NetBSD/sys/dev/usb/vhci.c

1324 lines
32 KiB
C

/* $NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $ */
/*
* Copyright (c) 2019-2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vhci.c,v 1.20 2020/06/05 17:20:56 maxv Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/kcov.h>
#include <machine/endian.h>
#include "ioconf.h"
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbroothub.h>
#include <dev/usb/vhci.h>
#ifdef VHCI_DEBUG
#define DPRINTF(fmt, ...) printf(fmt, __VA_ARGS__)
#else
#define DPRINTF(fmt, ...) __nothing
#endif
static usbd_status vhci_open(struct usbd_pipe *);
static void vhci_softintr(void *);
static struct usbd_xfer *vhci_allocx(struct usbd_bus *, unsigned int);
static void vhci_freex(struct usbd_bus *, struct usbd_xfer *);
static void vhci_get_lock(struct usbd_bus *, kmutex_t **);
static int vhci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
void *, int);
static const struct usbd_bus_methods vhci_bus_methods = {
.ubm_open = vhci_open,
.ubm_softint = vhci_softintr,
.ubm_dopoll = NULL,
.ubm_allocx = vhci_allocx,
.ubm_freex = vhci_freex,
.ubm_getlock = vhci_get_lock,
.ubm_rhctrl = vhci_roothub_ctrl,
};
static usbd_status vhci_device_ctrl_transfer(struct usbd_xfer *);
static usbd_status vhci_device_ctrl_start(struct usbd_xfer *);
static void vhci_device_ctrl_abort(struct usbd_xfer *);
static void vhci_device_ctrl_close(struct usbd_pipe *);
static void vhci_device_ctrl_cleartoggle(struct usbd_pipe *);
static void vhci_device_ctrl_done(struct usbd_xfer *);
static const struct usbd_pipe_methods vhci_device_ctrl_methods = {
.upm_init = NULL,
.upm_fini = NULL,
.upm_transfer = vhci_device_ctrl_transfer,
.upm_start = vhci_device_ctrl_start,
.upm_abort = vhci_device_ctrl_abort,
.upm_close = vhci_device_ctrl_close,
.upm_cleartoggle = vhci_device_ctrl_cleartoggle,
.upm_done = vhci_device_ctrl_done,
};
static usbd_status vhci_root_intr_transfer(struct usbd_xfer *);
static usbd_status vhci_root_intr_start(struct usbd_xfer *);
static void vhci_root_intr_abort(struct usbd_xfer *);
static void vhci_root_intr_close(struct usbd_pipe *);
static void vhci_root_intr_cleartoggle(struct usbd_pipe *);
static void vhci_root_intr_done(struct usbd_xfer *);
static const struct usbd_pipe_methods vhci_root_intr_methods = {
.upm_init = NULL,
.upm_fini = NULL,
.upm_transfer = vhci_root_intr_transfer,
.upm_start = vhci_root_intr_start,
.upm_abort = vhci_root_intr_abort,
.upm_close = vhci_root_intr_close,
.upm_cleartoggle = vhci_root_intr_cleartoggle,
.upm_done = vhci_root_intr_done,
};
/*
* There are three structures to understand: vxfers, packets, and ports.
*
* Each xfer from the point of view of the USB stack is a vxfer from the point
* of view of vHCI.
*
* A vxfer has a linked list containing a maximum of two packets: a request
* packet and possibly a data packet. Packets basically contain data exchanged
* between the Host and the virtual USB device. A packet is linked to both a
* vxfer and a port.
*
* A port is an abstraction of an actual USB port. Each virtual USB device gets
* connected to a port. A port has two lists:
* - The Usb-To-Host list, containing packets to be fetched from the USB
* device and provided to the host.
* - The Host-To-Usb list, containing packets to be sent from the Host to the
* USB device.
* Request packets are always in the H->U direction. Data packets however can
* be in both the H->U and U->H directions.
*
* With read() and write() operations on /dev/vhci, userland respectively
* "fetches" and "sends" packets from or to the virtual USB device, which
* respectively means reading/inserting packets in the H->U and U->H lists on
* the port where the virtual USB device is connected.
