADDRESSOF, and
|
|
SCALAR. Each constraint expression consists of a constraint type,
|
|
a variable, and an offset.
|
|
|
|
SCALAR is a constraint expression type used to represent x, whether
|
|
it appears on the LHS or the RHS of a statement.
|
|
DEREF is a constraint expression type used to represent *x, whether
|
|
it appears on the LHS or the RHS of a statement.
|
|
ADDRESSOF is a constraint expression used to represent &x, whether
|
|
it appears on the LHS or the RHS of a statement.
|
|
|
|
Each pointer variable in the program is assigned an integer id, and
|
|
each field of a structure variable is assigned an integer id as well.
|
|
|
|
Structure variables are linked to their list of fields through a "next
|
|
field" in each variable that points to the next field in offset
|
|
order.
|
|
Each variable for a structure field has
|
|
|
|
1. "size", that tells the size in bits of that field.
|
|
2. "fullsize, that tells the size in bits of the entire structure.
|
|
3. "offset", that tells the offset in bits from the beginning of the
|
|
structure to this field.
|
|
|
|
Thus,
|
|
struct f
|
|
{
|
|
int a;
|
|
int b;
|
|
} foo;
|
|
int *bar;
|
|
|
|
looks like
|
|
|
|
foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
|
|
foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
|
|
bar -> id 3, size 32, offset 0, fullsize 32, next NULL
|
|
|
|
|
|
In order to solve the system of set constraints, the following is
|
|
done:
|
|
|
|
1. Each constraint variable x has a solution set associated with it,
|
|
Sol(x).
|
|
|
|
2. Constraints are separated into direct, copy, and complex.
|
|
Direct constraints are ADDRESSOF constraints that require no extra
|
|
processing, such as P = &Q
|
|
Copy constraints are those of the form P = Q.
|
|
Complex constraints are all the constraints involving dereferences.
|
|
|
|
3. All direct constraints of the form P = &Q are processed, such
|
|
that Q is added to Sol(P)
|
|
|
|
4. All complex constraints for a given constraint variable are stored in a
|
|
linked list attached to that variable's node.
|
|
|
|
5. A directed graph is built out of the copy constraints. Each
|
|
constraint variable is a node in the graph, and an edge from
|
|
Q to P is added for each copy constraint of the form P = Q
|
|
|
|
6. The graph is then walked, and solution sets are
|
|
propagated along the copy edges, such that an edge from Q to P
|
|
causes Sol(P) <- Sol(P) union Sol(Q).
|
|
|
|
7. As we visit each node, all complex constraints associated with
|
|
that node are processed by adding appropriate copy edges to the graph, or the
|
|
appropriate variables to the solution set.
|
|
|
|
8. The process of walking the graph is iterated until no solution
|
|
sets change.
|
|
|
|
Prior to walking the graph in steps 6 and 7, We perform static
|
|
cycle elimination on the constraint graph, as well
|
|
as off-line variable substitution.
|
|
|
|
TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
|
|
on and turned into anything), but isn't. You can just see what offset
|
|
inside the pointed-to struct it's going to access.
|
|
|
|
TODO: Constant bounded arrays can be handled as if they were structs of the
|
|
same number of elements.
|
|
|
|
TODO: Modeling heap and incoming pointers becomes much better if we
|
|
add fields to them as we discover them, which we could do.
|
|
|
|
TODO: We could handle unions, but to be honest, it's probably not
|
|
worth the pain or slowdown. */
|
|
|
|
static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
|
|
htab_t heapvar_for_stmt;
|
|
static bool use_field_sensitive = true;
|
|
static unsigned int create_variable_info_for (tree, const char *);
|
|
static struct constraint_expr get_constraint_for (tree, bool *);
|
|
static void build_constraint_graph (void);
|
|
|
|
static bitmap_obstack ptabitmap_obstack;
|
|
static bitmap_obstack iteration_obstack;
|
|
DEF_VEC_P(constraint_t);
|
|
DEF_VEC_ALLOC_P(constraint_t,heap);
|
|
|
|
static struct constraint_stats
|
|
{
|
|
unsigned int total_vars;
|
|
unsigned int collapsed_vars;
|
|
unsigned int unified_vars_static;
|
|
unsigned int unified_vars_dynamic;
|
|
unsigned int iterations;
|
|
} stats;
|
|
|
|
struct variable_info
|
|
{
|
|
/* ID of this variable */
|
|
unsigned int id;
|
|
|
|
/* Name of this variable */
|
|
const char *name;
|
|
|
|
/* Tree that this variable is associated with. */
|
|
tree decl;
|
|
|
|
/* Offset of this variable, in bits, from the base variable */
|
|
unsigned HOST_WIDE_INT offset;
|
|
|
|
/* Size of the variable, in bits. */
|
|
unsigned HOST_WIDE_INT size;
|
|
|
|
/* Full size of the base variable, in bits. */
|
|
unsigned HOST_WIDE_INT fullsize;
|
|
|
|
/* A link to the variable for the next field in this structure. */
|
|
struct variable_info *next;
|
|
|
|
/* Node in the graph that represents the constraints and points-to
|
|
solution for the variable. */
|
|
unsigned int node;
|
|
|
|
/* True if the address of this variable is taken. Needed for
|
|
variable substitution. */
|
|
unsigned int address_taken:1;
|
|
|
|
/* True if this variable is the target of a dereference. Needed for
|
|
variable substitution. */
|
|
unsigned int indirect_target:1;
|
|
|
|
/* True if this is a variable created by the constraint analysis, such as
|
|
heap variables and constraints we had to break up. */
|
|
unsigned int is_artificial_var:1;
|
|
|
|
/* True if this is a special variable whose solution set should not be
|
|
changed. */
|
|
unsigned int is_special_var:1;
|
|
|
|
/* True for variables whose size is not known or variable. */
|
|
unsigned int is_unknown_size_var:1;
|
|
|
|
/* True for variables that have unions somewhere in them. */
|
|
unsigned int has_union:1;
|
|
|
|
/* True if this is a heap variable. */
|
|
unsigned int is_heap_var:1;
|
|
|
|
/* Points-to set for this variable. */
|
|
bitmap solution;
|
|
|
|
/* Variable ids represented by this node. */
|
|
bitmap variables;
|
|
|
|
/* Vector of complex constraints for this node. Complex
|
|
constraints are those involving dereferences. */
|
|
VEC(constraint_t,heap) *complex;
|
|
|
|
/* Variable id this was collapsed to due to type unsafety.
|
|
This should be unused completely after build_constraint_graph, or
|
|
something is broken. */
|
|
struct variable_info *collapsed_to;
|
|
};
|
|
typedef struct variable_info *varinfo_t;
|
|
|
|
static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
|
|
|
|
/* Pool of variable info structures. */
|
|
static alloc_pool variable_info_pool;
|
|
|
|
DEF_VEC_P(varinfo_t);
|
|
|
|
DEF_VEC_ALLOC_P(varinfo_t, heap);
|
|
|
|
/* Table of variable info structures for constraint variables. Indexed directly
|
|
by variable info id. */
|
|
static VEC(varinfo_t,heap) *varmap;
|
|
|
|
/* Return the varmap element N */
|
|
|
|
static inline varinfo_t
|
|
get_varinfo (unsigned int n)
|
|
{
|
|
return VEC_index(varinfo_t, varmap, n);
|
|
}
|
|
|
|
/* Return the varmap element N, following the collapsed_to link. */
|
|
|
|
static inline varinfo_t
|
|
get_varinfo_fc (unsigned int n)
|
|
{
|
|
varinfo_t v = VEC_index(varinfo_t, varmap, n);
|
|
|
|
if (v->collapsed_to)
|
|
return v->collapsed_to;
|
|
return v;
|
|
}
|
|
|
|
/* Variable that represents the unknown pointer. */
|
|
static varinfo_t var_anything;
|
|
static tree anything_tree;
|
|
static unsigned int anything_id;
|
|
|
|
/* Variable that represents the NULL pointer. */
|
|
static varinfo_t var_nothing;
|
|
static tree nothing_tree;
|
|
static unsigned int nothing_id;
|
|
|
|
/* Variable that represents read only memory. */
|
|
static varinfo_t var_readonly;
|
|
static tree readonly_tree;
|
|
static unsigned int readonly_id;
|
|
|
|
/* Variable that represents integers. This is used for when people do things
|
|
like &0->a.b. */
|
|
static varinfo_t var_integer;
|
|
static tree integer_tree;
|
|
static unsigned int integer_id;
|
|
|
|
/* Variable that represents arbitrary offsets into an object. Used to
|
|
represent pointer arithmetic, which may not legally escape the
|
|
bounds of an object. */
|
|
static varinfo_t var_anyoffset;
|
|
static tree anyoffset_tree;
|
|
static unsigned int anyoffset_id;
|
|
|
|
|
|
/* Lookup a heap var for FROM, and return it if we find one. */
|
|
|
|
static tree
|
|
heapvar_lookup (tree from)
|
|
{
|
|
struct tree_map *h, in;
|
|
in.from = from;
|
|
|
|
h = htab_find_with_hash (heapvar_for_stmt, &in, htab_hash_pointer (from));
|
|
if (h)
|
|
return h->to;
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Insert a mapping FROM->TO in the heap var for statement
|
|
hashtable. */
|
|
|
|
static void
|
|
heapvar_insert (tree from, tree to)
|
|
{
|
|
struct tree_map *h;
|
|
void **loc;
|
|
|
|
h = ggc_alloc (sizeof (struct tree_map));
|
|
h->hash = htab_hash_pointer (from);
|
|
h->from = from;
|
|
h->to = to;
|
|
loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->hash, INSERT);
|
|
*(struct tree_map **) loc = h;
|
|
}
|
|
|
|
/* Return a new variable info structure consisting for a variable
|
|
named NAME, and using constraint graph node NODE. */
|
|
|
|
static varinfo_t
|
|
new_var_info (tree t, unsigned int id, const char *name, unsigned int node)
|
|
{
|
|
varinfo_t ret = pool_alloc (variable_info_pool);
|
|
|
|
ret->id = id;
|
|
ret->name = name;
|
|
ret->decl = t;
|
|
ret->node = node;
|
|
ret->address_taken = false;
|
|
ret->indirect_target = false;
|
|
ret->is_artificial_var = false;
|
|
ret->is_heap_var = false;
|
|
ret->is_special_var = false;
|
|
ret->is_unknown_size_var = false;
|
|
ret->has_union = false;
|
|
ret->solution = BITMAP_ALLOC (&ptabitmap_obstack);
|
|
bitmap_clear (ret->solution);
|
|
ret->variables = BITMAP_ALLOC (&ptabitmap_obstack);
|
|
bitmap_clear (ret->variables);
|
|
ret->complex = NULL;
|
|
ret->next = NULL;
|
|
ret->collapsed_to = NULL;
|
|
return ret;
|
|
}
|
|
|
|
typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
|
|
|
|
/* An expression that appears in a constraint. */
|
|
|
|
struct constraint_expr
|
|
{
|
|
/* Constraint type. */
|
|
constraint_expr_type type;
|
|
|
|
/* Variable we are referring to in the constraint. */
|
|
unsigned int var;
|
|
|
|
/* Offset, in bits, of this constraint from the beginning of
|
|
variables it ends up referring to.
|
|
|
|
IOW, in a deref constraint, we would deref, get the result set,
|
|
then add OFFSET to each member. */
|
|
unsigned HOST_WIDE_INT offset;
|
|
};
|
|
|
|
static struct constraint_expr do_deref (struct constraint_expr);
|
|
|
|
/* Our set constraints are made up of two constraint expressions, one
|
|
LHS, and one RHS.
|
|
|
|
As described in the introduction, our set constraints each represent an
|
|
operation between set valued variables.
|
|
*/
|
|
struct constraint
|
|
{
|
|
struct constraint_expr lhs;
|
|
struct constraint_expr rhs;
|
|
};
|
|
|
|
/* List of constraints that we use to build the constraint graph from. */
|
|
|
|
static VEC(constraint_t,heap) *constraints;
|
|
static alloc_pool constraint_pool;
|
|
|
|
/* An edge in the constraint graph. We technically have no use for
|
|
the src, since it will always be the same node that we are indexing
|
|
into the pred/succ arrays with, but it's nice for checking
|
|
purposes. The edges are weighted, with a bit set in weights for
|
|
each edge from src to dest with that weight. */
|
|
|
|
struct constraint_edge
|
|
{
|
|
unsigned int src;
|
|
unsigned int dest;
|
|
bitmap weights;
|
|
};
|
|
|
|
typedef struct constraint_edge *constraint_edge_t;
|
|
static alloc_pool constraint_edge_pool;
|
|
|
|
/* Return a new constraint edge from SRC to DEST. */
|
|
|
|
static constraint_edge_t
|
|
new_constraint_edge (unsigned int src, unsigned int dest)
|
|
{
|
|
constraint_edge_t ret = pool_alloc (constraint_edge_pool);
|
|
ret->src = src;
|
|
ret->dest = dest;
|
|
ret->weights = NULL;
|
|
return ret;
|
|
}
|
|
|
|
DEF_VEC_P(constraint_edge_t);
|
|
DEF_VEC_ALLOC_P(constraint_edge_t,heap);
|
|
|
|
|
|
/* The constraint graph is simply a set of adjacency vectors, one per
|
|
variable. succs[x] is the vector of successors for variable x, and preds[x]
|
|
is the vector of predecessors for variable x.
|
|
IOW, all edges are "forward" edges, which is not like our CFG.
|
|
So remember that
|
|
preds[x]->src == x, and
|
|
succs[x]->src == x. */
|
|
|
|
struct constraint_graph
|
|
{
|
|
VEC(constraint_edge_t,heap) **succs;
|
|
VEC(constraint_edge_t,heap) **preds;
|
|
};
|
|
|
|
typedef struct constraint_graph *constraint_graph_t;
|
|
|
|
static constraint_graph_t graph;
|
|
|
|
/* Create a new constraint consisting of LHS and RHS expressions. */
|
|
|
|
static constraint_t
|
|
new_constraint (const struct constraint_expr lhs,
|
|
const struct constraint_expr rhs)
|
|
{
|
|
constraint_t ret = pool_alloc (constraint_pool);
|
|
ret->lhs = lhs;
|
|
ret->rhs = rhs;
|
|
return ret;
|
|
}
|
|
|
|
/* Print out constraint C to FILE. */
|
|
|
|
void
|
|
dump_constraint (FILE *file, constraint_t c)
|
|
{
|
|
if (c->lhs.type == ADDRESSOF)
|
|
fprintf (file, "&");
|
|
else if (c->lhs.type == DEREF)
|
|
fprintf (file, "*");
|
|
fprintf (file, "%s", get_varinfo_fc (c->lhs.var)->name);
|
|
if (c->lhs.offset != 0)
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
|
|
fprintf (file, " = ");
|
|
if (c->rhs.type == ADDRESSOF)
|
|
fprintf (file, "&");
|
|
else if (c->rhs.type == DEREF)
|
|
fprintf (file, "*");
|
|
fprintf (file, "%s", get_varinfo_fc (c->rhs.var)->name);
|
|
if (c->rhs.offset != 0)
|
|
fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
|
|
fprintf (file, "\n");
|
|
}
|
|
|
|
/* Print out constraint C to stderr. */
|
|
|
|
void
|
|
debug_constraint (constraint_t c)
|
|
{
|
|
dump_constraint (stderr, c);
|
|
}
|
|
|
|
/* Print out all constraints to FILE */
|
|
|
|
void
|
|
dump_constraints (FILE *file)
|
|
{
|
|
int i;
|
|
constraint_t c;
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
|
dump_constraint (file, c);
|
|
}
|
|
|
|
/* Print out all constraints to stderr. */
|
|
|
|
void
|
|
debug_constraints (void)
|
|
{
|
|
dump_constraints (stderr);
|
|
}
|
|
|
|
/* SOLVER FUNCTIONS
|
|
|
|
The solver is a simple worklist solver, that works on the following
|
|
algorithm:
|
|
|
|
sbitmap changed_nodes = all ones;
|
|
changed_count = number of nodes;
|
|
For each node that was already collapsed:
|
|
changed_count--;
|
|
|
|
|
|
while (changed_count > 0)
|
|
{
|
|
compute topological ordering for constraint graph
|
|
|
|
find and collapse cycles in the constraint graph (updating
|
|
changed if necessary)
|
|
|
|
for each node (n) in the graph in topological order:
|
|
changed_count--;
|
|
|
|
Process each complex constraint associated with the node,
|
|
updating changed if necessary.
|
|
|
|
For each outgoing edge from n, propagate the solution from n to
|
|
the destination of the edge, updating changed as necessary.
