NetBSD/sys/dev/usb/uhci.c
2020-05-26 07:03:22 +00:00

3966 lines
105 KiB
C

/* $NetBSD: uhci.c,v 1.303 2020/05/26 07:03:22 skrll Exp $ */
/*
* Copyright (c) 1998, 2004, 2011, 2012, 2016, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology, Jared D. McNeill (jmcneill@invisible.ca),
* Matthew R. Green (mrg@eterna.com.au) and Nick Hudson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB Universal Host Controller driver.
* Handles e.g. PIIX3 and PIIX4.
*
* UHCI spec: http://www.intel.com/technology/usb/spec.htm
* USB spec: http://www.usb.org/developers/docs/
* PIIXn spec: ftp://download.intel.com/design/intarch/datashts/29055002.pdf
* ftp://download.intel.com/design/intarch/datashts/29056201.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uhci.c,v 1.303 2020/05/26 07:03:22 skrll Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/select.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <machine/endian.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/uhcireg.h>
#include <dev/usb/uhcivar.h>
#include <dev/usb/usbroothub.h>
#include <dev/usb/usbhist.h>
/* Use bandwidth reclamation for control transfers. Some devices choke on it. */
/*#define UHCI_CTL_LOOP */
#ifdef UHCI_DEBUG
uhci_softc_t *thesc;
int uhcinoloop = 0;
#endif
#ifdef USB_DEBUG
#ifndef UHCI_DEBUG
#define uhcidebug 0
#else
static int uhcidebug = 0;
SYSCTL_SETUP(sysctl_hw_uhci_setup, "sysctl hw.uhci setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "uhci",
SYSCTL_DESCR("uhci global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &uhcidebug, sizeof(uhcidebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif /* UHCI_DEBUG */
#endif /* USB_DEBUG */
#define DPRINTF(FMT,A,B,C,D) USBHIST_LOGN(uhcidebug,1,FMT,A,B,C,D)
#define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(uhcidebug,N,FMT,A,B,C,D)
#define UHCIHIST_FUNC() USBHIST_FUNC()
#define UHCIHIST_CALLED(name) USBHIST_CALLED(uhcidebug)
/*
* The UHCI controller is little endian, so on big endian machines
* the data stored in memory needs to be swapped.
*/
struct uhci_pipe {
struct usbd_pipe pipe;
int nexttoggle;
u_char aborting;
struct usbd_xfer *abortstart, abortend;
/* Info needed for different pipe kinds. */
union {
/* Control pipe */
struct {
uhci_soft_qh_t *sqh;
usb_dma_t reqdma;
uhci_soft_td_t *setup;
uhci_soft_td_t *stat;
} ctrl;
/* Interrupt pipe */
struct {
int npoll;
uhci_soft_qh_t **qhs;
} intr;
/* Bulk pipe */
struct {
uhci_soft_qh_t *sqh;
} bulk;
/* Isochronous pipe */
struct isoc {
uhci_soft_td_t **stds;
int next, inuse;
} isoc;
};
};
typedef TAILQ_HEAD(ux_completeq, uhci_xfer) ux_completeq_t;
Static void uhci_globalreset(uhci_softc_t *);
Static usbd_status uhci_portreset(uhci_softc_t*, int);
Static void uhci_reset(uhci_softc_t *);
Static usbd_status uhci_run(uhci_softc_t *, int, int);
Static uhci_soft_td_t *uhci_alloc_std(uhci_softc_t *);
Static void uhci_free_std(uhci_softc_t *, uhci_soft_td_t *);
Static void uhci_free_std_locked(uhci_softc_t *, uhci_soft_td_t *);
Static uhci_soft_qh_t *uhci_alloc_sqh(uhci_softc_t *);
Static void uhci_free_sqh(uhci_softc_t *, uhci_soft_qh_t *);
#if 0
Static void uhci_enter_ctl_q(uhci_softc_t *, uhci_soft_qh_t *,
uhci_intr_info_t *);
Static void uhci_exit_ctl_q(uhci_softc_t *, uhci_soft_qh_t *);
#endif
#if 0
Static void uhci_free_std_chain(uhci_softc_t *, uhci_soft_td_t *,
uhci_soft_td_t *);
#endif
Static int uhci_alloc_std_chain(uhci_softc_t *, struct usbd_xfer *,
int, int, uhci_soft_td_t **);
Static void uhci_free_stds(uhci_softc_t *, struct uhci_xfer *);
Static void uhci_reset_std_chain(uhci_softc_t *, struct usbd_xfer *,
int, int, int *, uhci_soft_td_t **);
Static void uhci_poll_hub(void *);
Static void uhci_check_intr(uhci_softc_t *, struct uhci_xfer *,
ux_completeq_t *);
Static void uhci_idone(struct uhci_xfer *, ux_completeq_t *);
Static void uhci_abortx(struct usbd_xfer *);
Static void uhci_add_ls_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_hs_ctrl(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_add_bulk(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_ls_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_hs_ctrl(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_remove_bulk(uhci_softc_t *,uhci_soft_qh_t *);
Static void uhci_add_loop(uhci_softc_t *);
Static void uhci_rem_loop(uhci_softc_t *);
Static usbd_status uhci_setup_isoc(struct usbd_pipe *);
Static struct usbd_xfer *
uhci_allocx(struct usbd_bus *, unsigned int);
Static void uhci_freex(struct usbd_bus *, struct usbd_xfer *);
Static bool uhci_dying(struct usbd_bus *);
Static void uhci_get_lock(struct usbd_bus *, kmutex_t **);
Static int uhci_roothub_ctrl(struct usbd_bus *,
usb_device_request_t *, void *, int);
Static int uhci_device_ctrl_init(struct usbd_xfer *);
Static void uhci_device_ctrl_fini(struct usbd_xfer *);
Static usbd_status uhci_device_ctrl_transfer(struct usbd_xfer *);
Static usbd_status uhci_device_ctrl_start(struct usbd_xfer *);
Static void uhci_device_ctrl_abort(struct usbd_xfer *);
Static void uhci_device_ctrl_close(struct usbd_pipe *);
Static void uhci_device_ctrl_done(struct usbd_xfer *);
Static int uhci_device_intr_init(struct usbd_xfer *);
Static void uhci_device_intr_fini(struct usbd_xfer *);
Static usbd_status uhci_device_intr_transfer(struct usbd_xfer *);
Static usbd_status uhci_device_intr_start(struct usbd_xfer *);
Static void uhci_device_intr_abort(struct usbd_xfer *);
Static void uhci_device_intr_close(struct usbd_pipe *);
Static void uhci_device_intr_done(struct usbd_xfer *);
Static int uhci_device_bulk_init(struct usbd_xfer *);
Static void uhci_device_bulk_fini(struct usbd_xfer *);
Static usbd_status uhci_device_bulk_transfer(struct usbd_xfer *);
Static usbd_status uhci_device_bulk_start(struct usbd_xfer *);
Static void uhci_device_bulk_abort(struct usbd_xfer *);
Static void uhci_device_bulk_close(struct usbd_pipe *);
Static void uhci_device_bulk_done(struct usbd_xfer *);
Static int uhci_device_isoc_init(struct usbd_xfer *);
Static void uhci_device_isoc_fini(struct usbd_xfer *);
Static usbd_status uhci_device_isoc_transfer(struct usbd_xfer *);
Static void uhci_device_isoc_abort(struct usbd_xfer *);
Static void uhci_device_isoc_close(struct usbd_pipe *);
Static void uhci_device_isoc_done(struct usbd_xfer *);