*
* +------------------------------------------------+
* | USB Stack |
* +---------------------^--------------------------+
* |
* +---------------------V--------------------------+
* | +----------------+ +-------------+ |
* | | Request Packet | | Data Packet | Xfer |
* | +-------|--------+ +----|---^----+ |
* +---------|------------------|---|---------------+
* | | |
* | +--------------+ |
* | | |
* +---------|---|------------------|---------------+
* | +---V---V---+ +---------|-+ |
* | | H->U List | | U->H List | vHCI Port |
* | +-----|-----+ +-----^-----+ |
* +-----------|----------------|-------------------+
* | |
* +-----------|----------------|-------------------+
* | +-----V-----+ +-----|-----+ |
* | | read() | | write() | vHCI FD |
* | +-----------+ +-----------+ |
* +------------------------------------------------+
*/
struct vhci_xfer;
typedef struct vhci_packet {
/* General. */
TAILQ_ENTRY(vhci_packet) portlist;
TAILQ_ENTRY(vhci_packet) xferlist;
struct vhci_xfer *vxfer;
bool utoh;
uint8_t addr;
/* Type. */
struct {
bool req:1;
bool res:1;
bool dat:1;
} type;
/* Exposed for FD operations. */
uint8_t *buf;
size_t size;
size_t cursor;
} vhci_packet_t;
typedef TAILQ_HEAD(, vhci_packet) vhci_packet_list_t;
#define VHCI_NADDRS 16 /* maximum supported by USB */
typedef struct {
kmutex_t lock;
int status;
int change;
struct {
vhci_packet_list_t usb_to_host;
vhci_packet_list_t host_to_usb;
} endpoints[VHCI_NADDRS];
} vhci_port_t;
typedef struct {
struct usbd_pipe pipe;
} vhci_pipe_t;
typedef struct vhci_xfer {
/* General. */
struct usbd_xfer xfer;
/* Port where the xfer occurs. */
vhci_port_t *port;
/* Packets in the xfer. */
size_t npkts;
vhci_packet_list_t pkts;
/* Header storage. */
vhci_request_t reqbuf;
vhci_response_t resbuf;
/* Used for G/C. */
TAILQ_ENTRY(vhci_xfer) freelist;
} vhci_xfer_t;
typedef TAILQ_HEAD(, vhci_xfer) vhci_xfer_list_t;
#define VHCI_INDEX2PORT(idx) (idx)
#define VHCI_NPORTS 8 /* above 8, update TODO-bitmap */
#define VHCI_NBUSES 8
typedef struct {
device_t sc_dev;
struct usbd_bus sc_bus;
bool sc_dying;
kmutex_t sc_lock;
/*
* Intr Root. Used to attach the devices.
*/
struct usbd_xfer *sc_intrxfer;
/*
* The ports. Zero is for the roothub, one and beyond for the USB
* devices.
*/
size_t sc_nports;
vhci_port_t sc_port[VHCI_NPORTS];
device_t sc_child; /* /dev/usb# device */
} vhci_softc_t;
typedef struct {
u_int port;
uint8_t addr;
vhci_softc_t *softc;
} vhci_fd_t;
extern struct cfdriver vhci_cd;
/* -------------------------------------------------------------------------- */
static void
vhci_pkt_ctrl_create(vhci_port_t *port, struct usbd_xfer *xfer, bool utoh,
uint8_t addr)
{
vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
vhci_packet_list_t *reqlist, *reslist, *datlist = NULL;
vhci_packet_t *req, *res = NULL, *dat = NULL;
size_t npkts = 0;
/* Request packet. */
reqlist = &port->endpoints[addr].host_to_usb;
req = kmem_zalloc(sizeof(*req), KM_SLEEP);
req->vxfer = vxfer;
req->utoh = false;
req->addr = addr;
req->type.req = true;
req->buf = (uint8_t *)&vxfer->reqbuf;
req->size = sizeof(vxfer->reqbuf);
req->cursor = 0;
npkts++;
/* Init the request buffer. */
memset(&vxfer->reqbuf, 0, sizeof(vxfer->reqbuf));
vxfer->reqbuf.type = VHCI_REQ_CTRL;
memcpy(&vxfer->reqbuf.u.ctrl, &xfer->ux_request,
sizeof(xfer->ux_request));
/* Response packet. */
if (utoh && (xfer->ux_length > 0)) {
reslist = &port->endpoints[addr].usb_to_host;
res = kmem_zalloc(sizeof(*res), KM_SLEEP);
res->vxfer = vxfer;
res->utoh = true;
res->addr = addr;
res->type.res = true;
res->buf = (uint8_t *)&vxfer->resbuf;