|
|
|
|
} */
|
|
|
|
/* Return true if two constraint expressions A and B are equal. */
|
|
|
|
static bool
|
|
constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
|
|
{
|
|
return a.type == b.type
|
|
&& a.var == b.var
|
|
&& a.offset == b.offset;
|
|
}
|
|
|
|
/* Return true if constraint expression A is less than constraint expression
|
|
B. This is just arbitrary, but consistent, in order to give them an
|
|
ordering. */
|
|
|
|
static bool
|
|
constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
|
|
{
|
|
if (a.type == b.type)
|
|
{
|
|
if (a.var == b.var)
|
|
return a.offset < b.offset;
|
|
else
|
|
return a.var < b.var;
|
|
}
|
|
else
|
|
return a.type < b.type;
|
|
}
|
|
|
|
/* Return true if constraint A is less than constraint B. This is just
|
|
arbitrary, but consistent, in order to give them an ordering. */
|
|
|
|
static bool
|
|
constraint_less (const constraint_t a, const constraint_t b)
|
|
{
|
|
if (constraint_expr_less (a->lhs, b->lhs))
|
|
return true;
|
|
else if (constraint_expr_less (b->lhs, a->lhs))
|
|
return false;
|
|
else
|
|
return constraint_expr_less (a->rhs, b->rhs);
|
|
}
|
|
|
|
/* Return true if two constraints A and B are equal. */
|
|
|
|
static bool
|
|
constraint_equal (struct constraint a, struct constraint b)
|
|
{
|
|
return constraint_expr_equal (a.lhs, b.lhs)
|
|
&& constraint_expr_equal (a.rhs, b.rhs);
|
|
}
|
|
|
|
|
|
/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
|
|
|
|
static constraint_t
|
|
constraint_vec_find (VEC(constraint_t,heap) *vec,
|
|
struct constraint lookfor)
|
|
{
|
|
unsigned int place;
|
|
constraint_t found;
|
|
|
|
if (vec == NULL)
|
|
return NULL;
|
|
|
|
place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
|
|
if (place >= VEC_length (constraint_t, vec))
|
|
return NULL;
|
|
found = VEC_index (constraint_t, vec, place);
|
|
if (!constraint_equal (*found, lookfor))
|
|
return NULL;
|
|
return found;
|
|
}
|
|
|
|
/* Union two constraint vectors, TO and FROM. Put the result in TO. */
|
|
|
|
static void
|
|
constraint_set_union (VEC(constraint_t,heap) **to,
|
|
VEC(constraint_t,heap) **from)
|
|
{
|
|
int i;
|
|
constraint_t c;
|
|
|
|
for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
|
|
{
|
|
if (constraint_vec_find (*to, *c) == NULL)
|
|
{
|
|
unsigned int place = VEC_lower_bound (constraint_t, *to, c,
|
|
constraint_less);
|
|
VEC_safe_insert (constraint_t, heap, *to, place, c);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Take a solution set SET, add OFFSET to each member of the set, and
|
|
overwrite SET with the result when done. */
|
|
|
|
static void
|
|
solution_set_add (bitmap set, unsigned HOST_WIDE_INT offset)
|
|
{
|
|
bitmap result = BITMAP_ALLOC (&iteration_obstack);
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
|
{
|
|
/* If this is a properly sized variable, only add offset if it's
|
|
less than end. Otherwise, it is globbed to a single
|
|
variable. */
|
|
|
|
if ((get_varinfo (i)->offset + offset) < get_varinfo (i)->fullsize)
|
|
{
|
|
unsigned HOST_WIDE_INT fieldoffset = get_varinfo (i)->offset + offset;
|
|
varinfo_t v = first_vi_for_offset (get_varinfo (i), fieldoffset);
|
|
if (!v)
|
|
continue;
|
|
bitmap_set_bit (result, v->id);
|
|
}
|
|
else if (get_varinfo (i)->is_artificial_var
|
|
|| get_varinfo (i)->has_union
|
|
|| get_varinfo (i)->is_unknown_size_var)
|
|
{
|
|
bitmap_set_bit (result, i);
|
|
}
|
|
}
|
|
|
|
bitmap_copy (set, result);
|
|
BITMAP_FREE (result);
|
|
}
|
|
|
|
/* Union solution sets TO and FROM, and add INC to each member of FROM in the
|
|
process. */
|
|
|
|
static bool
|
|
set_union_with_increment (bitmap to, bitmap from, unsigned HOST_WIDE_INT inc)
|
|
{
|
|
if (inc == 0)
|
|
return bitmap_ior_into (to, from);
|
|
else
|
|
{
|
|
bitmap tmp;
|
|
bool res;
|
|
|
|
tmp = BITMAP_ALLOC (&iteration_obstack);
|
|
bitmap_copy (tmp, from);
|
|
solution_set_add (tmp, inc);
|
|
res = bitmap_ior_into (to, tmp);
|
|
BITMAP_FREE (tmp);
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/* Insert constraint C into the list of complex constraints for VAR. */
|
|
|
|
static void
|
|
insert_into_complex (unsigned int var, constraint_t c)
|
|
{
|
|
varinfo_t vi = get_varinfo (var);
|
|
unsigned int place = VEC_lower_bound (constraint_t, vi->complex, c,
|
|
constraint_less);
|
|
VEC_safe_insert (constraint_t, heap, vi->complex, place, c);
|
|
}
|
|
|
|
|
|
/* Compare two constraint edges A and B, return true if they are equal. */
|
|
|
|
static bool
|
|
constraint_edge_equal (struct constraint_edge a, struct constraint_edge b)
|
|
{
|
|
return a.src == b.src && a.dest == b.dest;
|
|
}
|
|
|
|
/* Compare two constraint edges, return true if A is less than B */
|
|
|
|
static bool
|
|
constraint_edge_less (const constraint_edge_t a, const constraint_edge_t b)
|
|
{
|
|
if (a->dest < b->dest)
|
|
return true;
|
|
else if (a->dest == b->dest)
|
|
return a->src < b->src;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Find the constraint edge that matches LOOKFOR, in VEC.
|
|
Return the edge, if found, NULL otherwise. */
|
|
|
|
static constraint_edge_t
|
|
constraint_edge_vec_find (VEC(constraint_edge_t,heap) *vec,
|
|
struct constraint_edge lookfor)
|
|
{
|
|
unsigned int place;
|
|
constraint_edge_t edge;
|
|
|
|
place = VEC_lower_bound (constraint_edge_t, vec, &lookfor,
|
|
constraint_edge_less);
|
|
edge = VEC_index (constraint_edge_t, vec, place);
|
|
if (!constraint_edge_equal (*edge, lookfor))
|
|
return NULL;
|
|
return edge;
|
|
}
|
|
|
|
/* Condense two variable nodes into a single variable node, by moving
|
|
all associated info from SRC to TO. */
|
|
|
|
static void
|
|
condense_varmap_nodes (unsigned int to, unsigned int src)
|
|
{
|
|
varinfo_t tovi = get_varinfo (to);
|
|
varinfo_t srcvi = get_varinfo (src);
|
|
unsigned int i;
|
|
constraint_t c;
|
|
bitmap_iterator bi;
|
|
|
|
/* the src node, and all its variables, are now the to node. */
|
|
srcvi->node = to;
|
|
EXECUTE_IF_SET_IN_BITMAP (srcvi->variables, 0, i, bi)
|
|
get_varinfo (i)->node = to;
|
|
|
|
/* Merge the src node variables and the to node variables. */
|
|
bitmap_set_bit (tovi->variables, src);
|
|
bitmap_ior_into (tovi->variables, srcvi->variables);
|
|
bitmap_clear (srcvi->variables);
|
|
|
|
/* Move all complex constraints from src node into to node */
|
|
for (i = 0; VEC_iterate (constraint_t, srcvi->complex, i, c); i++)
|
|
{
|
|
/* In complex constraints for node src, we may have either
|
|
a = *src, and *src = a. */
|
|
|
|
if (c->rhs.type == DEREF)
|
|
c->rhs.var = to;
|
|
else
|
|
c->lhs.var = to;
|
|
}
|
|
constraint_set_union (&tovi->complex, &srcvi->complex);
|
|
VEC_free (constraint_t, heap, srcvi->complex);
|
|
srcvi->complex = NULL;
|
|
}
|
|
|
|
/* Erase EDGE from GRAPH. This routine only handles self-edges
|
|
(e.g. an edge from a to a). */
|
|
|
|
static void
|
|
erase_graph_self_edge (constraint_graph_t graph, struct constraint_edge edge)
|
|
{
|
|
VEC(constraint_edge_t,heap) *predvec = graph->preds[edge.src];
|
|
VEC(constraint_edge_t,heap) *succvec = graph->succs[edge.dest];
|
|
unsigned int place;
|
|
gcc_assert (edge.src == edge.dest);
|
|
|
|
/* Remove from the successors. */
|
|
place = VEC_lower_bound (constraint_edge_t, succvec, &edge,
|
|
constraint_edge_less);
|
|
|
|
/* Make sure we found the edge. */
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
constraint_edge_t tmp = VEC_index (constraint_edge_t, succvec, place);
|
|
gcc_assert (constraint_edge_equal (*tmp, edge));
|
|
}
|
|
#endif
|
|
VEC_ordered_remove (constraint_edge_t, succvec, place);
|
|
|
|
/* Remove from the predecessors. */
|
|
place = VEC_lower_bound (constraint_edge_t, predvec, &edge,
|
|
constraint_edge_less);
|
|
|
|
/* Make sure we found the edge. */
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
constraint_edge_t tmp = VEC_index (constraint_edge_t, predvec, place);
|
|
gcc_assert (constraint_edge_equal (*tmp, edge));
|
|
}
|
|
#endif
|
|
VEC_ordered_remove (constraint_edge_t, predvec, place);
|
|
}
|
|
|
|
/* Remove edges involving NODE from GRAPH. */
|
|
|
|
static void
|
|
clear_edges_for_node (constraint_graph_t graph, unsigned int node)
|
|
{
|
|
VEC(constraint_edge_t,heap) *succvec = graph->succs[node];
|
|
VEC(constraint_edge_t,heap) *predvec = graph->preds[node];
|
|
constraint_edge_t c;
|
|
int i;
|
|
|
|
/* Walk the successors, erase the associated preds. */
|
|
for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
|
|
if (c->dest != node)
|
|
{
|
|
unsigned int place;
|
|
struct constraint_edge lookfor;
|
|
lookfor.src = c->dest;
|
|
lookfor.dest = node;
|
|
place = VEC_lower_bound (constraint_edge_t, graph->preds[c->dest],
|
|
&lookfor, constraint_edge_less);
|
|
VEC_ordered_remove (constraint_edge_t, graph->preds[c->dest], place);
|
|
}
|
|
/* Walk the preds, erase the associated succs. */
|
|
for (i =0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
|
|
if (c->dest != node)
|
|
{
|
|
unsigned int place;
|
|
struct constraint_edge lookfor;
|
|
lookfor.src = c->dest;
|
|
lookfor.dest = node;
|
|
place = VEC_lower_bound (constraint_edge_t, graph->succs[c->dest],
|
|
&lookfor, constraint_edge_less);
|
|
VEC_ordered_remove (constraint_edge_t, graph->succs[c->dest], place);
|
|
}
|
|
|
|
VEC_free (constraint_edge_t, heap, graph->preds[node]);
|
|
VEC_free (constraint_edge_t, heap, graph->succs[node]);
|
|
graph->preds[node] = NULL;
|
|
graph->succs[node] = NULL;
|
|
}
|
|
|
|
static bool edge_added = false;
|
|
|
|
/* Add edge NEWE to the graph. */
|
|
|
|
static bool
|
|
add_graph_edge (constraint_graph_t graph, struct constraint_edge newe)
|
|
{
|
|
unsigned int place;
|
|
unsigned int src = newe.src;
|
|
unsigned int dest = newe.dest;
|
|
VEC(constraint_edge_t,heap) *vec;
|
|
|
|
vec = graph->preds[src];
|
|
place = VEC_lower_bound (constraint_edge_t, vec, &newe,
|
|
constraint_edge_less);
|
|
if (place == VEC_length (constraint_edge_t, vec)
|
|
|| VEC_index (constraint_edge_t, vec, place)->dest != dest)
|
|
{
|
|
constraint_edge_t edge = new_constraint_edge (src, dest);
|
|
bitmap weightbitmap;
|
|
|
|
weightbitmap = BITMAP_ALLOC (&ptabitmap_obstack);
|
|
edge->weights = weightbitmap;
|
|
VEC_safe_insert (constraint_edge_t, heap, graph->preds[edge->src],
|
|
place, edge);
|
|
edge = new_constraint_edge (dest, src);
|
|
edge->weights = weightbitmap;
|
|
place = VEC_lower_bound (constraint_edge_t, graph->succs[edge->src],
|
|
edge, constraint_edge_less);
|
|
VEC_safe_insert (constraint_edge_t, heap, graph->succs[edge->src],
|
|
place, edge);
|
|
edge_added = true;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return the bitmap representing the weights of edge LOOKFOR */
|
|
|
|
static bitmap
|
|
get_graph_weights (constraint_graph_t graph, struct constraint_edge lookfor)
|
|
{
|
|
constraint_edge_t edge;
|
|
unsigned int src = lookfor.src;
|
|
VEC(constraint_edge_t,heap) *vec;
|
|
vec = graph->preds[src];
|
|
edge = constraint_edge_vec_find (vec, lookfor);
|
|
gcc_assert (edge != NULL);
|
|
return edge->weights;
|
|
}
|
|
|
|
|
|
/* Merge GRAPH nodes FROM and TO into node TO. */
|
|
|
|
static void
|
|
merge_graph_nodes (constraint_graph_t graph, unsigned int to,
|
|
unsigned int from)
|
|
{
|
|
VEC(constraint_edge_t,heap) *succvec = graph->succs[from];
|
|
VEC(constraint_edge_t,heap) *predvec = graph->preds[from];
|
|
int i;
|
|
constraint_edge_t c;
|
|
|
|
/* Merge all the predecessor edges. */
|
|
|
|
for (i = 0; VEC_iterate (constraint_edge_t, predvec, i, c); i++)
|
|
{
|
|
unsigned int d = c->dest;
|
|
struct constraint_edge olde;
|
|
struct constraint_edge newe;
|
|
bitmap temp;
|
|
bitmap weights;
|
|
if (c->dest == from)
|
|
d = to;
|
|
newe.src = to;
|
|
newe.dest = d;
|
|
add_graph_edge (graph, newe);
|
|
olde.src = from;
|
|
olde.dest = c->dest;
|
|
olde.weights = NULL;
|
|
temp = get_graph_weights (graph, olde);
|
|
weights = get_graph_weights (graph, newe);
|
|
bitmap_ior_into (weights, temp);
|
|
}
|
|
|
|
/* Merge all the successor edges. */
|
|
for (i = 0; VEC_iterate (constraint_edge_t, succvec, i, c); i++)
|
|
{
|
|
unsigned int d = c->dest;
|
|
struct constraint_edge olde;
|
|
struct constraint_edge newe;
|
|
bitmap temp;
|
|
bitmap weights;
|
|
if (c->dest == from)
|
|
d = to;
|
|
newe.src = d;
|
|
newe.dest = to;
|
|
add_graph_edge (graph, newe);
|
|
olde.src = c->dest;
|
|
olde.dest = from;
|
|
olde.weights = NULL;
|
|
temp = get_graph_weights (graph, olde);
|
|
weights = get_graph_weights (graph, newe);
|
|
bitmap_ior_into (weights, temp);
|
|
}
|
|
clear_edges_for_node (graph, from);
|
|
}
|
|
|
|
/* Add a graph edge to GRAPH, going from TO to FROM, with WEIGHT, if
|
|
it doesn't exist in the graph already.