Static usbd_status uhci_root_intr_transfer(struct usbd_xfer *);
Static usbd_status uhci_root_intr_start(struct usbd_xfer *);
Static void uhci_root_intr_abort(struct usbd_xfer *);
Static void uhci_root_intr_close(struct usbd_pipe *);
Static void uhci_root_intr_done(struct usbd_xfer *);
Static usbd_status uhci_open(struct usbd_pipe *);
Static void uhci_poll(struct usbd_bus *);
Static void uhci_softintr(void *);
Static void uhci_add_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static void uhci_remove_intr(uhci_softc_t *, uhci_soft_qh_t *);
Static usbd_status uhci_device_setintr(uhci_softc_t *,
struct uhci_pipe *, int);
Static void uhci_device_clear_toggle(struct usbd_pipe *);
Static void uhci_noop(struct usbd_pipe *);
static inline uhci_soft_qh_t *
uhci_find_prev_qh(uhci_soft_qh_t *, uhci_soft_qh_t *);
#ifdef UHCI_DEBUG
Static void uhci_dump_all(uhci_softc_t *);
Static void uhci_dumpregs(uhci_softc_t *);
Static void uhci_dump_qhs(uhci_soft_qh_t *);
Static void uhci_dump_qh(uhci_soft_qh_t *);
Static void uhci_dump_tds(uhci_soft_td_t *);
Static void uhci_dump_td(uhci_soft_td_t *);
Static void uhci_dump_ii(struct uhci_xfer *);
void uhci_dump(void);
#endif
#define UBARR(sc) bus_space_barrier((sc)->iot, (sc)->ioh, 0, (sc)->sc_size, \
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE)
#define UWRITE1(sc, r, x) \
do { UBARR(sc); bus_space_write_1((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE2(sc, r, x) \
do { UBARR(sc); bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
#define UWRITE4(sc, r, x) \
do { UBARR(sc); bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)); \
} while (/*CONSTCOND*/0)
static __inline uint8_t
UREAD1(uhci_softc_t *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_1(sc->iot, sc->ioh, r);
}
static __inline uint16_t
UREAD2(uhci_softc_t *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_2(sc->iot, sc->ioh, r);
}
#ifdef UHCI_DEBUG
static __inline uint32_t
UREAD4(uhci_softc_t *sc, bus_size_t r)
{
UBARR(sc);
return bus_space_read_4(sc->iot, sc->ioh, r);
}
#endif
#define UHCICMD(sc, cmd) UWRITE2(sc, UHCI_CMD, cmd)
#define UHCISTS(sc) UREAD2(sc, UHCI_STS)
#define UHCI_RESET_TIMEOUT 100 /* ms, reset timeout */
#define UHCI_CURFRAME(sc) (UREAD2(sc, UHCI_FRNUM) & UHCI_FRNUM_MASK)
const struct usbd_bus_methods uhci_bus_methods = {
.ubm_open = uhci_open,
.ubm_softint = uhci_softintr,
.ubm_dopoll = uhci_poll,
.ubm_allocx = uhci_allocx,
.ubm_freex = uhci_freex,
.ubm_abortx = uhci_abortx,
.ubm_dying = uhci_dying,
.ubm_getlock = uhci_get_lock,
.ubm_rhctrl = uhci_roothub_ctrl,
};
const struct usbd_pipe_methods uhci_root_intr_methods = {
.upm_transfer = uhci_root_intr_transfer,
.upm_start = uhci_root_intr_start,
.upm_abort = uhci_root_intr_abort,
.upm_close = uhci_root_intr_close,
.upm_cleartoggle = uhci_noop,
.upm_done = uhci_root_intr_done,
};
const struct usbd_pipe_methods uhci_device_ctrl_methods = {
.upm_init = uhci_device_ctrl_init,
.upm_fini = uhci_device_ctrl_fini,
.upm_transfer = uhci_device_ctrl_transfer,
.upm_start = uhci_device_ctrl_start,
.upm_abort = uhci_device_ctrl_abort,
.upm_close = uhci_device_ctrl_close,
.upm_cleartoggle = uhci_noop,
.upm_done = uhci_device_ctrl_done,
};
const struct usbd_pipe_methods uhci_device_intr_methods = {
.upm_init = uhci_device_intr_init,
.upm_fini = uhci_device_intr_fini,
.upm_transfer = uhci_device_intr_transfer,
.upm_start = uhci_device_intr_start,
.upm_abort = uhci_device_intr_abort,
.upm_close = uhci_device_intr_close,
.upm_cleartoggle = uhci_device_clear_toggle,
.upm_done = uhci_device_intr_done,
};
const struct usbd_pipe_methods uhci_device_bulk_methods = {
.upm_init = uhci_device_bulk_init,
.upm_fini = uhci_device_bulk_fini,
.upm_transfer = uhci_device_bulk_transfer,
.upm_start = uhci_device_bulk_start,
.upm_abort = uhci_device_bulk_abort,
.upm_close = uhci_device_bulk_close,
.upm_cleartoggle = uhci_device_clear_toggle,
.upm_done = uhci_device_bulk_done,
};
const struct usbd_pipe_methods uhci_device_isoc_methods = {
.upm_init = uhci_device_isoc_init,
.upm_fini = uhci_device_isoc_fini,
.upm_transfer = uhci_device_isoc_transfer,
.upm_abort = uhci_device_isoc_abort,
.upm_close = uhci_device_isoc_close,
.upm_cleartoggle = uhci_noop,
.upm_done = uhci_device_isoc_done,
};
static inline void
uhci_add_intr_list(uhci_softc_t *sc, struct uhci_xfer *ux)
{
TAILQ_INSERT_TAIL(&sc->sc_intrhead, ux, ux_list);
}
static inline void
uhci_del_intr_list(uhci_softc_t *sc, struct uhci_xfer *ux)
{
TAILQ_REMOVE(&sc->sc_intrhead, ux, ux_list);
}
static inline uhci_soft_qh_t *
uhci_find_prev_qh(uhci_soft_qh_t *pqh, uhci_soft_qh_t *sqh)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(15, "pqh=%#jx sqh=%#jx", (uintptr_t)pqh, (uintptr_t)sqh, 0, 0);
for (; pqh->hlink != sqh; pqh = pqh->hlink) {
#if defined(DIAGNOSTIC) || defined(UHCI_DEBUG)
usb_syncmem(&pqh->dma,
pqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(pqh->qh.qh_hlink),
BUS_DMASYNC_POSTWRITE);
if (le32toh(pqh->qh.qh_hlink) & UHCI_PTR_T) {
printf("%s: QH not found\n", __func__);
return NULL;
}
#endif
}
return pqh;
}
void
uhci_globalreset(uhci_softc_t *sc)
{
UHCICMD(sc, UHCI_CMD_GRESET); /* global reset */
usb_delay_ms(&sc->sc_bus, USB_BUS_RESET_DELAY); /* wait a little */
UHCICMD(sc, 0); /* do nothing */
}
int
uhci_init(uhci_softc_t *sc)
{
usbd_status err;
int i, j;
uhci_soft_qh_t *clsqh, *chsqh, *bsqh, *sqh, *lsqh;
uhci_soft_td_t *std;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
#ifdef UHCI_DEBUG
thesc = sc;
if (uhcidebug >= 2)
uhci_dumpregs(sc);
#endif
sc->sc_suspend = PWR_RESUME;
UWRITE2(sc, UHCI_INTR, 0); /* disable interrupts */
uhci_globalreset(sc); /* reset the controller */
uhci_reset(sc);
/* Allocate and initialize real frame array. */
err = usb_allocmem(&sc->sc_bus,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
UHCI_FRAMELIST_ALIGN, USBMALLOC_COHERENT, &sc->sc_dma);
if (err)
return err;
sc->sc_pframes = KERNADDR(&sc->sc_dma, 0);
/* set frame number to 0 */
UWRITE2(sc, UHCI_FRNUM, 0);
/* set frame list */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));
/* Initialise mutex early for uhci_alloc_* */
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_USB);
/*
* Allocate a TD, inactive, that hangs from the last QH.
* This is to avoid a bug in the PIIX that makes it run berserk
* otherwise.