res->size = sizeof(vxfer->resbuf);
res->cursor = 0;
npkts++;
}
/* Data packet. */
if (xfer->ux_length > 0) {
if (utoh) {
datlist = &port->endpoints[addr].usb_to_host;
} else {
datlist = &port->endpoints[addr].host_to_usb;
}
dat = kmem_zalloc(sizeof(*dat), KM_SLEEP);
dat->vxfer = vxfer;
dat->utoh = utoh;
dat->addr = addr;
dat->type.dat = true;
dat->buf = xfer->ux_buf;
dat->size = xfer->ux_length;
dat->cursor = 0;
npkts++;
}
/* Insert in the xfer. */
vxfer->port = port;
vxfer->npkts = npkts;
TAILQ_INIT(&vxfer->pkts);
TAILQ_INSERT_TAIL(&vxfer->pkts, req, xferlist);
if (res != NULL)
TAILQ_INSERT_TAIL(&vxfer->pkts, res, xferlist);
if (dat != NULL)
TAILQ_INSERT_TAIL(&vxfer->pkts, dat, xferlist);
/* Insert in the port. */
KASSERT(mutex_owned(&port->lock));
TAILQ_INSERT_TAIL(reqlist, req, portlist);
if (res != NULL)
TAILQ_INSERT_TAIL(reslist, res, portlist);
if (dat != NULL)
TAILQ_INSERT_TAIL(datlist, dat, portlist);
}
static void
vhci_pkt_destroy(vhci_softc_t *sc, vhci_packet_t *pkt)
{
vhci_xfer_t *vxfer = pkt->vxfer;
vhci_port_t *port = vxfer->port;
vhci_packet_list_t *pktlist;
KASSERT(mutex_owned(&port->lock));
/* Remove from the port. */
if (pkt->utoh) {
pktlist = &port->endpoints[pkt->addr].usb_to_host;
} else {
pktlist = &port->endpoints[pkt->addr].host_to_usb;
}
TAILQ_REMOVE(pktlist, pkt, portlist);
/* Remove from the xfer. */
TAILQ_REMOVE(&vxfer->pkts, pkt, xferlist);
kmem_free(pkt, sizeof(*pkt));
/* Unref. */
KASSERT(vxfer->npkts > 0);
vxfer->npkts--;
if (vxfer->npkts > 0)
return;
KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
}
/* -------------------------------------------------------------------------- */
static usbd_status
vhci_open(struct usbd_pipe *pipe)
{
struct usbd_device *dev = pipe->up_dev;
struct usbd_bus *bus = dev->ud_bus;
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
vhci_softc_t *sc = bus->ub_hcpriv;
uint8_t addr = dev->ud_addr;
if (sc->sc_dying)
return USBD_IOERROR;
DPRINTF("%s: called, type=%d\n", __func__,
UE_GET_XFERTYPE(ed->bmAttributes));
if (addr == bus->ub_rhaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
DPRINTF("%s: roothub_ctrl\n", __func__);
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
DPRINTF("%s: root_intr\n", __func__);
pipe->up_methods = &vhci_root_intr_methods;
break;
default:
DPRINTF("%s: inval\n", __func__);
return USBD_INVAL;
}
} else {
switch (UE_GET_XFERTYPE(ed->bmAttributes)) {
case UE_CONTROL:
pipe->up_methods = &vhci_device_ctrl_methods;
break;
case UE_INTERRUPT:
case UE_BULK:
default:
goto bad;
}
}
return USBD_NORMAL_COMPLETION;
bad:
return USBD_NOMEM;
}
static void
vhci_softintr(void *v)
{
DPRINTF("%s: called\n", __func__);
}
static struct usbd_xfer *
vhci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
vhci_xfer_t *vxfer;
vxfer = kmem_zalloc(sizeof(*vxfer), KM_SLEEP);
#ifdef DIAGNOSTIC
vxfer->xfer.ux_state = XFER_BUSY;
#endif
return (struct usbd_xfer *)vxfer;
}
static void
vhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
KASSERT(vxfer->npkts == 0);
KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
#ifdef DIAGNOSTIC
vxfer->xfer.ux_state = XFER_FREE;
#endif
kmem_free(vxfer, sizeof(*vxfer));
}
static void
vhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
vhci_softc_t *sc = bus->ub_hcpriv;
*lock = &sc->sc_lock;
}
static int
vhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
vhci_softc_t *sc = bus->ub_hcpriv;
vhci_port_t *port;
usb_hub_descriptor_t hubd;
uint16_t len, value, index;
int totlen = 0;
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
switch (value) {
case C(0, UDESC_DEVICE): {