|
|
Return false if the edge already existed, true otherwise. */
|
|
|
|
static bool
|
|
int_add_graph_edge (constraint_graph_t graph, unsigned int to,
|
|
unsigned int from, unsigned HOST_WIDE_INT weight)
|
|
{
|
|
if (to == from && weight == 0)
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
bool r;
|
|
struct constraint_edge edge;
|
|
edge.src = to;
|
|
edge.dest = from;
|
|
edge.weights = NULL;
|
|
r = add_graph_edge (graph, edge);
|
|
r |= !bitmap_bit_p (get_graph_weights (graph, edge), weight);
|
|
bitmap_set_bit (get_graph_weights (graph, edge), weight);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return true if LOOKFOR is an existing graph edge. */
|
|
|
|
static bool
|
|
valid_graph_edge (constraint_graph_t graph, struct constraint_edge lookfor)
|
|
{
|
|
return constraint_edge_vec_find (graph->preds[lookfor.src], lookfor) != NULL;
|
|
}
|
|
|
|
|
|
/* Build the constraint graph. */
|
|
|
|
static void
|
|
build_constraint_graph (void)
|
|
{
|
|
int i = 0;
|
|
constraint_t c;
|
|
|
|
graph = xmalloc (sizeof (struct constraint_graph));
|
|
graph->succs = xcalloc (VEC_length (varinfo_t, varmap),
|
|
sizeof (*graph->succs));
|
|
graph->preds = xcalloc (VEC_length (varinfo_t, varmap),
|
|
sizeof (*graph->preds));
|
|
|
|
for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
|
|
{
|
|
struct constraint_expr lhs = c->lhs;
|
|
struct constraint_expr rhs = c->rhs;
|
|
unsigned int lhsvar = get_varinfo_fc (lhs.var)->id;
|
|
unsigned int rhsvar = get_varinfo_fc (rhs.var)->id;
|
|
|
|
if (lhs.type == DEREF)
|
|
{
|
|
/* *x = y or *x = &y (complex) */
|
|
if (rhs.type == ADDRESSOF || rhsvar > anything_id)
|
|
insert_into_complex (lhsvar, c);
|
|
}
|
|
else if (rhs.type == DEREF)
|
|
{
|
|
/* !special var= *y */
|
|
if (!(get_varinfo (lhsvar)->is_special_var))
|
|
insert_into_complex (rhsvar, c);
|
|
}
|
|
else if (rhs.type == ADDRESSOF)
|
|
{
|
|
/* x = &y */
|
|
bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
|
|
}
|
|
else if (lhsvar > anything_id)
|
|
{
|
|
/* Ignore 0 weighted self edges, as they can't possibly contribute
|
|
anything */
|
|
if (lhsvar != rhsvar || rhs.offset != 0 || lhs.offset != 0)
|
|
{
|
|
|
|
struct constraint_edge edge;
|
|
edge.src = lhsvar;
|
|
edge.dest = rhsvar;
|
|
/* x = y (simple) */
|
|
add_graph_edge (graph, edge);
|
|
bitmap_set_bit (get_graph_weights (graph, edge),
|
|
rhs.offset);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Changed variables on the last iteration. */
|
|
static unsigned int changed_count;
|
|
static sbitmap changed;
|
|
|
|
DEF_VEC_I(unsigned);
|
|
DEF_VEC_ALLOC_I(unsigned,heap);
|
|
|
|
|
|
/* Strongly Connected Component visitation info. */
|
|
|
|
struct scc_info
|
|
{
|
|
sbitmap visited;
|
|
sbitmap in_component;
|
|
int current_index;
|
|
unsigned int *visited_index;
|
|
VEC(unsigned,heap) *scc_stack;
|
|
VEC(unsigned,heap) *unification_queue;
|
|
};
|
|
|
|
|
|
/* Recursive routine to find strongly connected components in GRAPH.
|
|
SI is the SCC info to store the information in, and N is the id of current
|
|
graph node we are processing.
|
|
|
|
This is Tarjan's strongly connected component finding algorithm, as
|
|
modified by Nuutila to keep only non-root nodes on the stack.
|
|
The algorithm can be found in "On finding the strongly connected
|
|
connected components in a directed graph" by Esko Nuutila and Eljas
|
|
Soisalon-Soininen, in Information Processing Letters volume 49,
|
|
number 1, pages 9-14. */
|
|
|
|
static void
|
|
scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
|
|
{
|
|
constraint_edge_t c;
|
|
int i;
|
|
|
|
gcc_assert (get_varinfo (n)->node == n);
|
|
SET_BIT (si->visited, n);
|
|
RESET_BIT (si->in_component, n);
|
|
si->visited_index[n] = si->current_index ++;
|
|
|
|
/* Visit all the successors. */
|
|
for (i = 0; VEC_iterate (constraint_edge_t, graph->succs[n], i, c); i++)
|
|
{
|
|
/* We only want to find and collapse the zero weight edges. */
|
|
if (bitmap_bit_p (c->weights, 0))
|
|
{
|
|
unsigned int w = c->dest;
|
|
if (!TEST_BIT (si->visited, w))
|
|
scc_visit (graph, si, w);
|
|
if (!TEST_BIT (si->in_component, w))
|
|
{
|
|
unsigned int t = get_varinfo (w)->node;
|
|
unsigned int nnode = get_varinfo (n)->node;
|
|
if (si->visited_index[t] < si->visited_index[nnode])
|
|
get_varinfo (n)->node = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See if any components have been identified. */
|
|
if (get_varinfo (n)->node == n)
|
|
{
|
|
unsigned int t = si->visited_index[n];
|
|
SET_BIT (si->in_component, n);
|
|
while (VEC_length (unsigned, si->scc_stack) != 0
|
|
&& t < si->visited_index[VEC_last (unsigned, si->scc_stack)])
|
|
{
|
|
unsigned int w = VEC_pop (unsigned, si->scc_stack);
|
|
get_varinfo (w)->node = n;
|
|
SET_BIT (si->in_component, w);
|
|
/* Mark this node for collapsing. */
|
|
VEC_safe_push (unsigned, heap, si->unification_queue, w);
|
|
}
|
|
}
|
|
else
|
|
VEC_safe_push (unsigned, heap, si->scc_stack, n);
|
|
}
|
|
|
|
|
|
/* Collapse two variables into one variable. */
|
|
|
|
static void
|
|
collapse_nodes (constraint_graph_t graph, unsigned int to, unsigned int from)
|
|
{
|
|
bitmap tosol, fromsol;
|
|
struct constraint_edge edge;
|
|
|
|
|
|
condense_varmap_nodes (to, from);
|
|
tosol = get_varinfo (to)->solution;
|
|
fromsol = get_varinfo (from)->solution;
|
|
bitmap_ior_into (tosol, fromsol);
|
|
merge_graph_nodes (graph, to, from);
|
|
edge.src = to;
|
|
edge.dest = to;
|
|
edge.weights = NULL;
|
|
if (valid_graph_edge (graph, edge))
|
|
{
|
|
bitmap weights = get_graph_weights (graph, edge);
|
|
bitmap_clear_bit (weights, 0);
|
|
if (bitmap_empty_p (weights))
|
|
erase_graph_self_edge (graph, edge);
|
|
}
|
|
bitmap_clear (fromsol);
|
|
get_varinfo (to)->address_taken |= get_varinfo (from)->address_taken;
|
|
get_varinfo (to)->indirect_target |= get_varinfo (from)->indirect_target;
|
|
}
|
|
|
|
|
|
/* Unify nodes in GRAPH that we have found to be part of a cycle.
|
|
SI is the Strongly Connected Components information structure that tells us
|
|
what components to unify.
|
|
UPDATE_CHANGED should be set to true if the changed sbitmap and changed
|
|
count should be updated to reflect the unification. */
|
|
|
|
static void
|
|
process_unification_queue (constraint_graph_t graph, struct scc_info *si,
|
|
bool update_changed)
|
|
{
|
|
size_t i = 0;
|
|
bitmap tmp = BITMAP_ALLOC (update_changed ? &iteration_obstack : NULL);
|
|
bitmap_clear (tmp);
|
|
|
|
/* We proceed as follows:
|
|
|
|
For each component in the queue (components are delineated by
|
|
when current_queue_element->node != next_queue_element->node):
|
|
|
|
rep = representative node for component
|
|
|
|
For each node (tounify) to be unified in the component,
|
|
merge the solution for tounify into tmp bitmap
|
|
|
|
clear solution for tounify
|
|
|
|
merge edges from tounify into rep
|
|
|
|
merge complex constraints from tounify into rep
|
|
|
|
update changed count to note that tounify will never change
|
|
again
|
|
|
|
Merge tmp into solution for rep, marking rep changed if this
|
|
changed rep's solution.
|
|
|
|
Delete any 0 weighted self-edges we now have for rep. */
|
|
while (i != VEC_length (unsigned, si->unification_queue))
|
|
{
|
|
unsigned int tounify = VEC_index (unsigned, si->unification_queue, i);
|
|
unsigned int n = get_varinfo (tounify)->node;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Unifying %s to %s\n",
|
|
get_varinfo (tounify)->name,
|
|
get_varinfo (n)->name);
|
|
if (update_changed)
|
|
stats.unified_vars_dynamic++;
|
|
else
|
|
stats.unified_vars_static++;
|
|
bitmap_ior_into (tmp, get_varinfo (tounify)->solution);
|
|
merge_graph_nodes (graph, n, tounify);
|
|
condense_varmap_nodes (n, tounify);
|
|
|
|
if (update_changed && TEST_BIT (changed, tounify))
|
|
{
|
|
RESET_BIT (changed, tounify);
|
|
if (!TEST_BIT (changed, n))
|
|
SET_BIT (changed, n);
|
|
else
|
|
{
|
|
gcc_assert (changed_count > 0);
|
|
changed_count--;
|
|
}
|
|
}
|
|
|
|
bitmap_clear (get_varinfo (tounify)->solution);
|
|
++i;
|
|
|
|
/* If we've either finished processing the entire queue, or
|
|
finished processing all nodes for component n, update the solution for
|
|
n. */
|
|
if (i == VEC_length (unsigned, si->unification_queue)
|
|
|| get_varinfo (VEC_index (unsigned, si->unification_queue, i))->node != n)
|
|
{
|
|
struct constraint_edge edge;
|
|
|
|
/* If the solution changes because of the merging, we need to mark
|
|
the variable as changed. */
|
|
if (bitmap_ior_into (get_varinfo (n)->solution, tmp))
|
|
{
|
|
if (update_changed && !TEST_BIT (changed, n))
|
|
{
|
|
SET_BIT (changed, n);
|
|
changed_count++;
|
|
}
|
|
}
|
|
bitmap_clear (tmp);
|
|
edge.src = n;
|
|
edge.dest = n;
|
|
edge.weights = NULL;
|
|
if (valid_graph_edge (graph, edge))
|
|
{
|
|
bitmap weights = get_graph_weights (graph, edge);
|
|
bitmap_clear_bit (weights, 0);
|
|
if (bitmap_empty_p (weights))
|
|
erase_graph_self_edge (graph, edge);
|
|
}
|
|
}
|
|
}
|
|
BITMAP_FREE (tmp);
|
|
}
|
|
|
|
|
|
/* Information needed to compute the topological ordering of a graph. */
|
|
|
|
struct topo_info
|
|
{
|
|
/* sbitmap of visited nodes. */
|
|
sbitmap visited;
|
|
/* Array that stores the topological order of the graph, *in
|
|
reverse*. */
|
|
VEC(unsigned,heap) *topo_order;
|
|
};
|
|
|
|
|
|
/* Initialize and return a topological info structure. */
|
|
|
|
static struct topo_info *
|
|
init_topo_info (void)
|
|
{
|
|
size_t size = VEC_length (varinfo_t, varmap);
|
|
struct topo_info *ti = xmalloc (sizeof (struct topo_info));
|
|
ti->visited = sbitmap_alloc (size);
|
|
sbitmap_zero (ti->visited);
|
|
ti->topo_order = VEC_alloc (unsigned, heap, 1);
|
|
return ti;
|
|
}
|
|
|
|
|
|
/* Free the topological sort info pointed to by TI. */
|
|
|
|
static void
|
|
free_topo_info (struct topo_info *ti)
|
|
{
|
|
sbitmap_free (ti->visited);
|
|
VEC_free (unsigned, heap, ti->topo_order);
|
|
free (ti);
|
|
}
|
|
|
|
/* Visit the graph in topological order, and store the order in the
|
|
topo_info structure. */
|
|
|
|
static void
|
|
topo_visit (constraint_graph_t graph, struct topo_info *ti,
|
|
unsigned int n)
|
|
{
|
|
VEC(constraint_edge_t,heap) *succs = graph->succs[n];
|
|
constraint_edge_t c;
|
|
int i;
|
|
SET_BIT (ti->visited, n);
|
|
for (i = 0; VEC_iterate (constraint_edge_t, succs, i, c); i++)
|
|
{
|
|
if (!TEST_BIT (ti->visited, c->dest))
|
|
topo_visit (graph, ti, c->dest);
|
|
}
|
|
VEC_safe_push (unsigned, heap, ti->topo_order, n);
|
|
}
|
|
|
|
/* Return true if variable N + OFFSET is a legal field of N. */
|
|
|
|
static bool
|
|
type_safe (unsigned int n, unsigned HOST_WIDE_INT *offset)
|
|
{
|
|
varinfo_t ninfo = get_varinfo (n);
|
|
|
|
/* For things we've globbed to single variables, any offset into the
|
|
variable acts like the entire variable, so that it becomes offset
|
|
0. */
|
|
if (ninfo->is_special_var
|
|
|| ninfo->is_artificial_var
|
|
|| ninfo->is_unknown_size_var)
|
|
{
|
|
*offset = 0;
|
|
return true;
|
|
}
|
|
return (get_varinfo (n)->offset + *offset) < get_varinfo (n)->fullsize;
|
|
}
|
|
|
|
/* Process a constraint C that represents *x = &y. */
|
|
|
|
static void
|
|
do_da_constraint (constraint_graph_t graph ATTRIBUTE_UNUSED,
|
|
constraint_t c, bitmap delta)
|
|
{
|
|
unsigned int rhs = c->rhs.var;
|
|
unsigned int j;
|
|
bitmap_iterator bi;
|
|
|
|
/* For each member j of Delta (Sol(x)), add x to Sol(j) */
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
|
{
|
|
unsigned HOST_WIDE_INT offset = c->lhs.offset;
|
|
if (type_safe (j, &offset) && !(get_varinfo (j)->is_special_var))
|
|
{
|
|
/* *x != NULL && *x != ANYTHING*/
|
|
varinfo_t v;
|
|
unsigned int t;
|
|
bitmap sol;
|
|
unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + offset;
|
|
|
|
v = first_vi_for_offset (get_varinfo (j), fieldoffset);
|
|
if (!v)
|
|
continue;
|
|
t = v->node;
|
|
sol = get_varinfo (t)->solution;
|
|
if (!bitmap_bit_p (sol, rhs))
|
|
{
|
|
bitmap_set_bit (sol, rhs);
|
|
if (!TEST_BIT (changed, t))
|
|
{
|
|
SET_BIT (changed, t);
|
|
changed_count++;
|
|
}
|
|
}
|
|
}
|
|
else if (dump_file && !(get_varinfo (j)->is_special_var))
|
|
fprintf (dump_file, "Untypesafe usage in do_da_constraint.\n");
|
|
|
|
}
|
|
}
|
|
|
|
/* Process a constraint C that represents x = *y, using DELTA as the
|
|
starting solution. */
|
|
|
|
static void
|
|
do_sd_constraint (constraint_graph_t graph, constraint_t c,
|
|
bitmap delta)
|
|
{
|
|
unsigned int lhs = get_varinfo (c->lhs.var)->node;
|
|
bool flag = false;
|
|
bitmap sol = get_varinfo (lhs)->solution;
|
|
unsigned int j;
|
|
bitmap_iterator bi;
|
|
|
|
/* For each variable j in delta (Sol(y)), add
|
|
an edge in the graph from j to x, and union Sol(j) into Sol(x). */
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
|
{
|
|
unsigned HOST_WIDE_INT roffset = c->rhs.offset;
|
|
if (type_safe (j, &roffset))
|
|
{
|
|
varinfo_t v;
|
|
unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + roffset;
|
|
unsigned int t;
|
|
|
|
v = first_vi_for_offset (get_varinfo (j), fieldoffset);
|
|
if (!v)
|
|
continue;
|
|
t = v->node;
|
|
if (int_add_graph_edge (graph, lhs, t, 0))
|
|
flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
|
|
}
|
|
else if (dump_file && !(get_varinfo (j)->is_special_var))
|
|
fprintf (dump_file, "Untypesafe usage in do_sd_constraint\n");
|
|
|
|
}
|
|
|
|
/* If the LHS solution changed, mark the var as changed. */
|
|
if (flag)
|
|
{
|
|
get_varinfo (lhs)->solution = sol;
|
|
if (!TEST_BIT (changed, lhs))
|
|
{
|
|
SET_BIT (changed, lhs);
|
|
changed_count++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Process a constraint C that represents *x = y. */
|
|
|
|
static void
|
|
do_ds_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
|
|
{
|
|
unsigned int rhs = get_varinfo (c->rhs.var)->node;
|
|
unsigned HOST_WIDE_INT roff = c->rhs.offset;
|
|
bitmap sol = get_varinfo (rhs)->solution;
|
|
unsigned int j;
|
|
bitmap_iterator bi;
|
|
|
|
/* For each member j of delta (Sol(x)), add an edge from y to j and
|
|
union Sol(y) into Sol(j) */
|
|
EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
|
|
{
|
|
unsigned HOST_WIDE_INT loff = c->lhs.offset;
|
|
if (type_safe (j, &loff) && !(get_varinfo(j)->is_special_var))
|
|
{
|
|
varinfo_t v;
|
|
unsigned int t;
|
|
unsigned HOST_WIDE_INT fieldoffset = get_varinfo (j)->offset + loff;
|
|
|
|
v = first_vi_for_offset (get_varinfo (j), fieldoffset);
|
|
if (!v)
|
|
continue;
|
|
t = v->node;
|
|
if (int_add_graph_edge (graph, t, rhs, roff))
|
|
{
|
|
bitmap tmp = get_varinfo (t)->solution;
|
|
if (set_union_with_increment (tmp, sol, roff))
|
|
{
|
|
get_varinfo (t)->solution = tmp;
|
|
if (t == rhs)
|
|
{
|
|
sol = get_varinfo (rhs)->solution;
|
|
}
|
|
if (!TEST_BIT (changed, t))
|
|
{
|
|
SET_BIT (changed, t);
|
|
changed_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (dump_file && !(get_varinfo (j)->is_special_var))
|
|
fprintf (dump_file, "Untypesafe usage in do_ds_constraint\n");
|
|
}
|
|
}
|
|
|
|
/* Handle a non-simple (simple meaning requires no iteration), non-copy
|
|
constraint (IE *x = &y, x = *y, and *x = y). */
|
|
|
|
static void
|
|
do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
|
|
{
|
|
if (c->lhs.type == DEREF)
|
|
{
|
|
if (c->rhs.type == ADDRESSOF)
|
|
{
|
|
/* *x = &y */
|
|
do_da_constraint (graph, c, delta);
|
|
}
|
|
else
|
|
{
|
|
/* *x = y */
|
|
do_ds_constraint (graph, c, delta);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* x = *y */
|
|
if (!(get_varinfo (c->lhs.var)->is_special_var))
|
|
do_sd_constraint (graph, c, delta);
|
|
}
|
|
}
|
|
|
|
/* Initialize and return a new SCC info structure. */
|
|
|
|
static struct scc_info *
|
|
init_scc_info (void)
|
|
{
|
|
struct scc_info *si = xmalloc (sizeof (struct scc_info));
|
|
size_t size = VEC_length (varinfo_t, varmap);
|
|
|
|
si->current_index = 0;
|
|
si->visited = sbitmap_alloc (size);
|
|
sbitmap_zero (si->visited);
|
|
si->in_component = sbitmap_alloc (size);
|
|
sbitmap_ones (si->in_component);
|
|
si->visited_index = xcalloc (sizeof (unsigned int), size + 1);
|
|
si->scc_stack = VEC_alloc (unsigned, heap, 1);
|
|
si->unification_queue = VEC_alloc (unsigned, heap, 1);
|
|
return si;
|
|
}
|
|
|
|
/* Free an SCC info structure pointed to by SI */
|
|
|
|
static void
|
|
free_scc_info (struct scc_info *si)
|
|
{
|
|
sbitmap_free (si->visited);
|
|
sbitmap_free (si->in_component);
|
|
free (si->visited_index);
|
|
VEC_free (unsigned, heap, si->scc_stack);
|
|
VEC_free (unsigned, heap, si->unification_queue);
|
|
free(si);
|
|
}
|
|
|
|
|
|
/* Find cycles in GRAPH that occur, using strongly connected components, and
|
|
collapse the cycles into a single representative node. if UPDATE_CHANGED
|
|
is true, then update the changed sbitmap to note those nodes whose
|
|
solutions have changed as a result of collapsing. */
|
|
|
|
static void
|
|
find_and_collapse_graph_cycles (constraint_graph_t graph, bool update_changed)
|
|
{
|
|
unsigned int i;
|
|
unsigned int size = VEC_length (varinfo_t, varmap);
|
|
struct scc_info *si = init_scc_info ();
|
|
|
|
for (i = 0; i != size; ++i)
|
|
if (!TEST_BIT (si->visited, i) && get_varinfo (i)->node == i)
|
|
scc_visit (graph, si, i);
|
|
process_unification_queue (graph, si, update_changed);
|
|
free_scc_info (si);
|
|
}
|
|
|
|
/* Compute a topological ordering for GRAPH, and store the result in the
|
|
topo_info structure TI. */
|
|
|
|
static void
|
|
compute_topo_order (constraint_graph_t graph,
|
|
struct topo_info *ti)
|
|
{
|
|
unsigned int i;
|
|
unsigned int size = VEC_length (varinfo_t, varmap);
|
|
|
|
for (i = 0; i != size; ++i)
|
|
if (!TEST_BIT (ti->visited, i) && get_varinfo (i)->node == i)
|
|
topo_visit (graph, ti, i);
|
|
}
|
|
|
|
/* Return true if bitmap B is empty, or a bitmap other than bit 0 is set. */
|
|
|
|
static bool
|
|
bitmap_other_than_zero_bit_set (bitmap b)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
if (bitmap_empty_p (b))
|
|
return false;
|
|
EXECUTE_IF_SET_IN_BITMAP (b, 1, i, bi)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Perform offline variable substitution.
|
|
|
|
This is a linear time way of identifying variables that must have
|
|
equivalent points-to sets, including those caused by static cycles,
|
|
and single entry subgraphs, in the constraint graph.
|
|
|
|
The technique is described in "Off-line variable substitution for
|
|
scaling points-to analysis" by Atanas Rountev and Satish Chandra,
|
|
in "ACM SIGPLAN Notices" volume 35, number 5, pages 47-56. */
|
|
|
|
static void
|
|
perform_var_substitution (constraint_graph_t graph)
|
|
{
|
|
struct topo_info *ti = init_topo_info ();
|
|
|
|
/* Compute the topological ordering of the graph, then visit each
|
|
node in topological order. */
|
|
compute_topo_order (graph, ti);
|
|
|
|
while (VEC_length (unsigned, ti->topo_order) != 0)
|
|
{
|
|
unsigned int i = VEC_pop (unsigned, ti->topo_order);
|
|
unsigned int pred;
|
|
varinfo_t vi = get_varinfo (i);
|
|
bool okay_to_elim = false;
|
|
unsigned int root = VEC_length (varinfo_t, varmap);
|
|
VEC(constraint_edge_t,heap) *predvec = graph->preds[i];
|
|
constraint_edge_t ce;
|
|
bitmap tmp;
|
|
|
|
/* We can't eliminate things whose address is taken, or which is
|
|
the target of a dereference. */
|
|
if (vi->address_taken || vi->indirect_target)
|
|
continue;
|
|
|
|
/* See if all predecessors of I are ripe for elimination */
|
|
for (pred = 0; VEC_iterate (constraint_edge_t, predvec, pred, ce); pred++)
|
|
{
|
|
bitmap weight;
|
|
unsigned int w;
|
|
weight = get_graph_weights (graph, *ce);
|
|
|
|
/* We can't eliminate variables that have nonzero weighted
|
|
edges between them. */
|
|
if (bitmap_other_than_zero_bit_set (weight))
|
|
{
|
|
okay_to_elim = false;
|
|
break;
|
|
}
|
|
w = get_varinfo (ce->dest)->node;
|
|
|
|
/* We can't eliminate the node if one of the predecessors is
|
|
part of a different strongly connected component. */
|
|
if (!okay_to_elim)
|
|
{
|
|
root = w;
|
|
okay_to_elim = true;
|
|
}
|
|
else if (w != root)
|
|
{
|
|
okay_to_elim = false;
|
|
break;
|
|
}
|
|
|
|
/* Theorem 4 in Rountev and Chandra: If i is a direct node,
|
|
then Solution(i) is a subset of Solution (w), where w is a
|
|
predecessor in the graph.
|
|
Corollary: If all predecessors of i have the same
|
|
points-to set, then i has that same points-to set as
|
|
those predecessors. */
|
|
tmp = BITMAP_ALLOC (NULL);
|
|
bitmap_and_compl (tmp, get_varinfo (i)->solution,
|
|
get_varinfo (w)->solution);
|
|
if (!bitmap_empty_p (tmp))
|
|
{
|
|
okay_to_elim = false;
|
|
BITMAP_FREE (tmp);
|
|
break;
|
|
}
|
|
BITMAP_FREE (tmp);
|
|
}
|
|
|
|
/* See if the root is different than the original node.
|
|
If so, we've found an equivalence. */
|
|
if (root != get_varinfo (i)->node && okay_to_elim)
|
|
{
|
|
/* Found an equivalence */
|
|
get_varinfo (i)->node = root;
|
|
collapse_nodes (graph, root, i);
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Collapsing %s into %s\n",
|
|
get_varinfo (i)->name,
|
|
get_varinfo (root)->name);
|
|
stats.collapsed_vars++;
|
|
}
|
|
}
|
|
|
|
free_topo_info (ti);
|
|
}
|
|
|
|
|
|
/* Solve the constraint graph GRAPH using our worklist solver.
|
|
This is based on the PW* family of solvers from the "Efficient Field
|
|
Sensitive Pointer Analysis for C" paper.
|
|
It works by iterating over all the graph nodes, processing the complex
|
|
constraints and propagating the copy constraints, until everything stops
|
|
changed. This corresponds to steps 6-8 in the solving list given above. */
|
|
|
|
static void
|
|
solve_graph (constraint_graph_t graph)
|
|
{
|
|
unsigned int size = VEC_length (varinfo_t, varmap);
|
|
unsigned int i;
|
|
|
|
changed_count = size;
|
|
changed = sbitmap_alloc (size);
|
|
sbitmap_ones (changed);
|
|
|
|
/* The already collapsed/unreachable nodes will never change, so we
|
|
need to account for them in changed_count. */
|
|
for (i = 0; i < size; i++)
|
|
if (get_varinfo (i)->node != i)
|
|
changed_count--;
|
|
|
|
while (changed_count > 0)
|
|
{
|
|
unsigned int i;
|
|
struct topo_info *ti = init_topo_info ();
|
|
stats.iterations++;
|
|
|
|
bitmap_obstack_initialize (&iteration_obstack);
|
|
|
|
if (edge_added)
|
|
{
|
|
/* We already did cycle elimination once, when we did
|
|
variable substitution, so we don't need it again for the
|
|
first iteration. */
|
|
if (stats.iterations > 1)
|
|
find_and_collapse_graph_cycles (graph, true);
|
|
|
|
edge_added = false;
|
|
}
|
|
|
|
compute_topo_order (graph, ti);
|
|
|
|
while (VEC_length (unsigned, ti->topo_order) != 0)
|
|
{
|
|
i = VEC_pop (unsigned, ti->topo_order);
|
|
gcc_assert (get_varinfo (i)->node == i);
|
|
|
|
/* If the node has changed, we need to process the
|
|
complex constraints and outgoing edges again. */
|
|
if (TEST_BIT (changed, i))
|
|
{
|
|
unsigned int j;
|
|
constraint_t c;
|
|
constraint_edge_t e;
|
|
bitmap solution;
|
|
VEC(constraint_t,heap) *complex = get_varinfo (i)->complex;
|
|
VEC(constraint_edge_t,heap) *succs;
|
|
|
|
RESET_BIT (changed, i);
|
|
changed_count--;
|
|
|
|
/* Process the complex constraints */
|
|
solution = get_varinfo (i)->solution;
|
|
for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
|
|
do_complex_constraint (graph, c, solution);
|
|
|
|
/* Propagate solution to all successors. */
|
|
succs = graph->succs[i];
|
|
for (j = 0; VEC_iterate (constraint_edge_t, succs, j, e); j++)
|
|
{
|
|
bitmap tmp = get_varinfo (e->dest)->solution;
|
|
bool flag = false;
|
|
unsigned int k;
|
|
bitmap weights = e->weights;
|
|
bitmap_iterator bi;
|
|
|
|
gcc_assert (!bitmap_empty_p (weights));
|
|
EXECUTE_IF_SET_IN_BITMAP (weights, 0, k, bi)
|
|
flag |= set_union_with_increment (tmp, solution, k);
|
|
|
|
if (flag)
|
|
{
|
|
get_varinfo (e->dest)->solution = tmp;
|
|
if (!TEST_BIT (changed, e->dest))
|
|
{
|
|
SET_BIT (changed, e->dest);
|
|
changed_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free_topo_info (ti);
|
|
bitmap_obstack_release (&iteration_obstack);
|
|
}
|
|
|
|
sbitmap_free (changed);
|
|
}
|
|
|
|
|
|
/* CONSTRAINT AND VARIABLE GENERATION FUNCTIONS */
|
|
|
|
/* Map from trees to variable ids. */
|
|
static htab_t id_for_tree;
|
|
|
|
typedef struct tree_id
|
|
{
|
|
tree t;
|
|
unsigned int id;
|
|
} *tree_id_t;
|
|
|
|
/* Hash a tree id structure. */
|
|
|
|
static hashval_t
|
|
tree_id_hash (const void *p)
|
|
{
|
|
const tree_id_t ta = (tree_id_t) p;
|
|
return htab_hash_pointer (ta->t);
|
|
}
|
|
|
|
/* Return true if the tree in P1 and the tree in P2 are the same. */
|
|
|
|
static int
|
|
tree_id_eq (const void *p1, const void *p2)
|
|
{
|
|
const tree_id_t ta1 = (tree_id_t) p1;
|
|
const tree_id_t ta2 = (tree_id_t) p2;
|
|
return ta1->t == ta2->t;
|
|
}
|
|
|
|
/* Insert ID as the variable id for tree T in the hashtable. */
|
|
|
|
static void
|
|
insert_id_for_tree (tree t, int id)
|
|
{
|
|
void **slot;
|
|
struct tree_id finder;
|
|
tree_id_t new_pair;
|
|
|
|
finder.t = t;
|
|
slot = htab_find_slot (id_for_tree, &finder, INSERT);
|
|
gcc_assert (*slot == NULL);
|
|
new_pair = xmalloc (sizeof (struct tree_id));
|
|
new_pair->t = t;
|
|
new_pair->id = id;
|
|
*slot = (void *)new_pair;
|
|
}
|
|
|
|
/* Find the variable id for tree T in ID_FOR_TREE. If T does not
|
|
exist in the hash table, return false, otherwise, return true and
|
|
set *ID to the id we found. */
|
|
|
|
static bool
|
|
lookup_id_for_tree (tree t, unsigned int *id)
|
|
{
|
|
tree_id_t pair;
|
|
struct tree_id finder;
|
|
|
|
finder.t = t;
|
|
pair = htab_find (id_for_tree, &finder);
|
|
if (pair == NULL)
|
|
return false;
|
|
*id = pair->id;
|
|
return true;
|
|
}
|
|
|
|
/* Return a printable name for DECL */
|
|
|
|
static const char *
|
|
alias_get_name (tree decl)
|
|
{
|
|
const char *res = get_name (decl);
|
|
char *temp;
|
|
int num_printed = 0;
|
|
|
|
if (res != NULL)
|
|
return res;
|
|
|
|
res = "NULL";
|
|
if (TREE_CODE (decl) == SSA_NAME)
|
|
{
|
|
num_printed = asprintf (&temp, "%s_%u",
|
|
alias_get_name (SSA_NAME_VAR (decl)),
|
|
SSA_NAME_VERSION (decl));
|
|
}
|
|
else if (DECL_P (decl))
|
|
{
|
|
num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
|
|
}
|
|
if (num_printed > 0)
|
|
{
|
|
res = ggc_strdup (temp);
|
|
free (temp);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Find the variable id for tree T in the hashtable.