*/
std = uhci_alloc_std(sc);
if (std == NULL)
return ENOMEM;
std->link.std = NULL;
std->td.td_link = htole32(UHCI_PTR_T);
std->td.td_status = htole32(0); /* inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate the dummy QH marking the end and used for looping the QHs.*/
lsqh = uhci_alloc_sqh(sc);
if (lsqh == NULL)
goto fail1;
lsqh->hlink = NULL;
lsqh->qh.qh_hlink = htole32(UHCI_PTR_T); /* end of QH chain */
lsqh->elink = std;
lsqh->qh.qh_elink = htole32(std->physaddr | UHCI_PTR_TD);
sc->sc_last_qh = lsqh;
usb_syncmem(&lsqh->dma, lsqh->offs, sizeof(lsqh->qh),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate the dummy QH where bulk traffic will be queued. */
bsqh = uhci_alloc_sqh(sc);
if (bsqh == NULL)
goto fail2;
bsqh->hlink = lsqh;
bsqh->qh.qh_hlink = htole32(lsqh->physaddr | UHCI_PTR_QH);
bsqh->elink = NULL;
bsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_bulk_start = sc->sc_bulk_end = bsqh;
usb_syncmem(&bsqh->dma, bsqh->offs, sizeof(bsqh->qh),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate dummy QH where high speed control traffic will be queued. */
chsqh = uhci_alloc_sqh(sc);
if (chsqh == NULL)
goto fail3;
chsqh->hlink = bsqh;
chsqh->qh.qh_hlink = htole32(bsqh->physaddr | UHCI_PTR_QH);
chsqh->elink = NULL;
chsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_hctl_start = sc->sc_hctl_end = chsqh;
usb_syncmem(&chsqh->dma, chsqh->offs, sizeof(chsqh->qh),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/* Allocate dummy QH where control traffic will be queued. */
clsqh = uhci_alloc_sqh(sc);
if (clsqh == NULL)
goto fail4;
clsqh->hlink = chsqh;
clsqh->qh.qh_hlink = htole32(chsqh->physaddr | UHCI_PTR_QH);
clsqh->elink = NULL;
clsqh->qh.qh_elink = htole32(UHCI_PTR_T);
sc->sc_lctl_start = sc->sc_lctl_end = clsqh;
usb_syncmem(&clsqh->dma, clsqh->offs, sizeof(clsqh->qh),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
/*
* Make all (virtual) frame list pointers point to the interrupt
* queue heads and the interrupt queue heads at the control
* queue head and point the physical frame list to the virtual.
*/
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
sqh = uhci_alloc_sqh(sc);
if (std == NULL || sqh == NULL)
return USBD_NOMEM;
std->link.sqh = sqh;
std->td.td_link = htole32(sqh->physaddr | UHCI_PTR_QH);
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(0);
std->td.td_buffer = htole32(0);
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sqh->hlink = clsqh;
sqh->qh.qh_hlink = htole32(clsqh->physaddr | UHCI_PTR_QH);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sc->sc_vframes[i].htd = std;
sc->sc_vframes[i].etd = std;
sc->sc_vframes[i].hqh = sqh;
sc->sc_vframes[i].eqh = sqh;
for (j = i;
j < UHCI_FRAMELIST_COUNT;
j += UHCI_VFRAMELIST_COUNT)
sc->sc_pframes[j] = htole32(std->physaddr);
}
usb_syncmem(&sc->sc_dma, 0,
UHCI_FRAMELIST_COUNT * sizeof(uhci_physaddr_t),
BUS_DMASYNC_PREWRITE);
TAILQ_INIT(&sc->sc_intrhead);
sc->sc_xferpool = pool_cache_init(sizeof(struct uhci_xfer), 0, 0, 0,
"uhcixfer", NULL, IPL_USB, NULL, NULL, NULL);
callout_init(&sc->sc_poll_handle, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_poll_handle, uhci_poll_hub, sc);
/* Set up the bus struct. */
sc->sc_bus.ub_methods = &uhci_bus_methods;
sc->sc_bus.ub_pipesize = sizeof(struct uhci_pipe);
sc->sc_bus.ub_usedma = true;
sc->sc_bus.ub_dmaflags = USBMALLOC_MULTISEG;
UHCICMD(sc, UHCI_CMD_MAXP); /* Assume 64 byte packets at frame end */
DPRINTF("Enabling...", 0, 0, 0, 0);
err = uhci_run(sc, 1, 0); /* and here we go... */
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE | UHCI_INTR_RIE |
UHCI_INTR_IOCE | UHCI_INTR_SPIE); /* enable interrupts */
return err;
fail4:
uhci_free_sqh(sc, chsqh);
fail3:
uhci_free_sqh(sc, lsqh);
fail2:
uhci_free_sqh(sc, lsqh);
fail1:
uhci_free_std(sc, std);
return ENOMEM;
}
int
uhci_activate(device_t self, enum devact act)
{
struct uhci_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
void
uhci_childdet(device_t self, device_t child)
{
struct uhci_softc *sc = device_private(self);
KASSERT(sc->sc_child == child);
sc->sc_child = NULL;
}
int
uhci_detach(struct uhci_softc *sc, int flags)
{
int rv = 0;
if (sc->sc_child != NULL)
rv = config_detach(sc->sc_child, flags);
if (rv != 0)
return rv;
callout_halt(&sc->sc_poll_handle, NULL);
callout_destroy(&sc->sc_poll_handle);
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
pool_cache_destroy(sc->sc_xferpool);
/* XXX free other data structures XXX */
return rv;
}
struct usbd_xfer *
uhci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
struct uhci_softc *sc = UHCI_BUS2SC(bus);
struct usbd_xfer *xfer;
xfer = pool_cache_get(sc->sc_xferpool, PR_WAITOK);
if (xfer != NULL) {
memset(xfer, 0, sizeof(struct uhci_xfer));
#ifdef DIAGNOSTIC
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
uxfer->ux_isdone = true;
xfer->ux_state = XFER_BUSY;
#endif
}
return xfer;
}
void
uhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
struct uhci_softc *sc = UHCI_BUS2SC(bus);
struct uhci_xfer *uxfer __diagused = UHCI_XFER2UXFER(xfer);
KASSERTMSG(xfer->ux_state == XFER_BUSY ||
xfer->ux_status == USBD_NOT_STARTED,
"xfer %p state %d\n", xfer, xfer->ux_state);
KASSERTMSG(uxfer->ux_isdone || xfer->ux_status == USBD_NOT_STARTED,
"xfer %p not done\n", xfer);
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_FREE;
#endif
pool_cache_put(sc->sc_xferpool, xfer);
}
Static bool
uhci_dying(struct usbd_bus *bus)
{
struct uhci_softc *sc = UHCI_BUS2SC(bus);
return sc->sc_dying;
}
Static void
uhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
struct uhci_softc *sc = UHCI_BUS2SC(bus);
*lock = &sc->sc_lock;
}
/*
* Handle suspend/resume.
*
* We need to switch to polling mode here, because this routine is
* called from an interrupt context. This is all right since we
* are almost suspended anyway.