usb_device_descriptor_t devd;
totlen = uimin(buflen, sizeof(devd));
memcpy(&devd, buf, totlen);
USETW(devd.idVendor, 0);
USETW(devd.idProduct, 0);
memcpy(buf, &devd, totlen);
break;
}
#define sd ((usb_string_descriptor_t *)buf)
case C(1, UDESC_STRING):
/* Vendor */
totlen = usb_makestrdesc(sd, len, "NetBSD");
break;
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "VHCI root hub");
break;
#undef sd
default:
/* default from usbroothub */
return buflen;
}
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
switch (value) {
case UHF_PORT_RESET:
if (index < 1 || index >= sc->sc_nports) {
return -1;
}
port = &sc->sc_port[VHCI_INDEX2PORT(index)];
port->status |= UPS_C_PORT_RESET;
break;
case UHF_PORT_POWER:
break;
default:
return -1;
}
break;
/* Hub requests. */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
if (index < 1 || index >= sc->sc_nports) {
return -1;
}
port = &sc->sc_port[VHCI_INDEX2PORT(index)];
switch (value) {
case UHF_PORT_ENABLE:
port->status &= ~UPS_PORT_ENABLED;
break;
case UHF_C_PORT_ENABLE:
port->change |= UPS_C_PORT_ENABLED;
break;
default:
return -1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
totlen = uimin(buflen, sizeof(hubd));
memcpy(&hubd, buf, totlen);
hubd.bNbrPorts = sc->sc_nports - 1;
hubd.bDescLength = USB_HUB_DESCRIPTOR_SIZE;
totlen = uimin(totlen, hubd.bDescLength);
memcpy(buf, &hubd, totlen);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
/* XXX The other HCs do this */
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): {
usb_port_status_t ps;
if (index < 1 || index >= sc->sc_nports) {
return -1;
}
port = &sc->sc_port[VHCI_INDEX2PORT(index)];
USETW(ps.wPortStatus, port->status);
USETW(ps.wPortChange, port->change);
totlen = uimin(len, sizeof(ps));
memcpy(buf, &ps, totlen);
break;
}
default:
/* default from usbroothub */
return buflen;
}
return totlen;
}
/* -------------------------------------------------------------------------- */
static usbd_status
vhci_device_ctrl_transfer(struct usbd_xfer *xfer)
{
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
usbd_status err;
DPRINTF("%s: called\n", __func__);
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return vhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
vhci_device_ctrl_start(struct usbd_xfer *xfer)
{
usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
usb_device_request_t *req = &xfer->ux_request;
struct usbd_device *dev = xfer->ux_pipe->up_dev;
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
vhci_port_t *port;
bool polling = sc->sc_bus.ub_usepolling;
bool isread = (req->bmRequestType & UT_READ) != 0;
uint8_t addr = UE_GET_ADDR(ed->bEndpointAddress);
int portno, ret;
KASSERT(addr == 0);
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
KASSERT(dev->ud_myhsport != NULL);
portno = dev->ud_myhsport->up_portno;
DPRINTF("%s: type=0x%02x, len=%d, isread=%d, portno=%d\n",
__func__, req->bmRequestType, UGETW(req->wLength), isread, portno);
if (sc->sc_dying)
return USBD_IOERROR;
port = &sc->sc_port[portno];
if (!polling)
mutex_enter(&sc->sc_lock);
mutex_enter(&port->lock);
if (port->status & UPS_PORT_ENABLED) {
xfer->ux_status = USBD_IN_PROGRESS;
vhci_pkt_ctrl_create(port, xfer, isread, addr);
ret = USBD_IN_PROGRESS;
} else {
ret = USBD_IOERROR;
}
mutex_exit(&port->lock);
if (!polling)
mutex_exit(&sc->sc_lock);
return ret;
}
static void
vhci_device_ctrl_abort(struct usbd_xfer *xfer)
{
vhci_xfer_t *vxfer = (vhci_xfer_t *)xfer;
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
vhci_port_t *port = vxfer->port;
vhci_packet_t *pkt;
DPRINTF("%s: called\n", __func__);