|
|
If T doesn't exist in the hash table, create an entry for it. */
|
|
|
|
static unsigned int
|
|
get_id_for_tree (tree t)
|
|
{
|
|
tree_id_t pair;
|
|
struct tree_id finder;
|
|
|
|
finder.t = t;
|
|
pair = htab_find (id_for_tree, &finder);
|
|
if (pair == NULL)
|
|
return create_variable_info_for (t, alias_get_name (t));
|
|
|
|
return pair->id;
|
|
}
|
|
|
|
/* Get a constraint expression from an SSA_VAR_P node. */
|
|
|
|
static struct constraint_expr
|
|
get_constraint_exp_from_ssa_var (tree t)
|
|
{
|
|
struct constraint_expr cexpr;
|
|
|
|
gcc_assert (SSA_VAR_P (t) || DECL_P (t));
|
|
|
|
/* For parameters, get at the points-to set for the actual parm
|
|
decl. */
|
|
if (TREE_CODE (t) == SSA_NAME
|
|
&& TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
|
|
&& default_def (SSA_NAME_VAR (t)) == t)
|
|
return get_constraint_exp_from_ssa_var (SSA_NAME_VAR (t));
|
|
|
|
cexpr.type = SCALAR;
|
|
|
|
cexpr.var = get_id_for_tree (t);
|
|
/* If we determine the result is "anything", and we know this is readonly,
|
|
say it points to readonly memory instead. */
|
|
if (cexpr.var == anything_id && TREE_READONLY (t))
|
|
{
|
|
cexpr.type = ADDRESSOF;
|
|
cexpr.var = readonly_id;
|
|
}
|
|
|
|
cexpr.offset = 0;
|
|
return cexpr;
|
|
}
|
|
|
|
/* Process a completed constraint T, and add it to the constraint
|
|
list. */
|
|
|
|
static void
|
|
process_constraint (constraint_t t)
|
|
{
|
|
struct constraint_expr rhs = t->rhs;
|
|
struct constraint_expr lhs = t->lhs;
|
|
|
|
gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
|
|
gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
|
|
|
|
/* ANYTHING == ANYTHING is pointless. */
|
|
if (lhs.var == anything_id && rhs.var == anything_id)
|
|
return;
|
|
|
|
/* If we have &ANYTHING = something, convert to SOMETHING = &ANYTHING) */
|
|
else if (lhs.var == anything_id && lhs.type == ADDRESSOF)
|
|
{
|
|
rhs = t->lhs;
|
|
t->lhs = t->rhs;
|
|
t->rhs = rhs;
|
|
process_constraint (t);
|
|
}
|
|
/* This can happen in our IR with things like n->a = *p */
|
|
else if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
|
|
{
|
|
/* Split into tmp = *rhs, *lhs = tmp */
|
|
tree rhsdecl = get_varinfo (rhs.var)->decl;
|
|
tree pointertype = TREE_TYPE (rhsdecl);
|
|
tree pointedtotype = TREE_TYPE (pointertype);
|
|
tree tmpvar = create_tmp_var_raw (pointedtotype, "doubledereftmp");
|
|
struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
|
|
|
|
/* If this is an aggregate of known size, we should have passed
|
|
this off to do_structure_copy, and it should have broken it
|
|
up. */
|
|
gcc_assert (!AGGREGATE_TYPE_P (pointedtotype)
|
|
|| get_varinfo (rhs.var)->is_unknown_size_var);
|
|
|
|
process_constraint (new_constraint (tmplhs, rhs));
|
|
process_constraint (new_constraint (lhs, tmplhs));
|
|
}
|
|
else if (rhs.type == ADDRESSOF)
|
|
{
|
|
varinfo_t vi;
|
|
gcc_assert (rhs.offset == 0);
|
|
|
|
for (vi = get_varinfo (rhs.var); vi != NULL; vi = vi->next)
|
|
vi->address_taken = true;
|
|
|
|
VEC_safe_push (constraint_t, heap, constraints, t);
|
|
}
|
|
else
|
|
{
|
|
if (lhs.type != DEREF && rhs.type == DEREF)
|
|
get_varinfo (lhs.var)->indirect_target = true;
|
|
VEC_safe_push (constraint_t, heap, constraints, t);
|
|
}
|
|
}
|
|
|
|
|
|
/* Return the position, in bits, of FIELD_DECL from the beginning of its
|
|
structure. */
|
|
|
|
static unsigned HOST_WIDE_INT
|
|
bitpos_of_field (const tree fdecl)
|
|
{
|
|
|
|
if (TREE_CODE (DECL_FIELD_OFFSET (fdecl)) != INTEGER_CST
|
|
|| TREE_CODE (DECL_FIELD_BIT_OFFSET (fdecl)) != INTEGER_CST)
|
|
return -1;
|
|
|
|
return (tree_low_cst (DECL_FIELD_OFFSET (fdecl), 1) * 8)
|
|
+ tree_low_cst (DECL_FIELD_BIT_OFFSET (fdecl), 1);
|
|
}
|
|
|
|
|
|
/* Return true if an access to [ACCESSPOS, ACCESSSIZE]
|
|
overlaps with a field at [FIELDPOS, FIELDSIZE] */
|
|
|
|
static bool
|
|
offset_overlaps_with_access (const unsigned HOST_WIDE_INT fieldpos,
|
|
const unsigned HOST_WIDE_INT fieldsize,
|
|
const unsigned HOST_WIDE_INT accesspos,
|
|
const unsigned HOST_WIDE_INT accesssize)
|
|
{
|
|
if (fieldpos == accesspos && fieldsize == accesssize)
|
|
return true;
|
|
if (accesspos >= fieldpos && accesspos < (fieldpos + fieldsize))
|
|
return true;
|
|
if (accesspos < fieldpos && (accesspos + accesssize > fieldpos))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Given a COMPONENT_REF T, return the constraint_expr for it. */
|
|
|
|
static struct constraint_expr
|
|
get_constraint_for_component_ref (tree t, bool *need_anyoffset)
|
|
{
|
|
struct constraint_expr result;
|
|
HOST_WIDE_INT bitsize = -1;
|
|
HOST_WIDE_INT bitpos;
|
|
tree offset = NULL_TREE;
|
|
enum machine_mode mode;
|
|
int unsignedp;
|
|
int volatilep;
|
|
tree forzero;
|
|
|
|
result.offset = 0;
|
|
result.type = SCALAR;
|
|
result.var = 0;
|
|
|
|
/* Some people like to do cute things like take the address of
|
|
&0->a.b */
|
|
forzero = t;
|
|
while (!SSA_VAR_P (forzero) && !CONSTANT_CLASS_P (forzero))
|
|
forzero = TREE_OPERAND (forzero, 0);
|
|
|
|
if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
|
|
{
|
|
result.offset = 0;
|
|
result.var = integer_id;
|
|
result.type = SCALAR;
|
|
return result;
|
|
}
|
|
|
|
t = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
|
|
&unsignedp, &volatilep, false);
|
|
result = get_constraint_for (t, need_anyoffset);
|
|
|
|
/* This can also happen due to weird offsetof type macros. */
|
|
if (TREE_CODE (t) != ADDR_EXPR && result.type == ADDRESSOF)
|
|
result.type = SCALAR;
|
|
|
|
/* If we know where this goes, then yay. Otherwise, booo. */
|
|
|
|
if (offset == NULL && bitsize != -1)
|
|
{
|
|
result.offset = bitpos;
|
|
}
|
|
else if (need_anyoffset)
|
|
{
|
|
result.offset = 0;
|
|
*need_anyoffset = true;
|
|
}
|
|
else
|
|
{
|
|
result.var = anything_id;
|
|
result.offset = 0;
|
|
}
|
|
|
|
if (result.type == SCALAR)
|
|
{
|
|
/* In languages like C, you can access one past the end of an
|
|
array. You aren't allowed to dereference it, so we can
|
|
ignore this constraint. When we handle pointer subtraction,
|
|
we may have to do something cute here. */
|
|
|
|
if (result.offset < get_varinfo (result.var)->fullsize
|
|
&& bitsize != 0)
|
|
{
|
|
/* It's also not true that the constraint will actually start at the
|
|
right offset, it may start in some padding. We only care about
|
|
setting the constraint to the first actual field it touches, so
|
|
walk to find it. */
|
|
varinfo_t curr;
|
|
for (curr = get_varinfo (result.var); curr; curr = curr->next)
|
|
{
|
|
if (offset_overlaps_with_access (curr->offset, curr->size,
|
|
result.offset, bitsize))
|
|
{
|
|
result.var = curr->id;
|
|
break;
|
|
|
|
}
|
|
}
|
|
/* assert that we found *some* field there. The user couldn't be
|
|
accessing *only* padding. */
|
|
|
|
gcc_assert (curr);
|
|
}
|
|
else if (bitsize == 0)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Access to zero-sized part of variable,"
|
|
"ignoring\n");
|
|
}
|
|
else
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Access to past the end of variable, ignoring\n");
|
|
|
|
result.offset = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Dereference the constraint expression CONS, and return the result.
|
|
DEREF (ADDRESSOF) = SCALAR
|
|
DEREF (SCALAR) = DEREF
|
|
DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
|
|
This is needed so that we can handle dereferencing DEREF constraints. */
|
|
|
|
static struct constraint_expr
|
|
do_deref (struct constraint_expr cons)
|
|
{
|
|
if (cons.type == SCALAR)
|
|
{
|
|
cons.type = DEREF;
|
|
return cons;
|
|
}
|
|
else if (cons.type == ADDRESSOF)
|
|
{
|
|
cons.type = SCALAR;
|
|
return cons;
|
|
}
|
|
else if (cons.type == DEREF)
|
|
{
|
|
tree tmpvar = create_tmp_var_raw (ptr_type_node, "derefmp");
|
|
struct constraint_expr tmplhs = get_constraint_exp_from_ssa_var (tmpvar);
|
|
process_constraint (new_constraint (tmplhs, cons));
|
|
cons.var = tmplhs.var;
|
|
return cons;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Given a tree T, return the constraint expression for it. */
|
|
|
|
static struct constraint_expr
|
|
get_constraint_for (tree t, bool *need_anyoffset)
|
|
{
|
|
struct constraint_expr temp;
|
|
|
|
/* x = integer is all glommed to a single variable, which doesn't
|
|
point to anything by itself. That is, of course, unless it is an
|
|
integer constant being treated as a pointer, in which case, we
|
|
will return that this is really the addressof anything. This
|
|
happens below, since it will fall into the default case. The only
|
|
case we know something about an integer treated like a pointer is
|
|
when it is the NULL pointer, and then we just say it points to
|
|
NULL. */
|
|
if (TREE_CODE (t) == INTEGER_CST
|
|
&& !POINTER_TYPE_P (TREE_TYPE (t)))
|
|
{
|
|
temp.var = integer_id;
|
|
temp.type = SCALAR;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
else if (TREE_CODE (t) == INTEGER_CST
|
|
&& integer_zerop (t))
|
|
{
|
|
temp.var = nothing_id;
|
|
temp.type = ADDRESSOF;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
|
|
switch (TREE_CODE_CLASS (TREE_CODE (t)))
|
|
{
|
|
case tcc_expression:
|
|
{
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case ADDR_EXPR:
|
|
{
|
|
temp = get_constraint_for (TREE_OPERAND (t, 0), need_anyoffset);
|
|
if (temp.type == DEREF)
|
|
temp.type = SCALAR;
|
|
else
|
|
temp.type = ADDRESSOF;
|
|
return temp;
|
|
}
|
|
break;
|
|
case CALL_EXPR:
|
|
|
|
/* XXX: In interprocedural mode, if we didn't have the
|
|
body, we would need to do *each pointer argument =
|
|
&ANYTHING added. */
|
|
if (call_expr_flags (t) & (ECF_MALLOC | ECF_MAY_BE_ALLOCA))
|
|
{
|
|
varinfo_t vi;
|
|
tree heapvar = heapvar_lookup (t);
|
|
|
|
if (heapvar == NULL)
|
|
{
|
|
heapvar = create_tmp_var_raw (ptr_type_node, "HEAP");
|
|
DECL_EXTERNAL (heapvar) = 1;
|
|
add_referenced_tmp_var (heapvar);
|
|
heapvar_insert (t, heapvar);
|
|
}
|
|
|
|
temp.var = create_variable_info_for (heapvar,
|
|
alias_get_name (heapvar));
|
|
|
|
vi = get_varinfo (temp.var);
|
|
vi->is_artificial_var = 1;
|
|
vi->is_heap_var = 1;
|
|
temp.type = ADDRESSOF;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
/* FALLTHRU */
|
|
default:
|
|
{
|
|
temp.type = ADDRESSOF;
|
|
temp.var = anything_id;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
}
|
|
}
|
|
case tcc_reference:
|
|
{
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case INDIRECT_REF:
|
|
{
|
|
temp = get_constraint_for (TREE_OPERAND (t, 0), need_anyoffset);
|
|
temp = do_deref (temp);
|
|
return temp;
|
|
}
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
case COMPONENT_REF:
|
|
temp = get_constraint_for_component_ref (t, need_anyoffset);
|
|
return temp;
|
|
default:
|
|
{
|
|
temp.type = ADDRESSOF;
|
|
temp.var = anything_id;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
}
|
|
}
|
|
case tcc_unary:
|
|
{
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case NOP_EXPR:
|
|
case CONVERT_EXPR:
|
|
case NON_LVALUE_EXPR:
|
|
{
|
|
tree op = TREE_OPERAND (t, 0);
|
|
|
|
/* Cast from non-pointer to pointers are bad news for us.
|
|
Anything else, we see through */
|
|
if (!(POINTER_TYPE_P (TREE_TYPE (t))
|
|
&& ! POINTER_TYPE_P (TREE_TYPE (op))))
|
|
return get_constraint_for (op, need_anyoffset);
|
|
|
|
/* FALLTHRU */
|
|
}
|
|
default:
|
|
{
|
|
temp.type = ADDRESSOF;
|
|
temp.var = anything_id;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
}
|
|
}
|
|
case tcc_exceptional:
|
|
{
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case PHI_NODE:
|
|
return get_constraint_for (PHI_RESULT (t), need_anyoffset);
|
|
case SSA_NAME:
|
|
return get_constraint_exp_from_ssa_var (t);
|
|
default:
|
|
{
|
|
temp.type = ADDRESSOF;
|
|
temp.var = anything_id;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
}
|
|
}
|
|
case tcc_declaration:
|
|
return get_constraint_exp_from_ssa_var (t);
|
|
default:
|
|
{
|
|
temp.type = ADDRESSOF;
|
|
temp.var = anything_id;
|
|
temp.offset = 0;
|
|
return temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Handle the structure copy case where we have a simple structure copy
|
|
between LHS and RHS that is of SIZE (in bits)
|
|
|
|
For each field of the lhs variable (lhsfield)
|
|
For each field of the rhs variable at lhsfield.offset (rhsfield)
|
|
add the constraint lhsfield = rhsfield
|
|
|
|
If we fail due to some kind of type unsafety or other thing we
|
|
can't handle, return false. We expect the caller to collapse the
|
|
variable in that case. */
|
|
|
|
static bool
|
|
do_simple_structure_copy (const struct constraint_expr lhs,
|
|
const struct constraint_expr rhs,
|
|
const unsigned HOST_WIDE_INT size)
|
|
{
|
|
varinfo_t p = get_varinfo (lhs.var);
|
|
unsigned HOST_WIDE_INT pstart, last;
|
|
pstart = p->offset;
|
|
last = p->offset + size;
|
|
for (; p && p->offset < last; p = p->next)
|
|
{
|
|
varinfo_t q;
|
|
struct constraint_expr templhs = lhs;
|
|
struct constraint_expr temprhs = rhs;
|
|
unsigned HOST_WIDE_INT fieldoffset;
|
|
|
|
templhs.var = p->id;
|
|
q = get_varinfo (temprhs.var);
|
|
fieldoffset = p->offset - pstart;
|
|
q = first_vi_for_offset (q, q->offset + fieldoffset);
|
|
if (!q)
|
|
return false;
|
|
temprhs.var = q->id;
|
|
process_constraint (new_constraint (templhs, temprhs));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Handle the structure copy case where we have a structure copy between a
|
|
aggregate on the LHS and a dereference of a pointer on the RHS
|
|
that is of SIZE (in bits)
|
|
|
|
For each field of the lhs variable (lhsfield)
|
|
rhs.offset = lhsfield->offset
|
|
add the constraint lhsfield = rhs
|
|
*/
|
|
|
|
static void
|
|
do_rhs_deref_structure_copy (const struct constraint_expr lhs,
|
|
const struct constraint_expr rhs,
|
|
const unsigned HOST_WIDE_INT size)
|
|
{
|
|
varinfo_t p = get_varinfo (lhs.var);
|
|
unsigned HOST_WIDE_INT pstart,last;
|
|
pstart = p->offset;
|
|
last = p->offset + size;
|
|
|
|
for (; p && p->offset < last; p = p->next)
|
|
{
|
|
varinfo_t q;
|
|
struct constraint_expr templhs = lhs;
|
|
struct constraint_expr temprhs = rhs;
|
|
unsigned HOST_WIDE_INT fieldoffset;
|
|
|
|
|
|
if (templhs.type == SCALAR)
|
|
templhs.var = p->id;
|
|
else
|
|
templhs.offset = p->offset;
|
|
|
|
q = get_varinfo (temprhs.var);
|
|
fieldoffset = p->offset - pstart;
|
|
temprhs.offset += fieldoffset;
|
|
process_constraint (new_constraint (templhs, temprhs));
|
|
}
|
|
}
|
|
|
|
/* Handle the structure copy case where we have a structure copy
|
|
between a aggregate on the RHS and a dereference of a pointer on
|
|
the LHS that is of SIZE (in bits)
|
|
|
|
For each field of the rhs variable (rhsfield)
|
|
lhs.offset = rhsfield->offset
|
|
add the constraint lhs = rhsfield
|
|
*/
|
|
|
|
static void
|
|
do_lhs_deref_structure_copy (const struct constraint_expr lhs,
|
|
const struct constraint_expr rhs,
|
|
const unsigned HOST_WIDE_INT size)
|
|
{
|
|
varinfo_t p = get_varinfo (rhs.var);
|
|
unsigned HOST_WIDE_INT pstart,last;
|
|
pstart = p->offset;
|
|
last = p->offset + size;
|
|
|
|
for (; p && p->offset < last; p = p->next)
|
|
{
|
|
varinfo_t q;
|
|
struct constraint_expr templhs = lhs;
|
|
struct constraint_expr temprhs = rhs;
|
|
unsigned HOST_WIDE_INT fieldoffset;
|
|
|
|
|
|
if (temprhs.type == SCALAR)
|
|
temprhs.var = p->id;
|
|
else
|
|
temprhs.offset = p->offset;
|
|
|
|
q = get_varinfo (templhs.var);
|
|
fieldoffset = p->offset - pstart;
|
|
templhs.offset += fieldoffset;
|
|
process_constraint (new_constraint (templhs, temprhs));
|
|
}
|
|
}
|
|
|
|
/* Sometimes, frontends like to give us bad type information. This
|
|
function will collapse all the fields from VAR to the end of VAR,
|
|
into VAR, so that we treat those fields as a single variable.