*/
bool
uhci_resume(device_t dv, const pmf_qual_t *qual)
{
uhci_softc_t *sc = device_private(dv);
int cmd;
mutex_spin_enter(&sc->sc_intr_lock);
cmd = UREAD2(sc, UHCI_CMD);
sc->sc_bus.ub_usepolling++;
UWRITE2(sc, UHCI_INTR, 0);
uhci_globalreset(sc);
uhci_reset(sc);
if (cmd & UHCI_CMD_RS)
uhci_run(sc, 0, 1);
/* restore saved state */
UWRITE4(sc, UHCI_FLBASEADDR, DMAADDR(&sc->sc_dma, 0));
UWRITE2(sc, UHCI_FRNUM, sc->sc_saved_frnum);
UWRITE1(sc, UHCI_SOF, sc->sc_saved_sof);
UHCICMD(sc, cmd | UHCI_CMD_FGR); /* force resume */
usb_delay_ms_locked(&sc->sc_bus, USB_RESUME_DELAY, &sc->sc_intr_lock);
UHCICMD(sc, cmd & ~UHCI_CMD_EGSM); /* back to normal */
UWRITE2(sc, UHCI_INTR, UHCI_INTR_TOCRCIE |
UHCI_INTR_RIE | UHCI_INTR_IOCE | UHCI_INTR_SPIE);
UHCICMD(sc, UHCI_CMD_MAXP);
uhci_run(sc, 1, 1); /* and start traffic again */
usb_delay_ms_locked(&sc->sc_bus, USB_RESUME_RECOVERY, &sc->sc_intr_lock);
sc->sc_bus.ub_usepolling--;
if (sc->sc_intr_xfer != NULL)
callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
#ifdef UHCI_DEBUG
if (uhcidebug >= 2)
uhci_dumpregs(sc);
#endif
sc->sc_suspend = PWR_RESUME;
mutex_spin_exit(&sc->sc_intr_lock);
return true;
}
bool
uhci_suspend(device_t dv, const pmf_qual_t *qual)
{
uhci_softc_t *sc = device_private(dv);
int cmd;
mutex_spin_enter(&sc->sc_intr_lock);
cmd = UREAD2(sc, UHCI_CMD);
#ifdef UHCI_DEBUG
if (uhcidebug >= 2)
uhci_dumpregs(sc);
#endif
sc->sc_suspend = PWR_SUSPEND;
if (sc->sc_intr_xfer != NULL)
callout_halt(&sc->sc_poll_handle, &sc->sc_intr_lock);
sc->sc_bus.ub_usepolling++;
uhci_run(sc, 0, 1); /* stop the controller */
cmd &= ~UHCI_CMD_RS;
/* save some state if BIOS doesn't */
sc->sc_saved_frnum = UREAD2(sc, UHCI_FRNUM);
sc->sc_saved_sof = UREAD1(sc, UHCI_SOF);
UWRITE2(sc, UHCI_INTR, 0); /* disable intrs */
UHCICMD(sc, cmd | UHCI_CMD_EGSM); /* enter suspend */
usb_delay_ms_locked(&sc->sc_bus, USB_RESUME_WAIT, &sc->sc_intr_lock);
sc->sc_bus.ub_usepolling--;
mutex_spin_exit(&sc->sc_intr_lock);
return true;
}
#ifdef UHCI_DEBUG
Static void
uhci_dumpregs(uhci_softc_t *sc)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTF("cmd =%04jx sts =%04jx intr =%04jx frnum =%04jx",
UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS),
UREAD2(sc, UHCI_INTR), UREAD2(sc, UHCI_FRNUM));
DPRINTF("sof =%04jx portsc1=%04jx portsc2=%04jx flbase=%08jx",
UREAD1(sc, UHCI_SOF), UREAD2(sc, UHCI_PORTSC1),
UREAD2(sc, UHCI_PORTSC2), UREAD4(sc, UHCI_FLBASEADDR));
}
void
uhci_dump_td(uhci_soft_td_t *p)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
usb_syncmem(&p->dma, p->offs, sizeof(p->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
DPRINTF("TD(%#jx) at 0x%08jx", (uintptr_t)p, p->physaddr, 0, 0);
DPRINTF(" link=0x%08jx status=0x%08jx "
"token=0x%08x buffer=0x%08x",
le32toh(p->td.td_link),
le32toh(p->td.td_status),
le32toh(p->td.td_token),
le32toh(p->td.td_buffer));
DPRINTF("bitstuff=%jd crcto =%jd nak =%jd babble =%jd",
!!(le32toh(p->td.td_status) & UHCI_TD_BITSTUFF),
!!(le32toh(p->td.td_status) & UHCI_TD_CRCTO),
!!(le32toh(p->td.td_status) & UHCI_TD_NAK),
!!(le32toh(p->td.td_status) & UHCI_TD_BABBLE));
DPRINTF("dbuffer =%jd stalled =%jd active =%jd ioc =%jd",
!!(le32toh(p->td.td_status) & UHCI_TD_DBUFFER),
!!(le32toh(p->td.td_status) & UHCI_TD_STALLED),
!!(le32toh(p->td.td_status) & UHCI_TD_ACTIVE),
!!(le32toh(p->td.td_status) & UHCI_TD_IOC));
DPRINTF("ios =%jd ls =%jd spd =%jd",
!!(le32toh(p->td.td_status) & UHCI_TD_IOS),
!!(le32toh(p->td.td_status) & UHCI_TD_LS),
!!(le32toh(p->td.td_status) & UHCI_TD_SPD), 0);
DPRINTF("errcnt =%d actlen =%d pid=%02x",
UHCI_TD_GET_ERRCNT(le32toh(p->td.td_status)),
UHCI_TD_GET_ACTLEN(le32toh(p->td.td_status)),
UHCI_TD_GET_PID(le32toh(p->td.td_token)), 0);
DPRINTF("addr=%jd endpt=%jd D=%jd maxlen=%jd,",
UHCI_TD_GET_DEVADDR(le32toh(p->td.td_token)),
UHCI_TD_GET_ENDPT(le32toh(p->td.td_token)),
UHCI_TD_GET_DT(le32toh(p->td.td_token)),
UHCI_TD_GET_MAXLEN(le32toh(p->td.td_token)));
}
void
uhci_dump_qh(uhci_soft_qh_t *sqh)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
DPRINTF("QH(%#jx) at 0x%08jx: hlink=%08jx elink=%08jx", (uintptr_t)sqh,
(int)sqh->physaddr, le32toh(sqh->qh.qh_hlink),
le32toh(sqh->qh.qh_elink));
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD);
}
#if 1
void
uhci_dump(void)
{
uhci_dump_all(thesc);
}
#endif
void
uhci_dump_all(uhci_softc_t *sc)
{
uhci_dumpregs(sc);
/*printf("framelist[i].link = %08x\n", sc->sc_framelist[0].link);*/
uhci_dump_qhs(sc->sc_lctl_start);
}
void
uhci_dump_qhs(uhci_soft_qh_t *sqh)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
uhci_dump_qh(sqh);
/*
* uhci_dump_qhs displays all the QHs and TDs from the given QH onwards
* Traverses sideways first, then down.
*
* QH1
* QH2
* No QH
* TD2.1
* TD2.2
* TD1.1
* etc.
*
* TD2.x being the TDs queued at QH2 and QH1 being referenced from QH1.
*/
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
if (sqh->hlink != NULL && !(le32toh(sqh->qh.qh_hlink) & UHCI_PTR_T))
uhci_dump_qhs(sqh->hlink);
else
DPRINTF("No QH", 0, 0, 0, 0);
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh), BUS_DMASYNC_PREREAD);
if (sqh->elink != NULL && !(le32toh(sqh->qh.qh_elink) & UHCI_PTR_T))
uhci_dump_tds(sqh->elink);
else
DPRINTF("No QH", 0, 0, 0, 0);
}
void
uhci_dump_tds(uhci_soft_td_t *std)
{
uhci_soft_td_t *td;
int stop;
for (td = std; td != NULL; td = td->link.std) {
uhci_dump_td(td);
/*
* Check whether the link pointer in this TD marks
* the link pointer as end of queue. This avoids
* printing the free list in case the queue/TD has
* already been moved there (seatbelt).
*/
usb_syncmem(&td->dma, td->offs + offsetof(uhci_td_t, td_link),
sizeof(td->td.td_link),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
stop = (le32toh(td->td.td_link) & UHCI_PTR_T ||
le32toh(td->td.td_link) == 0);
usb_syncmem(&td->dma, td->offs + offsetof(uhci_td_t, td_link),
sizeof(td->td.td_link), BUS_DMASYNC_PREREAD);
if (stop)
break;
}
}
Static void
uhci_dump_ii(struct uhci_xfer *ux)
{
struct usbd_pipe *pipe;
usb_endpoint_descriptor_t *ed;
struct usbd_device *dev;
if (ux == NULL) {
printf("ux NULL\n");
return;
}
pipe = ux->ux_xfer.ux_pipe;
if (pipe == NULL) {
printf("ux %p: done=%d pipe=NULL\n", ux, ux->ux_isdone);
return;
}
if (pipe->up_endpoint == NULL) {
printf("ux %p: done=%d pipe=%p pipe->up_endpoint=NULL\n",
ux, ux->ux_isdone, pipe);
return;
}
if (pipe->up_dev == NULL) {
printf("ux %p: done=%d pipe=%p pipe->up_dev=NULL\n",
ux, ux->ux_isdone, pipe);
return;
}
ed = pipe->up_endpoint->ue_edesc;
dev = pipe->up_dev;
printf("ux %p: done=%d dev=%p vid=0x%04x pid=0x%04x addr=%d pipe=%p ep=0x%02x attr=0x%02x\n",
ux, ux->ux_isdone, dev,
UGETW(dev->ud_ddesc.idVendor),
UGETW(dev->ud_ddesc.idProduct),
dev->ud_addr, pipe,
ed->bEndpointAddress, ed->bmAttributes);
}
void uhci_dump_iis(struct uhci_softc *sc);
void
uhci_dump_iis(struct uhci_softc *sc)
{
struct uhci_xfer *ux;
printf("interrupt list:\n");
TAILQ_FOREACH(ux, &sc->sc_intrhead, ux_list)
uhci_dump_ii(ux);
}
void iidump(void);
void iidump(void) { uhci_dump_iis(thesc); }
#endif
/*
* This routine is executed periodically and simulates interrupts
* from the root controller interrupt pipe for port status change.