KASSERT(mutex_owned(&sc->sc_lock));
callout_halt(&xfer->ux_callout, &sc->sc_lock);
/* If anyone else beat us, we're done. */
KASSERT(xfer->ux_status != USBD_CANCELLED);
if (xfer->ux_status != USBD_IN_PROGRESS)
return;
mutex_enter(&port->lock);
while (vxfer->npkts > 0) {
pkt = TAILQ_FIRST(&vxfer->pkts);
KASSERT(pkt != NULL);
vhci_pkt_destroy(sc, pkt);
}
KASSERT(TAILQ_FIRST(&vxfer->pkts) == NULL);
mutex_exit(&port->lock);
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
}
static void
vhci_device_ctrl_close(struct usbd_pipe *pipe)
{
DPRINTF("%s: called\n", __func__);
}
static void
vhci_device_ctrl_cleartoggle(struct usbd_pipe *pipe)
{
DPRINTF("%s: called\n", __func__);
}
static void
vhci_device_ctrl_done(struct usbd_xfer *xfer)
{
DPRINTF("%s: called\n", __func__);
}
/* -------------------------------------------------------------------------- */
static usbd_status
vhci_root_intr_transfer(struct usbd_xfer *xfer)
{
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
usbd_status err;
DPRINTF("%s: called\n", __func__);
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/* Pipe isn't running, start first */
return vhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
vhci_root_intr_start(struct usbd_xfer *xfer)
{
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
const bool polling = sc->sc_bus.ub_usepolling;
DPRINTF("%s: called, len=%zu\n", __func__, (size_t)xfer->ux_length);
if (sc->sc_dying)
return USBD_IOERROR;
if (!polling)
mutex_enter(&sc->sc_lock);
KASSERT(sc->sc_intrxfer == NULL);
sc->sc_intrxfer = xfer;
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
static void
vhci_root_intr_abort(struct usbd_xfer *xfer)
{
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
DPRINTF("%s: called\n", __func__);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
/* If xfer has already completed, nothing to do here. */
if (sc->sc_intrxfer == NULL)
return;
/*
* Otherwise, sc->sc_intrxfer had better be this transfer.
* Cancel it.
*/
KASSERT(sc->sc_intrxfer == xfer);
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
}
static void
vhci_root_intr_close(struct usbd_pipe *pipe)
{
vhci_softc_t *sc __diagused = pipe->up_dev->ud_bus->ub_hcpriv;
DPRINTF("%s: called\n", __func__);
KASSERT(mutex_owned(&sc->sc_lock));
/*
* Caller must guarantee the xfer has completed first, by
* closing the pipe only after normal completion or an abort.
*/
KASSERT(sc->sc_intrxfer == NULL);
}
static void
vhci_root_intr_cleartoggle(struct usbd_pipe *pipe)
{
DPRINTF("%s: called\n", __func__);
}
static void
vhci_root_intr_done(struct usbd_xfer *xfer)
{
vhci_softc_t *sc = xfer->ux_bus->ub_hcpriv;
KASSERT(mutex_owned(&sc->sc_lock));
/* Claim the xfer so it doesn't get completed again. */
KASSERT(sc->sc_intrxfer == xfer);
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
sc->sc_intrxfer = NULL;
}
/* -------------------------------------------------------------------------- */
static int
vhci_usb_attach(vhci_fd_t *vfd)
{
vhci_softc_t *sc = vfd->softc;
vhci_port_t *port;
struct usbd_xfer *xfer;
u_char *p;
int ret = 0;
port = &sc->sc_port[vfd->port];
mutex_enter(&sc->sc_lock);
mutex_enter(&port->lock);
port->status = UPS_CURRENT_CONNECT_STATUS | UPS_PORT_ENABLED |
UPS_PORT_POWER;
port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
mutex_exit(&port->lock);
xfer = sc->sc_intrxfer;
if (xfer == NULL) {
ret = ENOBUFS;
goto done;
}
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
/*
* Mark our port has having changed state. Uhub will then fetch
* status/change and see it needs to perform an attach.