|
|
We return the variable they were collapsed into. */
|
|
|
|
static unsigned int
|
|
collapse_rest_of_var (unsigned int var)
|
|
{
|
|
varinfo_t currvar = get_varinfo (var);
|
|
varinfo_t field;
|
|
|
|
for (field = currvar->next; field; field = field->next)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Type safety: Collapsing var %s into %s\n",
|
|
field->name, currvar->name);
|
|
|
|
gcc_assert (!field->collapsed_to);
|
|
field->collapsed_to = currvar;
|
|
}
|
|
|
|
currvar->next = NULL;
|
|
currvar->size = currvar->fullsize - currvar->offset;
|
|
|
|
return currvar->id;
|
|
}
|
|
|
|
/* Handle aggregate copies by expanding into copies of the respective
|
|
fields of the structures. */
|
|
|
|
static void
|
|
do_structure_copy (tree lhsop, tree rhsop)
|
|
{
|
|
struct constraint_expr lhs, rhs, tmp;
|
|
varinfo_t p;
|
|
unsigned HOST_WIDE_INT lhssize;
|
|
unsigned HOST_WIDE_INT rhssize;
|
|
|
|
lhs = get_constraint_for (lhsop, NULL);
|
|
rhs = get_constraint_for (rhsop, NULL);
|
|
|
|
/* If we have special var = x, swap it around. */
|
|
if (lhs.var <= integer_id && !(get_varinfo (rhs.var)->is_special_var))
|
|
{
|
|
tmp = lhs;
|
|
lhs = rhs;
|
|
rhs = tmp;
|
|
}
|
|
|
|
/* This is fairly conservative for the RHS == ADDRESSOF case, in that it's
|
|
possible it's something we could handle. However, most cases falling
|
|
into this are dealing with transparent unions, which are slightly
|
|
weird. */
|
|
if (rhs.type == ADDRESSOF && !(get_varinfo (rhs.var)->is_special_var))
|
|
{
|
|
rhs.type = ADDRESSOF;
|
|
rhs.var = anything_id;
|
|
}
|
|
|
|
/* If the RHS is a special var, or an addressof, set all the LHS fields to
|
|
that special var. */
|
|
if (rhs.var <= integer_id)
|
|
{
|
|
for (p = get_varinfo (lhs.var); p; p = p->next)
|
|
{
|
|
struct constraint_expr templhs = lhs;
|
|
struct constraint_expr temprhs = rhs;
|
|
if (templhs.type == SCALAR )
|
|
templhs.var = p->id;
|
|
else
|
|
templhs.offset += p->offset;
|
|
process_constraint (new_constraint (templhs, temprhs));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree rhstype = TREE_TYPE (rhsop);
|
|
tree lhstype = TREE_TYPE (lhsop);
|
|
tree rhstypesize = TYPE_SIZE (rhstype);
|
|
tree lhstypesize = TYPE_SIZE (lhstype);
|
|
|
|
/* If we have a variably sized types on the rhs or lhs, and a deref
|
|
constraint, add the constraint, lhsconstraint = &ANYTHING.
|
|
This is conservatively correct because either the lhs is an unknown
|
|
sized var (if the constraint is SCALAR), or the lhs is a DEREF
|
|
constraint, and every variable it can point to must be unknown sized
|
|
anyway, so we don't need to worry about fields at all. */
|
|
if ((rhs.type == DEREF && TREE_CODE (rhstypesize) != INTEGER_CST)
|
|
|| (lhs.type == DEREF && TREE_CODE (lhstypesize) != INTEGER_CST))
|
|
{
|
|
rhs.var = anything_id;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.offset = 0;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
return;
|
|
}
|
|
|
|
/* The size only really matters insofar as we don't set more or less of
|
|
the variable. If we hit an unknown size var, the size should be the
|
|
whole darn thing. */
|
|
if (get_varinfo (rhs.var)->is_unknown_size_var)
|
|
rhssize = ~0;
|
|
else
|
|
rhssize = TREE_INT_CST_LOW (rhstypesize);
|
|
|
|
if (get_varinfo (lhs.var)->is_unknown_size_var)
|
|
lhssize = ~0;
|
|
else
|
|
lhssize = TREE_INT_CST_LOW (lhstypesize);
|
|
|
|
|
|
if (rhs.type == SCALAR && lhs.type == SCALAR)
|
|
{
|
|
if (!do_simple_structure_copy (lhs, rhs, MIN (lhssize, rhssize)))
|
|
{
|
|
lhs.var = collapse_rest_of_var (lhs.var);
|
|
rhs.var = collapse_rest_of_var (rhs.var);
|
|
lhs.offset = 0;
|
|
rhs.offset = 0;
|
|
lhs.type = SCALAR;
|
|
rhs.type = SCALAR;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
}
|
|
else if (lhs.type != DEREF && rhs.type == DEREF)
|
|
do_rhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
|
|
else if (lhs.type == DEREF && rhs.type != DEREF)
|
|
do_lhs_deref_structure_copy (lhs, rhs, MIN (lhssize, rhssize));
|
|
else
|
|
{
|
|
tree pointedtotype = lhstype;
|
|
tree tmpvar;
|
|
|
|
gcc_assert (rhs.type == DEREF && lhs.type == DEREF);
|
|
tmpvar = create_tmp_var_raw (pointedtotype, "structcopydereftmp");
|
|
do_structure_copy (tmpvar, rhsop);
|
|
do_structure_copy (lhsop, tmpvar);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update related alias information kept in AI. This is used when
|
|
building name tags, alias sets and deciding grouping heuristics.
|
|
STMT is the statement to process. This function also updates
|
|
ADDRESSABLE_VARS. */
|
|
|
|
static void
|
|
update_alias_info (tree stmt, struct alias_info *ai)
|
|
{
|
|
bitmap addr_taken;
|
|
use_operand_p use_p;
|
|
ssa_op_iter iter;
|
|
bool stmt_escapes_p = is_escape_site (stmt, ai);
|
|
tree op;
|
|
|
|
/* Mark all the variables whose address are taken by the statement. */
|
|
addr_taken = addresses_taken (stmt);
|
|
if (addr_taken)
|
|
{
|
|
bitmap_ior_into (addressable_vars, addr_taken);
|
|
|
|
/* If STMT is an escape point, all the addresses taken by it are
|
|
call-clobbered. */
|
|
if (stmt_escapes_p)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned i;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (addr_taken, 0, i, bi)
|
|
mark_call_clobbered (referenced_var (i));
|
|
}
|
|
}
|
|
|
|
/* Process each operand use. If an operand may be aliased, keep
|
|
track of how many times it's being used. For pointers, determine
|
|
whether they are dereferenced by the statement, or whether their
|
|
value escapes, etc. */
|
|
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
|
|
{
|
|
tree op, var;
|
|
var_ann_t v_ann;
|
|
struct ptr_info_def *pi;
|
|
bool is_store, is_potential_deref;
|
|
unsigned num_uses, num_derefs;
|
|
|
|
op = USE_FROM_PTR (use_p);
|
|
|
|
/* If STMT is a PHI node, OP may be an ADDR_EXPR. If so, add it
|
|
to the set of addressable variables. */
|
|
if (TREE_CODE (op) == ADDR_EXPR)
|
|
{
|
|
gcc_assert (TREE_CODE (stmt) == PHI_NODE);
|
|
|
|
/* PHI nodes don't have annotations for pinning the set
|
|
of addresses taken, so we collect them here.
|
|
|
|
FIXME, should we allow PHI nodes to have annotations
|
|
so that they can be treated like regular statements?
|
|
Currently, they are treated as second-class
|
|
statements. */
|
|
add_to_addressable_set (TREE_OPERAND (op, 0), &addressable_vars);
|
|
continue;
|
|
}
|
|
|
|
/* Ignore constants. */
|
|
if (TREE_CODE (op) != SSA_NAME)
|
|
continue;
|
|
|
|
var = SSA_NAME_VAR (op);
|
|
v_ann = var_ann (var);
|
|
|
|
/* If the operand's variable may be aliased, keep track of how
|
|
many times we've referenced it. This is used for alias
|
|
grouping in compute_flow_insensitive_aliasing. */
|
|
if (may_be_aliased (var))
|
|
NUM_REFERENCES_INC (v_ann);
|
|
|
|
/* We are only interested in pointers. */
|
|
if (!POINTER_TYPE_P (TREE_TYPE (op)))
|
|
continue;
|
|
|
|
pi = get_ptr_info (op);
|
|
|
|
/* Add OP to AI->PROCESSED_PTRS, if it's not there already. */
|
|
if (!TEST_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op)))
|
|
{
|
|
SET_BIT (ai->ssa_names_visited, SSA_NAME_VERSION (op));
|
|
VARRAY_PUSH_TREE (ai->processed_ptrs, op);
|
|
}
|
|
|
|
/* If STMT is a PHI node, then it will not have pointer
|
|
dereferences and it will not be an escape point. */
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
|
continue;
|
|
|
|
/* Determine whether OP is a dereferenced pointer, and if STMT
|
|
is an escape point, whether OP escapes. */
|
|
count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
|
|
|
|
/* Handle a corner case involving address expressions of the
|
|
form '&PTR->FLD'. The problem with these expressions is that
|
|
they do not represent a dereference of PTR. However, if some
|
|
other transformation propagates them into an INDIRECT_REF
|
|
expression, we end up with '*(&PTR->FLD)' which is folded
|
|
into 'PTR->FLD'.
|
|
|
|
So, if the original code had no other dereferences of PTR,
|
|
the aliaser will not create memory tags for it, and when
|
|
&PTR->FLD gets propagated to INDIRECT_REF expressions, the
|
|
memory operations will receive no V_MAY_DEF/VUSE operands.
|
|
|
|
One solution would be to have count_uses_and_derefs consider
|
|
&PTR->FLD a dereference of PTR. But that is wrong, since it
|
|
is not really a dereference but an offset calculation.
|
|
|
|
What we do here is to recognize these special ADDR_EXPR
|
|
nodes. Since these expressions are never GIMPLE values (they
|
|
are not GIMPLE invariants), they can only appear on the RHS
|
|
of an assignment and their base address is always an
|
|
INDIRECT_REF expression. */
|
|
is_potential_deref = false;
|
|
if (TREE_CODE (stmt) == MODIFY_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (stmt, 1)) == ADDR_EXPR
|
|
&& !is_gimple_val (TREE_OPERAND (stmt, 1)))
|
|
{
|
|
/* If the RHS if of the form &PTR->FLD and PTR == OP, then
|
|
this represents a potential dereference of PTR. */
|
|
tree rhs = TREE_OPERAND (stmt, 1);
|
|
tree base = get_base_address (TREE_OPERAND (rhs, 0));
|
|
if (TREE_CODE (base) == INDIRECT_REF
|
|
&& TREE_OPERAND (base, 0) == op)
|
|
is_potential_deref = true;
|
|
}
|
|
|
|
if (num_derefs > 0 || is_potential_deref)
|
|
{
|
|
/* Mark OP as dereferenced. In a subsequent pass,
|
|
dereferenced pointers that point to a set of
|
|
variables will be assigned a name tag to alias
|
|
all the variables OP points to. */
|
|
pi->is_dereferenced = 1;
|
|
|
|
/* Keep track of how many time we've dereferenced each
|
|
pointer. */
|
|
NUM_REFERENCES_INC (v_ann);
|
|
|
|
/* If this is a store operation, mark OP as being
|
|
dereferenced to store, otherwise mark it as being
|
|
dereferenced to load. */
|
|
if (is_store)
|
|
bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
|
|
else
|
|
bitmap_set_bit (ai->dereferenced_ptrs_load, DECL_UID (var));
|
|
}
|
|
|
|
if (stmt_escapes_p && num_derefs < num_uses)
|
|
{
|
|
/* If STMT is an escape point and STMT contains at
|
|
least one direct use of OP, then the value of OP
|
|
escapes and so the pointed-to variables need to
|
|
be marked call-clobbered. */
|
|
pi->value_escapes_p = 1;
|
|
|
|
/* If the statement makes a function call, assume
|
|
that pointer OP will be dereferenced in a store
|
|
operation inside the called function. */
|
|
if (get_call_expr_in (stmt))
|
|
{
|
|
bitmap_set_bit (ai->dereferenced_ptrs_store, DECL_UID (var));
|
|
pi->is_dereferenced = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TREE_CODE (stmt) == PHI_NODE)
|
|
return;
|
|
|
|
/* Update reference counter for definitions to any
|
|
potentially aliased variable. This is used in the alias
|
|
grouping heuristics. */
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
|
|
{
|
|
tree var = SSA_NAME_VAR (op);
|
|
var_ann_t ann = var_ann (var);
|
|
bitmap_set_bit (ai->written_vars, DECL_UID (var));
|
|
if (may_be_aliased (var))
|
|
NUM_REFERENCES_INC (ann);
|
|
|
|
}
|
|
|
|
/* Mark variables in V_MAY_DEF operands as being written to. */
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
|
|
{
|
|
tree var = DECL_P (op) ? op : SSA_NAME_VAR (op);
|
|
bitmap_set_bit (ai->written_vars, DECL_UID (var));
|
|
}
|
|
}
|
|
|
|
|
|
/* Handle pointer arithmetic EXPR when creating aliasing constraints.
|
|
Expressions of the type PTR + CST can be handled in two ways:
|
|
|
|
1- If the constraint for PTR is ADDRESSOF for a non-structure
|
|
variable, then we can use it directly because adding or
|
|
subtracting a constant may not alter the original ADDRESSOF
|
|
constraint (i.e., pointer arithmetic may not legally go outside
|
|
an object's boundaries).
|
|
|
|
2- If the constraint for PTR is ADDRESSOF for a structure variable,
|
|
then if CST is a compile-time constant that can be used as an
|
|
offset, we can determine which sub-variable will be pointed-to
|
|
by the expression.