*/
void
uhci_poll_hub(void *addr)
{
struct uhci_softc *sc = addr;
struct usbd_xfer *xfer;
u_char *p;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
/*
* If the intr xfer has completed or been synchronously
* aborted, we have nothing to do.
*/
xfer = sc->sc_intr_xfer;
if (xfer == NULL)
goto out;
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
/*
* If the intr xfer for which we were scheduled is done, and
* another intr xfer has been submitted, let that one be dealt
* with when the callout fires again.
*
* The call to callout_pending is racy, but the the transition
* from pending to invoking happens atomically. The
* callout_ack ensures callout_invoking does not return true
* due to this invocation of the callout; the lock ensures the
* next invocation of the callout cannot callout_ack (unless it
* had already run to completion and nulled sc->sc_intr_xfer,
* in which case would have bailed out already).
*/
callout_ack(&sc->sc_poll_handle);
if (callout_pending(&sc->sc_poll_handle) ||
callout_invoking(&sc->sc_poll_handle))
goto out;
/*
* Check flags for the two interrupt ports, and set them in the
* buffer if an interrupt arrived; otherwise arrange .
*/
p = xfer->ux_buf;
p[0] = 0;
if (UREAD2(sc, UHCI_PORTSC1) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<1;
if (UREAD2(sc, UHCI_PORTSC2) & (UHCI_PORTSC_CSC|UHCI_PORTSC_OCIC))
p[0] |= 1<<2;
if (p[0] == 0) {
/*
* No change -- try again in a while, unless we're
* suspending, in which case we'll try again after
* resume.
*/
if (sc->sc_suspend != PWR_SUSPEND)
callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
goto out;
}
/*
* Interrupt completed, and the xfer has not been completed or
* synchronously aborted. Complete the xfer now.
*/
xfer->ux_actlen = 1;
xfer->ux_status = USBD_NORMAL_COMPLETION;
#ifdef DIAGNOSTIC
UHCI_XFER2UXFER(xfer)->ux_isdone = true;
#endif
usb_transfer_complete(xfer);
out: mutex_exit(&sc->sc_lock);
}
void
uhci_root_intr_done(struct usbd_xfer *xfer)
{
struct uhci_softc *sc = UHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
/* Claim the xfer so it doesn't get completed again. */
KASSERT(sc->sc_intr_xfer == xfer);
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
sc->sc_intr_xfer = NULL;
}
/*
* Let the last QH loop back to the high speed control transfer QH.
* This is what intel calls "bandwidth reclamation" and improves
* USB performance a lot for some devices.
* If we are already looping, just count it.
*/
void
uhci_add_loop(uhci_softc_t *sc)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
#ifdef UHCI_DEBUG
if (uhcinoloop)
return;
#endif
if (++sc->sc_loops == 1) {
DPRINTFN(5, "add loop", 0, 0, 0, 0);
/* Note, we don't loop back the soft pointer. */
sc->sc_last_qh->qh.qh_hlink =
htole32(sc->sc_hctl_start->physaddr | UHCI_PTR_QH);
usb_syncmem(&sc->sc_last_qh->dma,
sc->sc_last_qh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sc->sc_last_qh->qh.qh_hlink),
BUS_DMASYNC_PREWRITE);
}
}
void
uhci_rem_loop(uhci_softc_t *sc)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
#ifdef UHCI_DEBUG
if (uhcinoloop)
return;
#endif
if (--sc->sc_loops == 0) {
DPRINTFN(5, "remove loop", 0, 0, 0, 0);
sc->sc_last_qh->qh.qh_hlink = htole32(UHCI_PTR_T);
usb_syncmem(&sc->sc_last_qh->dma,
sc->sc_last_qh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sc->sc_last_qh->qh.qh_hlink),
BUS_DMASYNC_PREWRITE);
}
}
/* Add high speed control QH, called with lock held. */
void
uhci_add_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
eqh = sc->sc_hctl_end;
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink),
BUS_DMASYNC_POSTWRITE);
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_PREWRITE);
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
sc->sc_hctl_end = sqh;
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
#ifdef UHCI_CTL_LOOP
uhci_add_loop(sc);
#endif
}
/* Remove high speed control QH, called with lock held. */
void
uhci_remove_hs_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
uint32_t elink;
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
#ifdef UHCI_CTL_LOOP
uhci_rem_loop(sc);
#endif
/*
* The T bit should be set in the elink of the QH so that the HC
* doesn't follow the pointer. This condition may fail if the
* the transferred packet was short so that the QH still points
* at the last used TD.
* In this case we set the T bit and wait a little for the HC
* to stop looking at the TD.
* Note that if the TD chain is large enough, the controller
* may still be looking at the chain at the end of this function.
* uhci_free_std_chain() will make sure the controller stops
* looking at it quickly, but until then we should not change
* sqh->hlink.
*/
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
elink = le32toh(sqh->qh.qh_elink);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink), BUS_DMASYNC_PREREAD);
if (!(elink & UHCI_PTR_T)) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_hctl_start, sqh);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(pqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_hctl_end == sqh)
sc->sc_hctl_end = pqh;
}
/* Add low speed control QH, called with lock held. */
void
uhci_add_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
KASSERT(mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
eqh = sc->sc_lctl_end;
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_PREWRITE);
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
sc->sc_lctl_end = sqh;
}
/* Remove low speed control QH, called with lock held. */
void
uhci_remove_ls_ctrl(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
uint32_t elink;
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
/* See comment in uhci_remove_hs_ctrl() */
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
elink = le32toh(sqh->qh.qh_elink);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink), BUS_DMASYNC_PREREAD);
if (!(elink & UHCI_PTR_T)) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_lctl_start, sqh);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(pqh->qh.qh_hlink),
BUS_DMASYNC_PREWRITE);
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_lctl_end == sqh)
sc->sc_lctl_end = pqh;
}
/* Add bulk QH, called with lock held. */
void
uhci_add_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *eqh;
KASSERT(mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
eqh = sc->sc_bulk_end;
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_PREWRITE);
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
sc->sc_bulk_end = sqh;
uhci_add_loop(sc);
}
/* Remove bulk QH, called with lock held. */
void
uhci_remove_bulk(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
uhci_soft_qh_t *pqh;
KASSERT(mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(10, "sqh %#jx", (uintptr_t)sqh, 0, 0, 0);
uhci_rem_loop(sc);
/* See comment in uhci_remove_hs_ctrl() */