*/
p = xfer->ux_buf;
memset(p, 0, xfer->ux_length);
p[0] = __BIT(vfd->port); /* TODO-bitmap */
xfer->ux_actlen = xfer->ux_length;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
done:
mutex_exit(&sc->sc_lock);
return ret;
}
static void
vhci_port_flush(vhci_softc_t *sc, vhci_port_t *port)
{
vhci_packet_list_t *pktlist;
vhci_packet_t *pkt, *nxt;
vhci_xfer_list_t vxferlist;
vhci_xfer_t *vxfer;
uint8_t addr;
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(mutex_owned(&port->lock));
TAILQ_INIT(&vxferlist);
for (addr = 0; addr < VHCI_NADDRS; addr++) {
/* Drop all the packets in the H->U direction. */
pktlist = &port->endpoints[addr].host_to_usb;
TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
vxfer = pkt->vxfer;
KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
vhci_pkt_destroy(sc, pkt);
if (vxfer->npkts == 0)
TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
}
KASSERT(TAILQ_FIRST(pktlist) == NULL);
/* Drop all the packets in the U->H direction. */
pktlist = &port->endpoints[addr].usb_to_host;
TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
vxfer = pkt->vxfer;
KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
vhci_pkt_destroy(sc, pkt);
if (vxfer->npkts == 0)
TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
}
KASSERT(TAILQ_FIRST(pktlist) == NULL);
/* Terminate all the xfers collected. */
while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
struct usbd_xfer *xfer = &vxfer->xfer;
TAILQ_REMOVE(&vxferlist, vxfer, freelist);
xfer->ux_status = USBD_TIMEOUT;
usb_transfer_complete(xfer);
}
}
}
static int
vhci_usb_detach(vhci_fd_t *vfd)
{
vhci_softc_t *sc = vfd->softc;
vhci_port_t *port;
struct usbd_xfer *xfer;
u_char *p;
port = &sc->sc_port[vfd->port];
mutex_enter(&sc->sc_lock);
xfer = sc->sc_intrxfer;
if (xfer == NULL) {
mutex_exit(&sc->sc_lock);
return ENOBUFS;
}
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
mutex_enter(&port->lock);
port->status = 0;
port->change = UPS_C_CONNECT_STATUS | UPS_C_PORT_RESET;
/*
* Mark our port has having changed state. Uhub will then fetch
* status/change and see it needs to perform a detach.
*/
p = xfer->ux_buf;
memset(p, 0, xfer->ux_length);
p[0] = __BIT(vfd->port); /* TODO-bitmap */
xfer->ux_actlen = xfer->ux_length;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
vhci_port_flush(sc, port);
mutex_exit(&port->lock);
mutex_exit(&sc->sc_lock);
return 0;
}
static int
vhci_get_info(vhci_fd_t *vfd, struct vhci_ioc_get_info *args)
{
vhci_softc_t *sc = vfd->softc;
vhci_port_t *port;
port = &sc->sc_port[vfd->port];
args->nports = VHCI_NPORTS;
args->port = vfd->port;
mutex_enter(&port->lock);
args->status = port->status;
mutex_exit(&port->lock);
args->addr = vfd->addr;
return 0;
}
static int
vhci_set_port(vhci_fd_t *vfd, struct vhci_ioc_set_port *args)
{
vhci_softc_t *sc = vfd->softc;
if (args->port == 0 || args->port >= sc->sc_nports)
return EINVAL;
vfd->port = args->port;
return 0;
}
static int
vhci_set_addr(vhci_fd_t *vfd, struct vhci_ioc_set_addr *args)
{
if (args->addr >= VHCI_NADDRS)
return EINVAL;
vfd->addr = args->addr;
return 0;
}
/* -------------------------------------------------------------------------- */
static dev_type_open(vhci_fd_open);
const struct cdevsw vhci_cdevsw = {
.d_open = vhci_fd_open,
.d_close = noclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = noioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE
};
static int vhci_fd_ioctl(file_t *, u_long, void *);
static int vhci_fd_close(file_t *);
static int vhci_fd_read(struct file *, off_t *, struct uio *, kauth_cred_t, int);
static int vhci_fd_write(struct file *, off_t *, struct uio *, kauth_cred_t, int);
const struct fileops vhci_fileops = {
.fo_read = vhci_fd_read,
.fo_write = vhci_fd_write,
.fo_ioctl = vhci_fd_ioctl,
.fo_fcntl = fnullop_fcntl,
.fo_poll = fnullop_poll,
.fo_stat = fbadop_stat,
.fo_close = vhci_fd_close,
.fo_kqfilter = fnullop_kqfilter,
.fo_restart = fnullop_restart,
.fo_mmap = NULL,
};
static int
vhci_fd_open(dev_t dev, int flags, int type, struct lwp *l)
{
vhci_softc_t *sc;
vhci_fd_t *vfd;
struct file *fp;
int error, fd;
sc = device_lookup_private(&vhci_cd, minor(dev));
if (sc == NULL)
return EXDEV;
error = fd_allocfile(&fp, &fd);
if (error)
return error;
vfd = kmem_alloc(sizeof(*vfd), KM_SLEEP);
vfd->port = 1;
vfd->addr = 0;
vfd->softc = sc;
return fd_clone(fp, fd, flags, &vhci_fileops, vfd);
}
static int
vhci_fd_close(file_t *fp)
{
vhci_fd_t *vfd = fp->f_data;
int ret __diagused;
KASSERT(vfd != NULL);
ret = vhci_usb_detach(vfd);
KASSERT(ret == 0);
kmem_free(vfd, sizeof(*vfd));
fp->f_data = NULL;
return 0;
}
static int
vhci_fd_read(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
int flags)
{
vhci_fd_t *vfd = fp->f_data;
vhci_softc_t *sc = vfd->softc;
vhci_packet_list_t *pktlist;
vhci_packet_t *pkt, *nxt;
vhci_xfer_list_t vxferlist;
vhci_xfer_t *vxfer;
vhci_port_t *port;
int error = 0;
uint8_t *buf;
size_t size;
if (uio->uio_resid == 0)
return 0;
port = &sc->sc_port[vfd->port];
pktlist = &port->endpoints[vfd->addr].host_to_usb;
TAILQ_INIT(&vxferlist);
mutex_enter(&port->lock);
if (!(port->status & UPS_PORT_ENABLED)) {
error = ENOBUFS;
goto out;
}
TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
vxfer = pkt->vxfer;
buf = pkt->buf + pkt->cursor;
KASSERT(pkt->size >= pkt->cursor);
size = uimin(uio->uio_resid, pkt->size - pkt->cursor);
KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
error = uiomove(buf, size, uio);
if (error) {
DPRINTF("%s: error = %d\n", __func__, error);
goto out;
}
pkt->cursor += size;
if (pkt->cursor == pkt->size) {
vhci_pkt_destroy(sc, pkt);
if (vxfer->npkts == 0) {
TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
}
}
if (uio->uio_resid == 0) {
break;
}
}
out:
mutex_exit(&port->lock);
while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
struct usbd_xfer *xfer = &vxfer->xfer;
TAILQ_REMOVE(&vxferlist, vxfer, freelist);
mutex_enter(&sc->sc_lock);
xfer->ux_actlen = xfer->ux_length;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
mutex_exit(&sc->sc_lock);
}
return error;
}
static int
vhci_fd_write(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
int flags)
{
vhci_fd_t *vfd = fp->f_data;
vhci_softc_t *sc = vfd->softc;
vhci_packet_list_t *pktlist;
vhci_packet_t *pkt, *nxt;
vhci_xfer_list_t vxferlist;
vhci_xfer_t *vxfer;
vhci_port_t *port;
int error = 0;
uint8_t *buf;
size_t pktsize, size;
if (uio->uio_resid == 0)
return 0;
port = &sc->sc_port[vfd->port];
pktlist = &port->endpoints[vfd->addr].usb_to_host;
TAILQ_INIT(&vxferlist);
mutex_enter(&port->lock);
if (!(port->status & UPS_PORT_ENABLED)) {
error = ENOBUFS;
goto out;
}
TAILQ_FOREACH_SAFE(pkt, pktlist, portlist, nxt) {