|
|
|
|
Return true if the expression is handled. For any other kind of
|
|
expression, return false so that each operand can be added as a
|
|
separate constraint by the caller. */
|
|
|
|
static bool
|
|
handle_ptr_arith (struct constraint_expr lhs, tree expr)
|
|
{
|
|
tree op0, op1;
|
|
struct constraint_expr base, offset;
|
|
|
|
if (TREE_CODE (expr) != PLUS_EXPR
|
|
&& TREE_CODE (expr) != MINUS_EXPR)
|
|
return false;
|
|
|
|
op0 = TREE_OPERAND (expr, 0);
|
|
op1 = TREE_OPERAND (expr, 1);
|
|
|
|
base = get_constraint_for (op0, NULL);
|
|
|
|
offset.var = anyoffset_id;
|
|
offset.type = ADDRESSOF;
|
|
offset.offset = 0;
|
|
|
|
process_constraint (new_constraint (lhs, base));
|
|
process_constraint (new_constraint (lhs, offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Walk statement T setting up aliasing constraints according to the
|
|
references found in T. This function is the main part of the
|
|
constraint builder. AI points to auxiliary alias information used
|
|
when building alias sets and computing alias grouping heuristics. */
|
|
|
|
static void
|
|
find_func_aliases (tree t, struct alias_info *ai)
|
|
{
|
|
struct constraint_expr lhs, rhs;
|
|
|
|
/* Update various related attributes like escaped addresses, pointer
|
|
dereferences for loads and stores. This is used when creating
|
|
name tags and alias sets. */
|
|
update_alias_info (t, ai);
|
|
|
|
/* Now build constraints expressions. */
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
{
|
|
/* Only care about pointers and structures containing
|
|
pointers. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (t)))
|
|
|| AGGREGATE_TYPE_P (TREE_TYPE (PHI_RESULT (t))))
|
|
{
|
|
int i;
|
|
|
|
lhs = get_constraint_for (PHI_RESULT (t), NULL);
|
|
for (i = 0; i < PHI_NUM_ARGS (t); i++)
|
|
{
|
|
bool need_anyoffset = false;
|
|
tree anyoffsetrhs = PHI_ARG_DEF (t, i);
|
|
|
|
rhs = get_constraint_for (PHI_ARG_DEF (t, i), &need_anyoffset);
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
|
|
STRIP_NOPS (anyoffsetrhs);
|
|
/* When taking the address of an aggregate
|
|
type, from the LHS we can access any field
|
|
of the RHS. */
|
|
if (need_anyoffset || (rhs.type == ADDRESSOF
|
|
&& !(get_varinfo (rhs.var)->is_special_var)
|
|
&& AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (anyoffsetrhs)))))
|
|
{
|
|
rhs.var = anyoffset_id;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.offset = 0;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (TREE_CODE (t) == MODIFY_EXPR)
|
|
{
|
|
tree lhsop = TREE_OPERAND (t, 0);
|
|
tree rhsop = TREE_OPERAND (t, 1);
|
|
int i;
|
|
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
|
|
&& AGGREGATE_TYPE_P (TREE_TYPE (rhsop)))
|
|
{
|
|
do_structure_copy (lhsop, rhsop);
|
|
}
|
|
else
|
|
{
|
|
/* Only care about operations with pointers, structures
|
|
containing pointers, dereferences, and call expressions. */
|
|
if (POINTER_TYPE_P (TREE_TYPE (lhsop))
|
|
|| AGGREGATE_TYPE_P (TREE_TYPE (lhsop))
|
|
|| TREE_CODE (rhsop) == CALL_EXPR)
|
|
{
|
|
lhs = get_constraint_for (lhsop, NULL);
|
|
switch (TREE_CODE_CLASS (TREE_CODE (rhsop)))
|
|
{
|
|
/* RHS that consist of unary operations,
|
|
exceptional types, or bare decls/constants, get
|
|
handled directly by get_constraint_for. */
|
|
case tcc_reference:
|
|
case tcc_declaration:
|
|
case tcc_constant:
|
|
case tcc_exceptional:
|
|
case tcc_expression:
|
|
case tcc_unary:
|
|
{
|
|
tree anyoffsetrhs = rhsop;
|
|
bool need_anyoffset = false;
|
|
rhs = get_constraint_for (rhsop, &need_anyoffset);
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
|
|
STRIP_NOPS (anyoffsetrhs);
|
|
/* When taking the address of an aggregate
|
|
type, from the LHS we can access any field
|
|
of the RHS. */
|
|
if (need_anyoffset || (rhs.type == ADDRESSOF
|
|
&& !(get_varinfo (rhs.var)->is_special_var)
|
|
&& (POINTER_TYPE_P (TREE_TYPE (anyoffsetrhs))
|
|
|| TREE_CODE (TREE_TYPE (anyoffsetrhs))
|
|
== ARRAY_TYPE)
|
|
&& AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (anyoffsetrhs)))))
|
|
{
|
|
rhs.var = anyoffset_id;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.offset = 0;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case tcc_binary:
|
|
{
|
|
/* For pointer arithmetic of the form
|
|
PTR + CST, we can simply use PTR's
|
|
constraint because pointer arithmetic is
|
|
not allowed to go out of bounds. */
|
|
if (handle_ptr_arith (lhs, rhsop))
|
|
break;
|
|
}
|
|
/* FALLTHRU */
|
|
|
|
/* Otherwise, walk each operand. Notice that we
|
|
can't use the operand interface because we need
|
|
to process expressions other than simple operands
|
|
(e.g. INDIRECT_REF, ADDR_EXPR, CALL_EXPR). */
|
|
default:
|
|
for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (rhsop)); i++)
|
|
{
|
|
tree op = TREE_OPERAND (rhsop, i);
|
|
rhs = get_constraint_for (op, NULL);
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* After promoting variables and computing aliasing we will
|
|
need to re-scan most statements. FIXME: Try to minimize the
|
|
number of statements re-scanned. It's not really necessary to
|
|
re-scan *all* statements. */
|
|
mark_stmt_modified (t);
|
|
}
|
|
|
|
|
|
/* Find the first varinfo in the same variable as START that overlaps with
|
|
OFFSET.
|
|
Effectively, walk the chain of fields for the variable START to find the
|
|
first field that overlaps with OFFSET.
|
|
Return NULL if we can't find one. */
|
|
|
|
static varinfo_t
|
|
first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
|
|
{
|
|
varinfo_t curr = start;
|
|
while (curr)
|
|
{
|
|
/* We may not find a variable in the field list with the actual
|
|
offset when when we have glommed a structure to a variable.
|
|
In that case, however, offset should still be within the size
|
|
of the variable. */
|
|
if (offset >= curr->offset && offset < (curr->offset + curr->size))
|
|
return curr;
|
|
curr = curr->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Insert the varinfo FIELD into the field list for BASE, ordered by
|
|
offset. */
|
|
|
|
static void
|
|
insert_into_field_list (varinfo_t base, varinfo_t field)
|
|
{
|
|
varinfo_t prev = base;
|
|
varinfo_t curr = base->next;
|
|
|
|
if (curr == NULL)
|
|
{
|
|
prev->next = field;
|
|
field->next = NULL;
|
|
}
|
|
else
|
|
{
|
|
while (curr)
|
|
{
|
|
if (field->offset <= curr->offset)
|
|
break;
|
|
prev = curr;
|
|
curr = curr->next;
|
|
}
|
|
field->next = prev->next;
|
|
prev->next = field;
|
|
}
|
|
}
|
|
|
|
/* qsort comparison function for two fieldoff's PA and PB */
|
|
|
|
static int
|
|
fieldoff_compare (const void *pa, const void *pb)
|
|
{
|
|
const fieldoff_s *foa = (const fieldoff_s *)pa;
|
|
const fieldoff_s *fob = (const fieldoff_s *)pb;
|
|
HOST_WIDE_INT foasize, fobsize;
|
|
|
|
if (foa->offset != fob->offset)
|
|
return foa->offset - fob->offset;
|
|
|
|
foasize = TREE_INT_CST_LOW (DECL_SIZE (foa->field));
|
|
fobsize = TREE_INT_CST_LOW (DECL_SIZE (fob->field));
|
|
return foasize - fobsize;
|
|
}
|
|
|
|
/* Sort a fieldstack according to the field offset and sizes. */
|
|
void sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
|
|
{
|
|
qsort (VEC_address (fieldoff_s, fieldstack),
|
|
VEC_length (fieldoff_s, fieldstack),
|
|
sizeof (fieldoff_s),
|
|
fieldoff_compare);
|
|
}
|
|
|
|
/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all the fields
|
|
of TYPE onto fieldstack, recording their offsets along the way.
|
|
OFFSET is used to keep track of the offset in this entire structure, rather
|
|
than just the immediately containing structure. Returns the number
|
|
of fields pushed.
|
|
HAS_UNION is set to true if we find a union type as a field of
|
|
TYPE. */
|
|
|
|
int
|
|
push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
|
|
HOST_WIDE_INT offset, bool *has_union)
|
|
{
|
|
tree field;
|
|
int count = 0;
|
|
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
|
if (TREE_CODE (field) == FIELD_DECL)
|
|
{
|
|
bool push = false;
|
|
int pushed = 0;
|
|
|
|
if (has_union
|
|
&& (TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
|
|
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
|
|
*has_union = true;
|
|
|
|
if (!var_can_have_subvars (field))
|
|
push = true;
|
|
else if (!(pushed = push_fields_onto_fieldstack
|
|
(TREE_TYPE (field), fieldstack,
|
|
offset + bitpos_of_field (field), has_union))
|
|
&& DECL_SIZE (field)
|
|
&& !integer_zerop (DECL_SIZE (field)))
|
|
/* Empty structures may have actual size, like in C++. So
|
|
see if we didn't push any subfields and the size is
|
|
nonzero, push the field onto the stack */
|
|
push = true;
|
|
|
|
if (push)
|
|
{
|
|
fieldoff_s *pair;
|
|
|
|
pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
|
|
pair->field = field;
|
|
pair->offset = offset + bitpos_of_field (field);
|
|
count++;
|
|
}
|
|
else
|
|
count += pushed;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void
|
|
make_constraint_to_anything (varinfo_t vi)
|
|
{
|
|
struct constraint_expr lhs, rhs;
|
|
|
|
lhs.var = vi->id;
|
|
lhs.offset = 0;
|
|
lhs.type = SCALAR;
|
|
|
|
rhs.var = anything_id;
|
|
rhs.offset =0 ;
|
|
rhs.type = ADDRESSOF;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
|
|
|
|
/* Return true if FIELDSTACK contains fields that overlap.
|
|
FIELDSTACK is assumed to be sorted by offset. */
|
|
|
|
static bool
|
|
check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
|
|
{
|
|
fieldoff_s *fo = NULL;
|
|
unsigned int i;
|
|
HOST_WIDE_INT lastoffset = -1;
|
|
|
|
for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
|
{
|
|
if (fo->offset == lastoffset)
|
|
return true;
|
|
lastoffset = fo->offset;
|
|
}
|
|
return false;
|
|
}
|
|
/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
|
|
This will also create any varinfo structures necessary for fields
|
|
of DECL. */
|
|
|
|
static unsigned int
|
|
create_variable_info_for (tree decl, const char *name)
|
|
{
|
|
unsigned int index = VEC_length (varinfo_t, varmap);
|
|
varinfo_t vi;
|
|
tree decltype = TREE_TYPE (decl);
|
|
bool notokay = false;
|
|
bool hasunion;
|
|
bool is_global = DECL_P (decl) ? is_global_var (decl) : false;
|
|
VEC (fieldoff_s,heap) *fieldstack = NULL;
|
|
|
|
|
|
hasunion = TREE_CODE (decltype) == UNION_TYPE
|
|
|| TREE_CODE (decltype) == QUAL_UNION_TYPE;
|
|
if (var_can_have_subvars (decl) && use_field_sensitive && !hasunion)
|
|
{
|
|
push_fields_onto_fieldstack (decltype, &fieldstack, 0, &hasunion);
|
|
if (hasunion)
|
|
{
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
|
notokay = true;
|
|
}
|
|
}
|
|
|
|
|
|
/* If the variable doesn't have subvars, we may end up needing to
|
|
sort the field list and create fake variables for all the
|
|
fields. */
|
|
vi = new_var_info (decl, index, name, index);
|
|
vi->decl = decl;
|
|
vi->offset = 0;
|
|
vi->has_union = hasunion;
|
|
if (!TYPE_SIZE (decltype)
|
|
|| TREE_CODE (TYPE_SIZE (decltype)) != INTEGER_CST
|
|
|| TREE_CODE (decltype) == ARRAY_TYPE
|
|
|| TREE_CODE (decltype) == UNION_TYPE
|
|
|| TREE_CODE (decltype) == QUAL_UNION_TYPE)
|
|
{
|
|
vi->is_unknown_size_var = true;
|
|
vi->fullsize = ~0;
|
|
vi->size = ~0;
|
|
}
|
|
else
|
|
{
|
|
vi->fullsize = TREE_INT_CST_LOW (TYPE_SIZE (decltype));
|
|
vi->size = vi->fullsize;
|
|
}
|
|
|
|
insert_id_for_tree (vi->decl, index);
|
|
VEC_safe_push (varinfo_t, heap, varmap, vi);
|
|
if (is_global)
|
|
make_constraint_to_anything (vi);
|
|
|
|
stats.total_vars++;
|
|
if (use_field_sensitive
|
|
&& !notokay
|
|
&& !vi->is_unknown_size_var
|
|
&& var_can_have_subvars (decl)
|
|
&& VEC_length (fieldoff_s, fieldstack) <= MAX_FIELDS_FOR_FIELD_SENSITIVE)
|
|
{
|
|
unsigned int newindex = VEC_length (varinfo_t, varmap);
|
|
fieldoff_s *fo = NULL;
|
|
unsigned int i;
|
|
tree field;
|
|
|
|
for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
|
{
|
|
if (!DECL_SIZE (fo->field)
|
|
|| TREE_CODE (DECL_SIZE (fo->field)) != INTEGER_CST
|
|
|| TREE_CODE (TREE_TYPE (fo->field)) == ARRAY_TYPE
|
|
|| fo->offset < 0)
|
|
{
|
|
notokay = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* We can't sort them if we have a field with a variable sized type,
|
|
which will make notokay = true. In that case, we are going to return
|
|
without creating varinfos for the fields anyway, so sorting them is a
|
|
waste to boot. */
|
|
if (!notokay)
|
|
{
|
|
sort_fieldstack (fieldstack);
|
|
/* Due to some C++ FE issues, like PR 22488, we might end up
|
|
what appear to be overlapping fields even though they,
|
|
in reality, do not overlap. Until the C++ FE is fixed,
|
|
we will simply disable field-sensitivity for these cases. */
|
|
notokay = check_for_overlaps (fieldstack);
|
|
}
|
|
|
|
|
|
if (VEC_length (fieldoff_s, fieldstack) != 0)
|
|
fo = VEC_index (fieldoff_s, fieldstack, 0);
|
|
|
|
if (fo == NULL || notokay)
|
|
{
|
|
vi->is_unknown_size_var = 1;
|
|
vi->fullsize = ~0;
|
|
vi->size = ~0;
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
|
return index;
|
|
}
|
|
|
|
field = fo->field;
|
|
vi->size = TREE_INT_CST_LOW (DECL_SIZE (field));
|
|
vi->offset = fo->offset;
|
|
for (i = 1; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
|
|
{
|
|
varinfo_t newvi;
|
|
const char *newname;
|
|
char *tempname;
|
|
|
|
field = fo->field;
|
|
newindex = VEC_length (varinfo_t, varmap);
|
|
asprintf (&tempname, "%s.%s", vi->name, alias_get_name (field));
|
|
newname = ggc_strdup (tempname);
|
|
free (tempname);
|
|
newvi = new_var_info (decl, newindex, newname, newindex);
|
|
newvi->offset = fo->offset;
|
|
newvi->size = TREE_INT_CST_LOW (DECL_SIZE (field));
|
|
newvi->fullsize = vi->fullsize;
|
|
insert_into_field_list (vi, newvi);
|
|
VEC_safe_push (varinfo_t, heap, varmap, newvi);
|
|
if (is_global)
|
|
make_constraint_to_anything (newvi);
|
|
|
|
stats.total_vars++;
|
|
}
|
|
VEC_free (fieldoff_s, heap, fieldstack);
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/* Print out the points-to solution for VAR to FILE. */
|
|
|
|
void
|
|
dump_solution_for_var (FILE *file, unsigned int var)
|
|
{
|
|
varinfo_t vi = get_varinfo (var);
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
fprintf (file, "%s = { ", vi->name);
|
|
EXECUTE_IF_SET_IN_BITMAP (get_varinfo (vi->node)->solution, 0, i, bi)
|
|
{
|
|
fprintf (file, "%s ", get_varinfo (i)->name);
|
|
}
|
|
fprintf (file, "}\n");
|
|
}
|
|
|
|
/* Print the points-to solution for VAR to stdout. */
|
|
|
|
void
|
|
debug_solution_for_var (unsigned int var)
|
|
{
|
|
dump_solution_for_var (stdout, var);
|
|
}
|
|
|
|
|
|
/* Create varinfo structures for all of the variables in the
|
|
function for intraprocedural mode. */
|
|
|
|
static void
|
|
intra_create_variable_infos (void)
|
|
{
|
|