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(sc->sc_bulk_start, sqh);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(pqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
delay(UHCI_QH_REMOVE_DELAY);
if (sc->sc_bulk_end == sqh)
sc->sc_bulk_end = pqh;
}
Static int uhci_intr1(uhci_softc_t *);
int
uhci_intr(void *arg)
{
uhci_softc_t *sc = arg;
int ret = 0;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
mutex_spin_enter(&sc->sc_intr_lock);
if (sc->sc_dying || !device_has_power(sc->sc_dev))
goto done;
if (sc->sc_bus.ub_usepolling || UREAD2(sc, UHCI_INTR) == 0) {
DPRINTFN(16, "ignored interrupt while polling", 0, 0, 0, 0);
goto done;
}
ret = uhci_intr1(sc);
done:
mutex_spin_exit(&sc->sc_intr_lock);
return ret;
}
int
uhci_intr1(uhci_softc_t *sc)
{
int status;
int ack;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
#ifdef UHCI_DEBUG
if (uhcidebug >= 15) {
DPRINTF("sc %#jx", (uintptr_t)sc, 0, 0, 0);
uhci_dumpregs(sc);
}
#endif
KASSERT(mutex_owned(&sc->sc_intr_lock));
status = UREAD2(sc, UHCI_STS) & UHCI_STS_ALLINTRS;
/* Check if the interrupt was for us. */
if (status == 0)
return 0;
if (sc->sc_suspend != PWR_RESUME) {
#ifdef DIAGNOSTIC
printf("%s: interrupt while not operating ignored\n",
device_xname(sc->sc_dev));
#endif
UWRITE2(sc, UHCI_STS, status); /* acknowledge the ints */
return 0;
}
ack = 0;
if (status & UHCI_STS_USBINT)
ack |= UHCI_STS_USBINT;
if (status & UHCI_STS_USBEI)
ack |= UHCI_STS_USBEI;
if (status & UHCI_STS_RD) {
ack |= UHCI_STS_RD;
#ifdef UHCI_DEBUG
printf("%s: resume detect\n", device_xname(sc->sc_dev));
#endif
}
if (status & UHCI_STS_HSE) {
ack |= UHCI_STS_HSE;
printf("%s: host system error\n", device_xname(sc->sc_dev));
}
if (status & UHCI_STS_HCPE) {
ack |= UHCI_STS_HCPE;
printf("%s: host controller process error\n",
device_xname(sc->sc_dev));
}
/* When HCHalted=1 and Run/Stop=0 , it is normal */
if ((status & UHCI_STS_HCH) && (UREAD2(sc, UHCI_CMD) & UHCI_CMD_RS)) {
/* no acknowledge needed */
if (!sc->sc_dying) {
printf("%s: host controller halted\n",
device_xname(sc->sc_dev));
#ifdef UHCI_DEBUG
uhci_dump_all(sc);
#endif
}
sc->sc_dying = 1;
}
if (!ack)
return 0; /* nothing to acknowledge */
UWRITE2(sc, UHCI_STS, ack); /* acknowledge the ints */
usb_schedsoftintr(&sc->sc_bus);
DPRINTFN(15, "sc %#jx done", (uintptr_t)sc, 0, 0, 0);
return 1;
}
void
uhci_softintr(void *v)
{
struct usbd_bus *bus = v;
uhci_softc_t *sc = UHCI_BUS2SC(bus);
struct uhci_xfer *ux, *nextux;
ux_completeq_t cq;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTF("sc %#jx", (uintptr_t)sc, 0, 0, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
TAILQ_INIT(&cq);
/*
* Interrupts on UHCI really suck. When the host controller
* interrupts because a transfer is completed there is no
* way of knowing which transfer it was. You can scan down
* the TDs and QHs of the previous frame to limit the search,
* but that assumes that the interrupt was not delayed by more
* than 1 ms, which may not always be true (e.g. after debug
* output on a slow console).
* We scan all interrupt descriptors to see if any have
* completed.
*/
TAILQ_FOREACH_SAFE(ux, &sc->sc_intrhead, ux_list, nextux) {
uhci_check_intr(sc, ux, &cq);
}
/*
* We abuse ux_list for the interrupt and complete lists and
* interrupt transfers will get re-added here so use
* the _SAFE version of TAILQ_FOREACH.
*/
TAILQ_FOREACH_SAFE(ux, &cq, ux_list, nextux) {
DPRINTF("ux %#jx", (uintptr_t)ux, 0, 0, 0);
usb_transfer_complete(&ux->ux_xfer);
}
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
}
/* Check for an interrupt. */
void
uhci_check_intr(uhci_softc_t *sc, struct uhci_xfer *ux, ux_completeq_t *cqp)
{
uhci_soft_td_t *std, *fstd = NULL, *lstd = NULL;
uint32_t status;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(15, "ux %#jx", (uintptr_t)ux, 0, 0, 0);
KASSERT(ux != NULL);
struct usbd_xfer *xfer = &ux->ux_xfer;
if (xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT) {
DPRINTF("aborted xfer %#jx", (uintptr_t)xfer, 0, 0, 0);
return;
}
switch (ux->ux_type) {
case UX_CTRL:
fstd = ux->ux_setup;
lstd = ux->ux_stat;
break;
case UX_BULK:
case UX_INTR:
case UX_ISOC:
fstd = ux->ux_stdstart;
lstd = ux->ux_stdend;
break;
default:
KASSERT(false);
break;
}
if (fstd == NULL)
return;
KASSERT(lstd != NULL);
usb_syncmem(&lstd->dma,
lstd->offs + offsetof(uhci_td_t, td_status),
sizeof(lstd->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
status = le32toh(lstd->td.td_status);
usb_syncmem(&lstd->dma,
lstd->offs + offsetof(uhci_td_t, td_status),
sizeof(lstd->td.td_status),
BUS_DMASYNC_PREREAD);
/* If the last TD is not marked active we can complete */
if (!(status & UHCI_TD_ACTIVE)) {
done:
DPRINTFN(12, "ux=%#jx done", (uintptr_t)ux, 0, 0, 0);
uhci_idone(ux, cqp);
return;
}
/*
* If the last TD is still active we need to check whether there
* is an error somewhere in the middle, or whether there was a
* short packet (SPD and not ACTIVE).
*/
DPRINTFN(12, "active ux=%#jx", (uintptr_t)ux, 0, 0, 0);
for (std = fstd; std != lstd; std = std->link.std) {
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
status = le32toh(std->td.td_status);
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status), BUS_DMASYNC_PREREAD);
/* If there's an active TD the xfer isn't done. */
if (status & UHCI_TD_ACTIVE) {
DPRINTFN(12, "ux=%#jx std=%#jx still active",
(uintptr_t)ux, (uintptr_t)std, 0, 0);
return;
}
/* Any kind of error makes the xfer done. */
if (status & UHCI_TD_STALLED)
goto done;
/*
* If the data phase of a control transfer is short, we need
* to complete the status stage
*/
if ((status & UHCI_TD_SPD) && ux->ux_type == UX_CTRL) {
struct uhci_pipe *upipe =
UHCI_PIPE2UPIPE(xfer->ux_pipe);
uhci_soft_qh_t *sqh = upipe->ctrl.sqh;
uhci_soft_td_t *stat = upipe->ctrl.stat;
DPRINTFN(12, "ux=%#jx std=%#jx control status"
"phase needs completion", (uintptr_t)ux,
(uintptr_t)ux->ux_stdstart, 0, 0);
sqh->qh.qh_elink =
htole32(stat->physaddr | UHCI_PTR_TD);
usb_syncmem(&sqh->dma, sqh->offs, sizeof(sqh->qh),
BUS_DMASYNC_PREWRITE);
break;
}
/* We want short packets, and it is short: it's done */
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_token),
sizeof(std->td.td_token),
BUS_DMASYNC_POSTWRITE);
if ((status & UHCI_TD_SPD) &&
UHCI_TD_GET_ACTLEN(status) <
UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token))) {
goto done;
}
}
}
/* Called with USB lock held. */
void
uhci_idone(struct uhci_xfer *ux, ux_completeq_t *cqp)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
struct usbd_xfer *xfer = &ux->ux_xfer;
uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
uhci_soft_td_t *std;
uint32_t status = 0, nstatus;
const bool polling __diagused = sc->sc_bus.ub_usepolling;
int actlen;
KASSERT(polling || mutex_owned(&sc->sc_lock));
DPRINTFN(12, "ux=%#jx", (uintptr_t)ux, 0, 0, 0);
/*
* Try to claim this xfer for completion. If it has already
* completed or aborted, drop it on the floor.
