NetBSD/tests/sys/uvm/t_uvm_physseg_load.c
cherry e6ff351e1a convention about function names for predicate checking:
s/uvm_physseg_valid()/uvm_physseg_valid_p()/

per. matt@
2016-12-22 08:15:20 +00:00

741 lines
18 KiB
C

/* $NetBSD: t_uvm_physseg_load.c,v 1.2 2016/12/22 08:15:20 cherry Exp $ */
/*-
* Copyright (c) 2015, 2016 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Santhosh N. Raju <santhosh.raju@gmail.com> and
* by Cherry G. Mathew
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: t_uvm_physseg_load.c,v 1.2 2016/12/22 08:15:20 cherry Exp $");
/*
* If this line is commented out tests related touvm_physseg_get_pmseg()
* wont run.
*
* Have a look at machine/uvm_physseg.h for more details.
*/
#define __HAVE_PMAP_PHYSSEG
/*
* This is a dummy struct used for testing purposes
*
* In reality this struct would exist in the MD part of the code residing in
* machines/vmparam.h
*/
#ifdef __HAVE_PMAP_PHYSSEG
struct pmap_physseg {
int dummy_variable; /* Dummy variable use for testing */
};
#endif
/* Testing API - assumes userland */
/* Provide Kernel API equivalents */
#include <assert.h>
#include <stdbool.h>
#include <string.h> /* memset(3) et. al */
#include <stdio.h> /* printf(3) */
#include <stdlib.h> /* malloc(3) */
#include <stdarg.h>
#include <stddef.h>
#include <time.h>
#define PRIxPADDR "lx"
#define PRIxPSIZE "lx"
#define PRIuPSIZE "lu"
#define PRIxVADDR "lx"
#define PRIxVSIZE "lx"
#define PRIuVSIZE "lu"
#define UVM_HOTPLUG /* Enable hotplug with rbtree. */
#define PMAP_STEAL_MEMORY
#define DEBUG /* Enable debug functionality. */
typedef unsigned long vaddr_t;
typedef unsigned long paddr_t;
typedef unsigned long psize_t;
typedef unsigned long vsize_t;
#include <uvm/uvm_physseg.h>
#include <uvm/uvm_page.h>
#ifndef DIAGNOSTIC
#define KASSERTMSG(e, msg, ...) /* NOTHING */
#define KASSERT(e) /* NOTHING */
#else
#define KASSERT(a) assert(a)
#define KASSERTMSG(exp, ...) printf(__VA_ARGS__); assert((exp))
#endif
#define VM_PHYSSEG_STRAT VM_PSTRAT_BSEARCH
#define VM_NFREELIST 4
#define VM_FREELIST_DEFAULT 0
#define VM_FREELIST_FIRST16 3
#define VM_FREELIST_FIRST1G 2
#define VM_FREELIST_FIRST4G 1
/*
* Used in tests when Array implementation is tested
*/
#if !defined(VM_PHYSSEG_MAX)
#define VM_PHYSSEG_MAX 32
#endif
#define PAGE_SIZE 4096
#define PAGE_SHIFT 12
#define atop(x) (((paddr_t)(x)) >> PAGE_SHIFT)
#define mutex_enter(l)
#define mutex_exit(l)
#define _SYS_KMEM_H_ /* Disallow the real kmem API (see below) */
/* free(p) XXX: pgs management need more thought */
#define kmem_alloc(size, flags) malloc(size)
#define kmem_zalloc(size, flags) malloc(size)
#define kmem_free(p, size) free(p)
psize_t physmem;
struct uvmexp uvmexp; /* decl */
/*
* uvm structure borrowed from uvm.h
*
* Remember this is a dummy structure used within the ATF Tests and
* uses only necessary fields from the original uvm struct.
* See uvm/uvm.h for the full struct.