vxfer = pkt->vxfer;
buf = pkt->buf + pkt->cursor;
pktsize = pkt->size;
if (pkt->type.dat)
pktsize = ulmin(vxfer->resbuf.size, pktsize);
KASSERT(pktsize >= pkt->cursor);
size = uimin(uio->uio_resid, pktsize - pkt->cursor);
KASSERT(vxfer->xfer.ux_status == USBD_IN_PROGRESS);
error = uiomove(buf, size, uio);
if (error) {
DPRINTF("%s: error = %d\n", __func__, error);
goto out;
}
pkt->cursor += size;
if (pkt->cursor == pktsize) {
vhci_pkt_destroy(sc, pkt);
if (vxfer->npkts == 0) {
TAILQ_INSERT_TAIL(&vxferlist, vxfer, freelist);
}
}
if (uio->uio_resid == 0) {
break;
}
}
out:
mutex_exit(&port->lock);
while ((vxfer = TAILQ_FIRST(&vxferlist)) != NULL) {
struct usbd_xfer *xfer = &vxfer->xfer;
TAILQ_REMOVE(&vxferlist, vxfer, freelist);
mutex_enter(&sc->sc_lock);
xfer->ux_actlen = ulmin(vxfer->resbuf.size, xfer->ux_length);
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
mutex_exit(&sc->sc_lock);
}
return error;
}
static int
vhci_fd_ioctl(file_t *fp, u_long cmd, void *data)
{
vhci_fd_t *vfd = fp->f_data;
KASSERT(vfd != NULL);
switch (cmd) {
case VHCI_IOC_GET_INFO:
return vhci_get_info(vfd, data);
case VHCI_IOC_SET_PORT:
return vhci_set_port(vfd, data);
case VHCI_IOC_SET_ADDR:
return vhci_set_addr(vfd, data);
case VHCI_IOC_USB_ATTACH:
return vhci_usb_attach(vfd);
case VHCI_IOC_USB_DETACH:
return vhci_usb_detach(vfd);
default:
return EINVAL;
}
}
/* -------------------------------------------------------------------------- */
static int vhci_match(device_t, cfdata_t, void *);
static void vhci_attach(device_t, device_t, void *);
static int vhci_activate(device_t, enum devact);
CFATTACH_DECL_NEW(vhci, sizeof(vhci_softc_t), vhci_match, vhci_attach,
NULL, vhci_activate);
void
vhciattach(int nunits)
{
struct cfdata *cf;
int error;
size_t i;
error = config_cfattach_attach(vhci_cd.cd_name, &vhci_ca);
if (error) {
aprint_error("%s: unable to register cfattach\n",
vhci_cd.cd_name);
(void)config_cfdriver_detach(&vhci_cd);
return;
}
for (i = 0; i < VHCI_NBUSES; i++) {
cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
cf->cf_name = vhci_cd.cd_name;
cf->cf_atname = vhci_cd.cd_name;
cf->cf_unit = i;
cf->cf_fstate = FSTATE_STAR;
config_attach_pseudo(cf);
}
}
static int
vhci_activate(device_t self, enum devact act)
{
vhci_softc_t *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
static int
vhci_match(device_t parent, cfdata_t match, void *aux)
{
return 1;
}
static void
vhci_attach(device_t parent, device_t self, void *aux)
{
vhci_softc_t *sc = device_private(self);
vhci_port_t *port;
uint8_t addr;
size_t i;
sc->sc_dev = self;
sc->sc_bus.ub_revision = USBREV_2_0;
sc->sc_bus.ub_hctype = USBHCTYPE_VHCI;
sc->sc_bus.ub_busnum = self->dv_unit;
sc->sc_bus.ub_usedma = false;
sc->sc_bus.ub_methods = &vhci_bus_methods;
sc->sc_bus.ub_pipesize = sizeof(vhci_pipe_t);
sc->sc_bus.ub_hcpriv = sc;
sc->sc_dying = false;
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
sc->sc_nports = VHCI_NPORTS;
for (i = 0; i < sc->sc_nports; i++) {
port = &sc->sc_port[i];
mutex_init(&port->lock, MUTEX_DEFAULT, IPL_SOFTUSB);
for (addr = 0; addr < VHCI_NADDRS; addr++) {
TAILQ_INIT(&port->endpoints[addr].usb_to_host);
TAILQ_INIT(&port->endpoints[addr].host_to_usb);
}
kcov_remote_register(KCOV_REMOTE_VHCI,
KCOV_REMOTE_VHCI_ID(sc->sc_bus.ub_busnum, i));
}
sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint);
}