*/
if (!usbd_xfer_trycomplete(xfer))
return;
#ifdef DIAGNOSTIC
#ifdef UHCI_DEBUG
if (ux->ux_isdone) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_ii(ux);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
KASSERT(!ux->ux_isdone);
KASSERTMSG(!ux->ux_isdone, "xfer %p type %d status %d", xfer,
ux->ux_type, xfer->ux_status);
ux->ux_isdone = true;
#endif
if (xfer->ux_nframes != 0) {
/* Isoc transfer, do things differently. */
uhci_soft_td_t **stds = upipe->isoc.stds;
int i, n, nframes, len;
DPRINTFN(5, "ux=%#jx isoc ready", (uintptr_t)ux, 0, 0, 0);
nframes = xfer->ux_nframes;
actlen = 0;
n = ux->ux_curframe;
for (i = 0; i < nframes; i++) {
std = stds[n];
#ifdef UHCI_DEBUG
if (uhcidebug >= 5) {
DPRINTF("isoc TD %jd", i, 0, 0, 0);
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_td(std);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
status = le32toh(std->td.td_status);
len = UHCI_TD_GET_ACTLEN(status);
xfer->ux_frlengths[i] = len;
actlen += len;
}
upipe->isoc.inuse -= nframes;
xfer->ux_actlen = actlen;
xfer->ux_status = USBD_NORMAL_COMPLETION;
goto end;
}
#ifdef UHCI_DEBUG
DPRINTFN(10, "ux=%#jx, xfer=%#jx, pipe=%#jx ready", (uintptr_t)ux,
(uintptr_t)xfer, (uintptr_t)upipe, 0);
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_tds(ux->ux_stdstart);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
/* The transfer is done, compute actual length and status. */
actlen = 0;
for (std = ux->ux_stdstart; std != NULL; std = std->link.std) {
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
nstatus = le32toh(std->td.td_status);
if (nstatus & UHCI_TD_ACTIVE)
break;
status = nstatus;
if (UHCI_TD_GET_PID(le32toh(std->td.td_token)) !=
UHCI_TD_PID_SETUP)
actlen += UHCI_TD_GET_ACTLEN(status);
else {
/*
* UHCI will report CRCTO in addition to a STALL or NAK
* for a SETUP transaction. See section 3.2.2, "TD
* CONTROL AND STATUS".
*/
if (status & (UHCI_TD_STALLED | UHCI_TD_NAK))
status &= ~UHCI_TD_CRCTO;
}
}
/* If there are left over TDs we need to update the toggle. */
if (std != NULL)
upipe->nexttoggle = UHCI_TD_GET_DT(le32toh(std->td.td_token));
status &= UHCI_TD_ERROR;
DPRINTFN(10, "actlen=%jd, status=%#jx", actlen, status, 0, 0);
xfer->ux_actlen = actlen;
if (status != 0) {
DPRINTFN((status == UHCI_TD_STALLED) * 10,
"error, addr=%jd, endpt=0x%02jx",
xfer->ux_pipe->up_dev->ud_addr,
xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress,
0, 0);
DPRINTFN((status == UHCI_TD_STALLED) * 10,
"bitstuff=%jd crcto =%jd nak =%jd babble =%jd",
!!(status & UHCI_TD_BITSTUFF),
!!(status & UHCI_TD_CRCTO),
!!(status & UHCI_TD_NAK),
!!(status & UHCI_TD_BABBLE));
DPRINTFN((status == UHCI_TD_STALLED) * 10,
"dbuffer =%jd stalled =%jd active =%jd",
!!(status & UHCI_TD_DBUFFER),
!!(status & UHCI_TD_STALLED),
!!(status & UHCI_TD_ACTIVE),
0);
if (status == UHCI_TD_STALLED)
xfer->ux_status = USBD_STALLED;
else
xfer->ux_status = USBD_IOERROR; /* more info XXX */
} else {
xfer->ux_status = USBD_NORMAL_COMPLETION;
}
end:
uhci_del_intr_list(sc, ux);
if (cqp)
TAILQ_INSERT_TAIL(cqp, ux, ux_list);
KASSERT(polling || mutex_owned(&sc->sc_lock));
DPRINTFN(12, "ux=%#jx done", (uintptr_t)ux, 0, 0, 0);
}
void
uhci_poll(struct usbd_bus *bus)
{
uhci_softc_t *sc = UHCI_BUS2SC(bus);
if (UREAD2(sc, UHCI_STS) & UHCI_STS_USBINT) {
mutex_spin_enter(&sc->sc_intr_lock);
uhci_intr1(sc);
mutex_spin_exit(&sc->sc_intr_lock);
}
}
void
uhci_reset(uhci_softc_t *sc)
{
int n;
UHCICMD(sc, UHCI_CMD_HCRESET);
/* The reset bit goes low when the controller is done. */
for (n = 0; n < UHCI_RESET_TIMEOUT &&
(UREAD2(sc, UHCI_CMD) & UHCI_CMD_HCRESET); n++)
usb_delay_ms(&sc->sc_bus, 1);
if (n >= UHCI_RESET_TIMEOUT)
printf("%s: controller did not reset\n",
device_xname(sc->sc_dev));
}
usbd_status
uhci_run(uhci_softc_t *sc, int run, int locked)
{
int n, running;
uint16_t cmd;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
run = run != 0;
if (!locked)
mutex_spin_enter(&sc->sc_intr_lock);
DPRINTF("setting run=%jd", run, 0, 0, 0);
cmd = UREAD2(sc, UHCI_CMD);
if (run)
cmd |= UHCI_CMD_RS;
else
cmd &= ~UHCI_CMD_RS;
UHCICMD(sc, cmd);
for (n = 0; n < 10; n++) {
running = !(UREAD2(sc, UHCI_STS) & UHCI_STS_HCH);
/* return when we've entered the state we want */
if (run == running) {
if (!locked)
mutex_spin_exit(&sc->sc_intr_lock);
DPRINTF("done cmd=%#jx sts=%#jx",
UREAD2(sc, UHCI_CMD), UREAD2(sc, UHCI_STS), 0, 0);
return USBD_NORMAL_COMPLETION;
}
usb_delay_ms_locked(&sc->sc_bus, 1, &sc->sc_intr_lock);
}
if (!locked)
mutex_spin_exit(&sc->sc_intr_lock);
printf("%s: cannot %s\n", device_xname(sc->sc_dev),
run ? "start" : "stop");
return USBD_IOERROR;
}
/*
* Memory management routines.
* uhci_alloc_std allocates TDs
* uhci_alloc_sqh allocates QHs
* These two routines do their own free list management,
* partly for speed, partly because allocating DMAable memory
* has page size granularity so much memory would be wasted if
* only one TD/QH (32 bytes) was placed in each allocated chunk.