*/
struct uvm {
/* vm_page related parameters */
bool page_init_done; /* TRUE if uvm_page_init() finished */
} uvm;
static void
panic(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
printf("\n");
va_end(ap);
KASSERT(false);
/*NOTREACHED*/
}
static void
uvm_pagefree(struct vm_page *pg)
{
return;
}
#if defined(UVM_HOTPLUG)
static void
uvmpdpol_reinit(void)
{
return;
}
#endif /* UVM_HOTPLUG */
/* end - Provide Kernel API equivalents */
#include "uvm/uvm_physseg.c"
#include <atf-c.h>
#define ONE_MEGABYTE 1024 * 1024
/* Sample Page Frame Numbers */
#define VALID_START_PFN_1 atop(0)
#define VALID_END_PFN_1 atop(ONE_MEGABYTE)
#define VALID_AVAIL_START_PFN_1 atop(0)
#define VALID_AVAIL_END_PFN_1 atop(ONE_MEGABYTE)
#define VALID_START_PFN_2 atop(ONE_MEGABYTE + 1)
#define VALID_END_PFN_2 atop(ONE_MEGABYTE * 2)
#define VALID_AVAIL_START_PFN_2 atop(ONE_MEGABYTE + 1)
#define VALID_AVAIL_END_PFN_2 atop(ONE_MEGABYTE * 2)
#define VALID_START_PFN_3 atop((ONE_MEGABYTE * 2) + 1)
#define VALID_END_PFN_3 atop(ONE_MEGABYTE * 3)
#define VALID_AVAIL_START_PFN_3 atop((ONE_MEGABYTE * 2) + 1)
#define VALID_AVAIL_END_PFN_3 atop(ONE_MEGABYTE * 3)
#define VALID_START_PFN_4 atop(ONE_MEGABYTE + 1)
#define VALID_END_PFN_4 atop(ONE_MEGABYTE * 128)
#define VALID_AVAIL_START_PFN_4 atop(ONE_MEGABYTE + 1)
#define VALID_AVAIL_END_PFN_4 atop(ONE_MEGABYTE * 128)
#define VALID_START_PFN_5 atop(ONE_MEGABYTE + 1)
#define VALID_END_PFN_5 atop(ONE_MEGABYTE * 256)
#define VALID_AVAIL_START_PFN_5 atop(ONE_MEGABYTE + 1)
#define VALID_AVAIL_END_PFN_5 atop(ONE_MEGABYTE * 256)
/*
* Total number of pages (of 4K size each) should be 256 for 1MB of memory.
*/
#define PAGE_COUNT_1M 256
/*
* The number of Page Frames to allot per segment
*/
#define PF_STEP 8
/*
* A debug fucntion to print the content of upm.
*/
static inline void
uvm_physseg_dump_seg(uvm_physseg_t upm)
{
#if defined(DEBUG)
printf("%s: seg->start == %ld\n", __func__,
uvm_physseg_get_start(upm));
printf("%s: seg->end == %ld\n", __func__,
uvm_physseg_get_end(upm));
printf("%s: seg->avail_start == %ld\n", __func__,
uvm_physseg_get_avail_start(upm));
printf("%s: seg->avail_end == %ld\n", __func__,
uvm_physseg_get_avail_end(upm));
printf("====\n\n");
#else
return;
#endif /* DEBUG */
}
/*
* Private accessor that gets the value of vm_physmem.nentries
*/
static int
uvm_physseg_get_entries(void)
{
#if defined(UVM_HOTPLUG)
return uvm_physseg_graph.nentries;
#else
return vm_nphysmem;
#endif /* UVM_HOTPLUG */
}
/*
* Note: This function replicates verbatim what happens in
* uvm_page.c:uvm_page_init().
*
* Please track any changes that happen there.
*/
static void
uvm_page_init_fake(struct vm_page *pagearray, psize_t pagecount)
{
uvm_physseg_t bank;
size_t n;
for (bank = uvm_physseg_get_first(),
uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
uvm_physseg_valid_p(bank);
bank = uvm_physseg_get_next(bank)) {
n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
uvm_physseg_seg_alloc_from_slab(bank, n);
uvm_physseg_init_seg(bank, pagearray);
/* set up page array pointers */
pagearray += n;
pagecount -= n;
}
uvm.page_init_done = true;
}
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
static struct vm_page *
uvm_phys_to_vm_page(paddr_t pa)
{
paddr_t pf = atop(pa);
paddr_t off;
uvm_physseg_t psi;
psi = uvm_physseg_find(pf, &off);
if (psi != UVM_PHYSSEG_TYPE_INVALID)
return uvm_physseg_get_pg(psi, off);
return(NULL);
}
//static paddr_t
//uvm_vm_page_to_phys(const struct vm_page *pg)
//{
//
// return pg->phys_addr;
//}
/*
* XXX: To do, write control test cases for uvm_vm_page_to_phys().