tree t;
|
|
|
|
/* For each incoming argument arg, ARG = &ANYTHING */
|
|
for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
|
|
{
|
|
struct constraint_expr lhs;
|
|
struct constraint_expr rhs;
|
|
varinfo_t p;
|
|
|
|
lhs.offset = 0;
|
|
lhs.type = SCALAR;
|
|
lhs.var = create_variable_info_for (t, alias_get_name (t));
|
|
|
|
rhs.var = anything_id;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.offset = 0;
|
|
|
|
for (p = get_varinfo (lhs.var); p; p = p->next)
|
|
{
|
|
struct constraint_expr temp = lhs;
|
|
temp.var = p->id;
|
|
process_constraint (new_constraint (temp, rhs));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Set bits in INTO corresponding to the variable uids in solution set
|
|
FROM */
|
|
|
|
static void
|
|
set_uids_in_ptset (bitmap into, bitmap from)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bool found_anyoffset = false;
|
|
subvar_t sv;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
|
{
|
|
varinfo_t vi = get_varinfo (i);
|
|
|
|
/* If we find ANYOFFSET in the solution and the solution
|
|
includes SFTs for some structure, then all the SFTs in that
|
|
structure will need to be added to the alias set. */
|
|
if (vi->id == anyoffset_id)
|
|
{
|
|
found_anyoffset = true;
|
|
continue;
|
|
}
|
|
|
|
/* The only artificial variables that are allowed in a may-alias
|
|
set are heap variables. */
|
|
if (vi->is_artificial_var && !vi->is_heap_var)
|
|
continue;
|
|
|
|
if (vi->has_union && get_subvars_for_var (vi->decl) != NULL)
|
|
{
|
|
/* Variables containing unions may need to be converted to
|
|
their SFT's, because SFT's can have unions and we cannot. */
|
|
for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
|
|
bitmap_set_bit (into, DECL_UID (sv->var));
|
|
}
|
|
else if (TREE_CODE (vi->decl) == VAR_DECL
|
|
|| TREE_CODE (vi->decl) == PARM_DECL)
|
|
{
|
|
if (found_anyoffset
|
|
&& var_can_have_subvars (vi->decl)
|
|
&& get_subvars_for_var (vi->decl))
|
|
{
|
|
/* If ANYOFFSET is in the solution set and VI->DECL is
|
|
an aggregate variable with sub-variables, then any of
|
|
the SFTs inside VI->DECL may have been accessed. Add
|
|
all the sub-vars for VI->DECL. */
|
|
for (sv = get_subvars_for_var (vi->decl); sv; sv = sv->next)
|
|
bitmap_set_bit (into, DECL_UID (sv->var));
|
|
}
|
|
else if (var_can_have_subvars (vi->decl)
|
|
&& get_subvars_for_var (vi->decl))
|
|
{
|
|
/* If VI->DECL is an aggregate for which we created
|
|
SFTs, add the SFT corresponding to VI->OFFSET. */
|
|
tree sft = get_subvar_at (vi->decl, vi->offset);
|
|
bitmap_set_bit (into, DECL_UID (sft));
|
|
}
|
|
else
|
|
{
|
|
/* Otherwise, just add VI->DECL to the alias set. */
|
|
bitmap_set_bit (into, DECL_UID (vi->decl));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static bool have_alias_info = false;
|
|
|
|
/* Given a pointer variable P, fill in its points-to set, or return
|
|
false if we can't. */
|
|
|
|
bool
|
|
find_what_p_points_to (tree p)
|
|
{
|
|
unsigned int id = 0;
|
|
|
|
if (!have_alias_info)
|
|
return false;
|
|
|
|
if (lookup_id_for_tree (p, &id))
|
|
{
|
|
varinfo_t vi = get_varinfo (id);
|
|
|
|
if (vi->is_artificial_var)
|
|
return false;
|
|
|
|
/* See if this is a field or a structure. */
|
|
if (vi->size != vi->fullsize)
|
|
{
|
|
/* Nothing currently asks about structure fields directly,
|
|
but when they do, we need code here to hand back the
|
|
points-to set. */
|
|
if (!var_can_have_subvars (vi->decl)
|
|
|| get_subvars_for_var (vi->decl) == NULL)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
struct ptr_info_def *pi = get_ptr_info (p);
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
/* This variable may have been collapsed, let's get the real
|
|
variable. */
|
|
vi = get_varinfo (vi->node);
|
|
|
|
/* Translate artificial variables into SSA_NAME_PTR_INFO
|
|
attributes. */
|
|
EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
|
|
{
|
|
varinfo_t vi = get_varinfo (i);
|
|
|
|
if (vi->is_artificial_var)
|
|
{
|
|
/* FIXME. READONLY should be handled better so that
|
|
flow insensitive aliasing can disregard writable
|
|
aliases. */
|
|
if (vi->id == nothing_id)
|
|
pi->pt_null = 1;
|
|
else if (vi->id == anything_id)
|
|
pi->pt_anything = 1;
|
|
else if (vi->id == readonly_id)
|
|
pi->pt_anything = 1;
|
|
else if (vi->id == integer_id)
|
|
pi->pt_anything = 1;
|
|
else if (vi->is_heap_var)
|
|
pi->pt_global_mem = 1;
|
|
}
|
|
}
|
|
|
|
if (pi->pt_anything)
|
|
return false;
|
|
|
|
if (!pi->pt_vars)
|
|
pi->pt_vars = BITMAP_GGC_ALLOC ();
|
|
|
|
set_uids_in_ptset (pi->pt_vars, vi->solution);
|
|
|
|
if (bitmap_empty_p (pi->pt_vars))
|
|
pi->pt_vars = NULL;
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Initialize things necessary to perform PTA */
|
|
|
|
static void
|
|
init_alias_vars (void)
|
|
{
|
|
bitmap_obstack_initialize (&ptabitmap_obstack);
|
|
}
|
|
|
|
|
|
/* Dump points-to information to OUTFILE. */
|
|
|
|
void
|
|
dump_sa_points_to_info (FILE *outfile)
|
|
{
|
|
unsigned int i;
|
|
|
|
fprintf (outfile, "\nPoints-to sets\n\n");
|
|
|
|
if (dump_flags & TDF_STATS)
|
|
{
|
|
fprintf (outfile, "Stats:\n");
|
|
fprintf (outfile, "Total vars: %d\n", stats.total_vars);
|
|
fprintf (outfile, "Statically unified vars: %d\n",
|
|
stats.unified_vars_static);
|
|
fprintf (outfile, "Collapsed vars: %d\n", stats.collapsed_vars);
|
|
fprintf (outfile, "Dynamically unified vars: %d\n",
|
|
stats.unified_vars_dynamic);
|
|
fprintf (outfile, "Iterations: %d\n", stats.iterations);
|
|
}
|
|
|
|
for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
|
|
dump_solution_for_var (outfile, i);
|
|
}
|
|
|
|
|
|
/* Debug points-to information to stderr. */
|
|
|
|
void
|
|
debug_sa_points_to_info (void)
|
|
{
|
|
dump_sa_points_to_info (stderr);
|
|
}
|
|
|
|
|
|
/* Initialize the always-existing constraint variables for NULL
|
|
ANYTHING, READONLY, and INTEGER */
|
|
|
|
static void
|
|
init_base_vars (void)
|
|
{
|
|
struct constraint_expr lhs, rhs;
|
|
|
|
/* Create the NULL variable, used to represent that a variable points
|
|
to NULL. */
|
|
nothing_tree = create_tmp_var_raw (void_type_node, "NULL");
|
|
var_nothing = new_var_info (nothing_tree, 0, "NULL", 0);
|
|
insert_id_for_tree (nothing_tree, 0);
|
|
var_nothing->is_artificial_var = 1;
|
|
var_nothing->offset = 0;
|
|
var_nothing->size = ~0;
|
|
var_nothing->fullsize = ~0;
|
|
var_nothing->is_special_var = 1;
|
|
nothing_id = 0;
|
|
VEC_safe_push (varinfo_t, heap, varmap, var_nothing);
|
|
|
|
/* Create the ANYTHING variable, used to represent that a variable
|
|
points to some unknown piece of memory. */
|
|
anything_tree = create_tmp_var_raw (void_type_node, "ANYTHING");
|
|
var_anything = new_var_info (anything_tree, 1, "ANYTHING", 1);
|
|
insert_id_for_tree (anything_tree, 1);
|
|
var_anything->is_artificial_var = 1;
|
|
var_anything->size = ~0;
|
|
var_anything->offset = 0;
|
|
var_anything->next = NULL;
|
|
var_anything->fullsize = ~0;
|
|
var_anything->is_special_var = 1;
|
|
anything_id = 1;
|
|
|
|
/* Anything points to anything. This makes deref constraints just
|
|
work in the presence of linked list and other p = *p type loops,
|
|
by saying that *ANYTHING = ANYTHING. */
|
|
VEC_safe_push (varinfo_t, heap, varmap, var_anything);
|
|
lhs.type = SCALAR;
|
|
lhs.var = anything_id;
|
|
lhs.offset = 0;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.var = anything_id;
|
|
rhs.offset = 0;
|
|
var_anything->address_taken = true;
|
|
|
|
/* This specifically does not use process_constraint because
|
|
process_constraint ignores all anything = anything constraints, since all
|
|
but this one are redundant. */
|
|
VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
|
|
|
|
/* Create the READONLY variable, used to represent that a variable
|
|
points to readonly memory. */
|
|
readonly_tree = create_tmp_var_raw (void_type_node, "READONLY");
|
|
var_readonly = new_var_info (readonly_tree, 2, "READONLY", 2);
|
|
var_readonly->is_artificial_var = 1;
|
|
var_readonly->offset = 0;
|
|
var_readonly->size = ~0;
|
|
var_readonly->fullsize = ~0;
|
|
var_readonly->next = NULL;
|
|
var_readonly->is_special_var = 1;
|
|
insert_id_for_tree (readonly_tree, 2);
|
|
readonly_id = 2;
|
|
VEC_safe_push (varinfo_t, heap, varmap, var_readonly);
|
|
|
|
/* readonly memory points to anything, in order to make deref
|
|
easier. In reality, it points to anything the particular
|
|
readonly variable can point to, but we don't track this
|
|
separately. */
|
|
lhs.type = SCALAR;
|
|
lhs.var = readonly_id;
|
|
lhs.offset = 0;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.var = anything_id;
|
|
rhs.offset = 0;
|
|
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
|
|
/* Create the INTEGER variable, used to represent that a variable points
|
|
to an INTEGER. */
|
|
integer_tree = create_tmp_var_raw (void_type_node, "INTEGER");
|
|
var_integer = new_var_info (integer_tree, 3, "INTEGER", 3);
|
|
insert_id_for_tree (integer_tree, 3);
|
|
var_integer->is_artificial_var = 1;
|
|
var_integer->size = ~0;
|
|
var_integer->fullsize = ~0;
|
|
var_integer->offset = 0;
|
|
var_integer->next = NULL;
|
|
var_integer->is_special_var = 1;
|
|
integer_id = 3;
|
|
VEC_safe_push (varinfo_t, heap, varmap, var_integer);
|
|
|
|
/* *INTEGER = ANYTHING, because we don't know where a dereference of a random
|
|
integer will point to. */
|
|
lhs.type = SCALAR;
|
|
lhs.var = integer_id;
|
|
lhs.offset = 0;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.var = anything_id;
|
|
rhs.offset = 0;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
|
|
/* Create the ANYOFFSET variable, used to represent an arbitrary offset
|
|
inside an object. This is similar to ANYTHING, but less drastic.
|
|
It means that the pointer can point anywhere inside an object,
|
|
but not outside of it. */
|
|
anyoffset_tree = create_tmp_var_raw (void_type_node, "ANYOFFSET");
|
|
anyoffset_id = 4;
|
|
var_anyoffset = new_var_info (anyoffset_tree, anyoffset_id, "ANYOFFSET",
|
|
anyoffset_id);
|
|
insert_id_for_tree (anyoffset_tree, anyoffset_id);
|
|
var_anyoffset->is_artificial_var = 1;
|
|
var_anyoffset->size = ~0;
|
|
var_anyoffset->offset = 0;
|
|
var_anyoffset->next = NULL;
|
|
var_anyoffset->fullsize = ~0;
|
|
var_anyoffset->is_special_var = 1;
|
|
VEC_safe_push (varinfo_t, heap, varmap, var_anyoffset);
|
|
|
|
/* ANYOFFSET points to ANYOFFSET. */
|
|
lhs.type = SCALAR;
|
|
lhs.var = anyoffset_id;
|
|
lhs.offset = 0;
|
|
rhs.type = ADDRESSOF;
|
|
rhs.var = anyoffset_id;
|
|
rhs.offset = 0;
|
|
process_constraint (new_constraint (lhs, rhs));
|
|
}
|
|
|
|
/* Return true if we actually need to solve the constraint graph in order to
|
|
get our points-to sets. This is false when, for example, no addresses are
|
|
taken other than special vars, or all points-to sets with members already
|
|
contain the anything variable and there are no predecessors for other
|
|
sets. */
|
|
|
|
static bool
|
|
need_to_solve (void)
|
|
{
|
|
int i;
|
|
varinfo_t v;
|
|
bool found_address_taken = false;
|
|
bool found_non_anything = false;
|
|
|
|
for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
|
|
{
|
|
if (v->is_special_var)
|
|
continue;
|
|
|
|
if (v->address_taken)
|
|
found_address_taken = true;
|
|
|
|
if (v->solution
|
|
&& !bitmap_empty_p (v->solution)
|
|
&& !bitmap_bit_p (v->solution, anything_id))
|
|
found_non_anything = true;
|
|
else if (bitmap_empty_p (v->solution)
|
|
&& VEC_length (constraint_edge_t, graph->preds[v->id]) != 0)
|
|
found_non_anything = true;
|
|
|
|
if (found_address_taken && found_non_anything)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Create points-to sets for the current function. See the comments
|
|
at the start of the file for an algorithmic overview. */
|
|
|
|
void
|
|
compute_points_to_sets (struct alias_info *ai)
|
|
{
|
|
basic_block bb;
|
|
|
|
timevar_push (TV_TREE_PTA);
|
|
|
|
init_alias_vars ();
|
|
|
|
constraint_pool = create_alloc_pool ("Constraint pool",
|
|
sizeof (struct constraint), 30);
|
|
variable_info_pool = create_alloc_pool ("Variable info pool",
|
|
sizeof (struct variable_info), 30);
|
|
constraint_edge_pool = create_alloc_pool ("Constraint edges",
|
|
sizeof (struct constraint_edge), 30);
|
|
|
|
constraints = VEC_alloc (constraint_t, heap, 8);
|
|
varmap = VEC_alloc (varinfo_t, heap, 8);
|
|
id_for_tree = htab_create (10, tree_id_hash, tree_id_eq, free);
|
|
memset (&stats, 0, sizeof (stats));
|
|
|
|
init_base_vars ();
|
|
|
|
intra_create_variable_infos ();
|
|
|
|
/* Now walk all statements and derive aliases. */
|
|
FOR_EACH_BB (bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
tree phi;
|
|
|
|
for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
|
|
if (is_gimple_reg (PHI_RESULT (phi)))
|
|
find_func_aliases (phi, ai);
|
|
|
|
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
|
find_func_aliases (bsi_stmt (bsi), ai);
|
|
}
|
|
|
|
build_constraint_graph ();
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
|
|
dump_constraints (dump_file);
|
|
}
|
|
|
|
if (need_to_solve ())
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nCollapsing static cycles and doing variable "
|
|
"substitution:\n");
|
|
|
|
find_and_collapse_graph_cycles (graph, false);
|
|
perform_var_substitution (graph);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "\nSolving graph:\n");
|
|
|
|
solve_graph (graph);
|
|
}
|
|
|
|
if (dump_file)
|
|
dump_sa_points_to_info (dump_file);
|
|
|
|
have_alias_info = true;
|
|
|
|
timevar_pop (TV_TREE_PTA);
|
|
}
|
|
|
|
|
|
/* Delete created points-to sets. */
|
|
|
|
void
|
|
delete_points_to_sets (void)
|
|
{
|
|
varinfo_t v;
|
|
int i;
|
|
|
|
htab_delete (id_for_tree);
|
|
bitmap_obstack_release (&ptabitmap_obstack);
|
|
VEC_free (constraint_t, heap, constraints);
|
|
|
|
for (i = 0; VEC_iterate (varinfo_t, varmap, i, v); i++)
|
|
{
|
|
VEC_free (constraint_edge_t, heap, graph->succs[i]);
|
|
VEC_free (constraint_edge_t, heap, graph->preds[i]);
|
|
VEC_free (constraint_t, heap, v->complex);
|
|
}
|
|
free (graph->succs);
|
|
free (graph->preds);
|
|
free (graph);
|
|
|
|
VEC_free (varinfo_t, heap, varmap);
|
|
free_alloc_pool (variable_info_pool);
|
|
free_alloc_pool (constraint_pool);
|
|
free_alloc_pool (constraint_edge_pool);
|
|
|
|
have_alias_info = false;
|
|
}
|
|
|
|
/* Initialize the heapvar for statement mapping. */
|
|
void
|
|
init_alias_heapvars (void)
|
|
{
|
|
heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, tree_map_eq, NULL);
|
|
}
|
|
|
|
void
|
|
delete_alias_heapvars (void)
|
|
{
|
|
htab_delete (heapvar_for_stmt);
|
|
}
|
|
|
|
|
|
#include "gt-tree-ssa-structalias.h"
|