*/
/* #define VM_PAGE_TO_PHYS(entry) uvm_vm_page_to_phys(entry) */
#define PHYS_TO_VM_PAGE(pa) uvm_phys_to_vm_page(pa)
/*
* Test Fixture SetUp().
*/
static void
setup(void)
{
/* Prerequisites for running certain calls in uvm_physseg */
uvmexp.pagesize = PAGE_SIZE;
uvmexp.npages = 0;
uvm.page_init_done = false;
uvm_physseg_init();
}
ATF_TC(uvm_physseg_100);
ATF_TC_HEAD(uvm_physseg_100, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
100 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_100, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 100; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_1K);
ATF_TC_HEAD(uvm_physseg_1K, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
1000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_1K, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 1000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_10K);
ATF_TC_HEAD(uvm_physseg_10K, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_10K, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 10000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_100K);
ATF_TC_HEAD(uvm_physseg_100K, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
100,000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_100K, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 100000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_1M);
ATF_TC_HEAD(uvm_physseg_1M, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
1,000,000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_1M, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 1000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_10M);
ATF_TC_HEAD(uvm_physseg_10M, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000,000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_10M, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 10000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_100M);
ATF_TC_HEAD(uvm_physseg_100M, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
100,000,000 calls, VM_PHYSSEG_MAX is 32.");
}
ATF_TC_BODY(uvm_physseg_100M, tc)
{
paddr_t pa;
setup();
for(paddr_t i = VALID_START_PFN_1;
i < VALID_END_PFN_1; i += PF_STEP) {
uvm_page_physload(i, i + PF_STEP, i, i + PF_STEP,
VM_FREELIST_DEFAULT);
}
ATF_REQUIRE_EQ(VM_PHYSSEG_MAX, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(int i = 0; i < 100000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_1);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_1MB);
ATF_TC_HEAD(uvm_physseg_1MB, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000,000 calls, VM_PHYSSEG_MAX is 32 on 1 MB Segment.");
}
ATF_TC_BODY(uvm_physseg_1MB, t)
{
paddr_t pa = 0;
paddr_t pf = 0;
psize_t pf_chunk_size = 0;
psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
psize_t npages2 = (VALID_END_PFN_2 - VALID_START_PFN_2);
struct vm_page *slab = malloc(sizeof(struct vm_page) *
(npages1 + npages2));
setup();
/* We start with zero segments */
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
/* Post boot: Fake all segments and pages accounted for. */
uvm_page_init_fake(slab, npages1 + npages2);
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(pf = VALID_START_PFN_2; pf < VALID_END_PFN_2; pf += PF_STEP) {
pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
uvm_physseg_unplug(pf, pf_chunk_size);
}
for(int i = 0; i < 10000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_2);
if(pa < ctob(VALID_START_PFN_2))
pa += ctob(VALID_START_PFN_2);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_64MB);
ATF_TC_HEAD(uvm_physseg_64MB, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000,000 calls, VM_PHYSSEG_MAX is 32 on 64 MB Segment.");
}
ATF_TC_BODY(uvm_physseg_64MB, t)
{
paddr_t pa = 0;
paddr_t pf = 0;
psize_t pf_chunk_size = 0;
psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
psize_t npages2 = (VALID_END_PFN_3 - VALID_START_PFN_3);
struct vm_page *slab = malloc(sizeof(struct vm_page) *
(npages1 + npages2));
setup();
/* We start with zero segments */
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
/* Post boot: Fake all segments and pages accounted for. */
uvm_page_init_fake(slab, npages1 + npages2);
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_3, npages2, NULL));
ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(pf = VALID_START_PFN_3; pf < VALID_END_PFN_3; pf += PF_STEP) {
pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
uvm_physseg_unplug(pf, pf_chunk_size);
}
for(int i = 0; i < 10000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_3);
if(pa < ctob(VALID_START_PFN_3))
pa += ctob(VALID_START_PFN_3);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_128MB);
ATF_TC_HEAD(uvm_physseg_128MB, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000,000 calls, VM_PHYSSEG_MAX is 32 on 128 MB Segment.");
}
ATF_TC_BODY(uvm_physseg_128MB, t)
{
paddr_t pa = 0;
paddr_t pf = 0;
psize_t pf_chunk_size = 0;
psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
psize_t npages2 = (VALID_END_PFN_4 - VALID_START_PFN_4);
struct vm_page *slab = malloc(sizeof(struct vm_page)
* (npages1 + npages2));
setup();
/* We start with zero segments */
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
/* Post boot: Fake all segments and pages accounted for. */
uvm_page_init_fake(slab, npages1 + npages2);
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(pf = VALID_START_PFN_4; pf < VALID_END_PFN_4; pf += PF_STEP) {
pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
uvm_physseg_unplug(pf, pf_chunk_size);
}
for(int i = 0; i < 10000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_4);
if(pa < ctob(VALID_START_PFN_4))
pa += ctob(VALID_START_PFN_4);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TC(uvm_physseg_256MB);
ATF_TC_HEAD(uvm_physseg_256MB, tc)
{
atf_tc_set_md_var(tc, "descr", "Load test uvm_phys_to_vm_page() with \
10,000,000 calls, VM_PHYSSEG_MAX is 32 on 256 MB Segment.");
}
ATF_TC_BODY(uvm_physseg_256MB, t)
{
paddr_t pa = 0;
paddr_t pf = 0;
psize_t pf_chunk_size = 0;
psize_t npages1 = (VALID_END_PFN_1 - VALID_START_PFN_1);
psize_t npages2 = (VALID_END_PFN_5 - VALID_START_PFN_5);
struct vm_page *slab = malloc(sizeof(struct vm_page) * (npages1 + npages2));
setup();
/* We start with zero segments */
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_1, npages1, NULL));
ATF_REQUIRE_EQ(1, uvm_physseg_get_entries());
/* Post boot: Fake all segments and pages accounted for. */
uvm_page_init_fake(slab, npages1 + npages2);
ATF_REQUIRE_EQ(true, uvm_physseg_plug(VALID_START_PFN_2, npages2, NULL));
ATF_REQUIRE_EQ(2, uvm_physseg_get_entries());
srandom((unsigned)time(NULL));
for(pf = VALID_START_PFN_5; pf < VALID_END_PFN_5; pf += PF_STEP) {
pf_chunk_size = (psize_t) random() % (psize_t) (PF_STEP - 1) + 1;
uvm_physseg_unplug(pf, pf_chunk_size);
}
for(int i = 0; i < 10000000; i++) {
pa = (paddr_t) random() % (paddr_t) ctob(VALID_END_PFN_5);
if(pa < ctob(VALID_END_PFN_5))
pa += ctob(VALID_START_PFN_5);
PHYS_TO_VM_PAGE(pa);
}
ATF_CHECK_EQ(true, true);
}
ATF_TP_ADD_TCS(tp)
{
/* Fixed memory size tests. */
ATF_TP_ADD_TC(tp, uvm_physseg_100);
ATF_TP_ADD_TC(tp, uvm_physseg_1K);
ATF_TP_ADD_TC(tp, uvm_physseg_10K);
ATF_TP_ADD_TC(tp, uvm_physseg_100K);
ATF_TP_ADD_TC(tp, uvm_physseg_1M);
ATF_TP_ADD_TC(tp, uvm_physseg_10M);
ATF_TP_ADD_TC(tp, uvm_physseg_100M);
#if defined(UVM_HOTPLUG)
/* Variable memory size tests. */
ATF_TP_ADD_TC(tp, uvm_physseg_1MB);
ATF_TP_ADD_TC(tp, uvm_physseg_64MB);
ATF_TP_ADD_TC(tp, uvm_physseg_128MB);
ATF_TP_ADD_TC(tp, uvm_physseg_256MB);
#endif /* UVM_HOTPLUG */
return atf_no_error();
}