*/
uhci_soft_td_t *
uhci_alloc_std(uhci_softc_t *sc)
{
uhci_soft_td_t *std;
usbd_status err;
int i, offs;
usb_dma_t dma;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
if (sc->sc_freetds == NULL) {
DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
err = usb_allocmem(&sc->sc_bus, UHCI_STD_SIZE * UHCI_STD_CHUNK,
UHCI_TD_ALIGN, USBMALLOC_COHERENT, &dma);
if (err)
return NULL;
mutex_enter(&sc->sc_lock);
for (i = 0; i < UHCI_STD_CHUNK; i++) {
offs = i * UHCI_STD_SIZE;
std = KERNADDR(&dma, offs);
std->physaddr = DMAADDR(&dma, offs);
std->dma = dma;
std->offs = offs;
std->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
}
std = sc->sc_freetds;
sc->sc_freetds = std->link.std;
mutex_exit(&sc->sc_lock);
memset(&std->td, 0, sizeof(uhci_td_t));
return std;
}
#define TD_IS_FREE 0x12345678
void
uhci_free_std_locked(uhci_softc_t *sc, uhci_soft_td_t *std)
{
KASSERT(mutex_owned(&sc->sc_lock));
#ifdef DIAGNOSTIC
if (le32toh(std->td.td_token) == TD_IS_FREE) {
printf("%s: freeing free TD %p\n", __func__, std);
return;
}
std->td.td_token = htole32(TD_IS_FREE);
#endif
std->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
void
uhci_free_std(uhci_softc_t *sc, uhci_soft_td_t *std)
{
mutex_enter(&sc->sc_lock);
uhci_free_std_locked(sc, std);
mutex_exit(&sc->sc_lock);
}
uhci_soft_qh_t *
uhci_alloc_sqh(uhci_softc_t *sc)
{
uhci_soft_qh_t *sqh;
usbd_status err;
int i, offs;
usb_dma_t dma;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
mutex_enter(&sc->sc_lock);
if (sc->sc_freeqhs == NULL) {
DPRINTFN(2, "allocating chunk", 0, 0, 0, 0);
mutex_exit(&sc->sc_lock);
err = usb_allocmem(&sc->sc_bus, UHCI_SQH_SIZE * UHCI_SQH_CHUNK,
UHCI_QH_ALIGN, USBMALLOC_COHERENT, &dma);
if (err)
return NULL;
mutex_enter(&sc->sc_lock);
for (i = 0; i < UHCI_SQH_CHUNK; i++) {
offs = i * UHCI_SQH_SIZE;
sqh = KERNADDR(&dma, offs);
sqh->physaddr = DMAADDR(&dma, offs);
sqh->dma = dma;
sqh->offs = offs;
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
}
sqh = sc->sc_freeqhs;
sc->sc_freeqhs = sqh->hlink;
mutex_exit(&sc->sc_lock);
memset(&sqh->qh, 0, sizeof(uhci_qh_t));
return sqh;
}
void
uhci_free_sqh(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
KASSERT(mutex_owned(&sc->sc_lock));
sqh->hlink = sc->sc_freeqhs;
sc->sc_freeqhs = sqh;
}
#if 0
void
uhci_free_std_chain(uhci_softc_t *sc, uhci_soft_td_t *std,
uhci_soft_td_t *stdend)
{
uhci_soft_td_t *p;
uint32_t td_link;
/*
* to avoid race condition with the controller which may be looking
* at this chain, we need to first invalidate all links, and
* then wait for the controller to move to another queue
*/
for (p = std; p != stdend; p = p->link.std) {
usb_syncmem(&p->dma,
p->offs + offsetof(uhci_td_t, td_link),
sizeof(p->td.td_link),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
td_link = le32toh(p->td.td_link);
usb_syncmem(&p->dma,
p->offs + offsetof(uhci_td_t, td_link),
sizeof(p->td.td_link),
BUS_DMASYNC_PREREAD);
if ((td_link & UHCI_PTR_T) == 0) {
p->td.td_link = htole32(UHCI_PTR_T);
usb_syncmem(&p->dma,
p->offs + offsetof(uhci_td_t, td_link),
sizeof(p->td.td_link),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
}
delay(UHCI_QH_REMOVE_DELAY);
for (; std != stdend; std = p) {
p = std->link.std;
uhci_free_std(sc, std);
}
}
#endif
int
uhci_alloc_std_chain(uhci_softc_t *sc, struct usbd_xfer *xfer, int len,
int rd, uhci_soft_td_t **sp)
{
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
uint16_t flags = xfer->ux_flags;
uhci_soft_td_t *p;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(8, "xfer=%#jx pipe=%#jx", (uintptr_t)xfer,
(uintptr_t)xfer->ux_pipe, 0, 0);
ASSERT_SLEEPABLE();
KASSERT(sp);
int maxp = UGETW(xfer->ux_pipe->up_endpoint->ue_edesc->wMaxPacketSize);
if (maxp == 0) {
printf("%s: maxp=0\n", __func__);
return EINVAL;
}
size_t ntd = howmany(len, maxp);
/*
* if our transfer is bigger than PAGE_SIZE and maxp not a factor of
* PAGE_SIZE then we will need another TD per page.
*/
if (len > PAGE_SIZE && (PAGE_SIZE % maxp) != 0) {
ntd += howmany(len, PAGE_SIZE);
}
/*
* Might need one more TD if we're writing a ZLP
*/
if (!rd && (flags & USBD_FORCE_SHORT_XFER)) {
ntd++;
}
DPRINTFN(10, "maxp=%jd ntd=%jd", maxp, ntd, 0, 0);
uxfer->ux_stds = NULL;
uxfer->ux_nstd = ntd;
if (ntd == 0) {
*sp = NULL;
DPRINTF("ntd=0", 0, 0, 0, 0);
return 0;
}
uxfer->ux_stds = kmem_alloc(sizeof(uhci_soft_td_t *) * ntd,
KM_SLEEP);
for (int i = 0; i < ntd; i++) {
p = uhci_alloc_std(sc);
if (p == NULL) {
if (i != 0) {
uxfer->ux_nstd = i;
uhci_free_stds(sc, uxfer);
}
kmem_free(uxfer->ux_stds,
sizeof(uhci_soft_td_t *) * ntd);
return ENOMEM;
}
uxfer->ux_stds[i] = p;
}
*sp = uxfer->ux_stds[0];
return 0;
}
Static void
uhci_free_stds(uhci_softc_t *sc, struct uhci_xfer *ux)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(8, "ux=%#jx", (uintptr_t)ux, 0, 0, 0);
mutex_enter(&sc->sc_lock);
for (size_t i = 0; i < ux->ux_nstd; i++) {
uhci_soft_td_t *std = ux->ux_stds[i];
#ifdef DIAGNOSTIC
if (le32toh(std->td.td_token) == TD_IS_FREE) {
printf("%s: freeing free TD %p\n", __func__, std);
return;
}
std->td.td_token = htole32(TD_IS_FREE);
#endif
ux->ux_stds[i]->link.std = sc->sc_freetds;
sc->sc_freetds = std;
}
mutex_exit(&sc->sc_lock);
}
Static void
uhci_reset_std_chain(uhci_softc_t *sc, struct usbd_xfer *xfer,
int length, int isread, int *toggle, uhci_soft_td_t **lstd)
{
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
struct usbd_pipe *pipe = xfer->ux_pipe;
usb_dma_t *dma = &xfer->ux_dmabuf;
uint16_t flags = xfer->ux_flags;
uhci_soft_td_t *std, *prev;
int len = length;
int tog = *toggle;
int maxp;
uint32_t status;
size_t i, offs;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(8, "xfer=%#jx len %jd isread %jd toggle %jd", (uintptr_t)xfer,
len, isread, *toggle);
KASSERT(len != 0 || (!isread && (flags & USBD_FORCE_SHORT_XFER)));
maxp = UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize);
KASSERT(maxp != 0);
int addr = xfer->ux_pipe->up_dev->ud_addr;
int endpt = xfer->ux_pipe->up_endpoint->ue_edesc->bEndpointAddress;
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(3) | UHCI_TD_ACTIVE);
if (pipe->up_dev->ud_speed == USB_SPEED_LOW)
status |= UHCI_TD_LS;
if (flags & USBD_SHORT_XFER_OK)
status |= UHCI_TD_SPD;
usb_syncmem(dma, 0, len,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
std = prev = NULL;
for (offs = i = 0; len != 0 && i < uxfer->ux_nstd; i++, prev = std) {
int l = len;
std = uxfer->ux_stds[i];
const bus_addr_t sbp = DMAADDR(dma, offs);
const bus_addr_t ebp = DMAADDR(dma, offs + l - 1);
if (((sbp ^ ebp) & ~PAGE_MASK) != 0)
l = PAGE_SIZE - (DMAADDR(dma, offs) & PAGE_MASK);
if (l > maxp)
l = maxp;
if (prev) {
prev->link.std = std;
prev->td.td_link = htole32(
std->physaddr | UHCI_PTR_VF | UHCI_PTR_TD
);
usb_syncmem(&prev->dma, prev->offs, sizeof(prev->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->td.td_link = htole32(UHCI_PTR_T | UHCI_PTR_VF | UHCI_PTR_TD);
std->td.td_status = htole32(status);
std->td.td_token = htole32(
UHCI_TD_SET_ENDPT(UE_GET_ADDR(endpt)) |
UHCI_TD_SET_DEVADDR(addr) |
UHCI_TD_SET_PID(isread ? UHCI_TD_PID_IN : UHCI_TD_PID_OUT) |
UHCI_TD_SET_DT(tog) |
UHCI_TD_SET_MAXLEN(l)
);
std->td.td_buffer = htole32(DMAADDR(dma, offs));
std->link.std = NULL;
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
tog ^= 1;
offs += l;
len -= l;
}
KASSERTMSG(len == 0, "xfer %p alen %d len %d mps %d ux_nqtd %zu i %zu",
xfer, length, len, maxp, uxfer->ux_nstd, i);
if (!isread &&
(flags & USBD_FORCE_SHORT_XFER) &&
length % maxp == 0) {
/* Force a 0 length transfer at the end. */
KASSERTMSG(i < uxfer->ux_nstd, "i=%zu nstd=%zu", i,
uxfer->ux_nstd);
std = uxfer->ux_stds[i++];
std->td.td_link = htole32(UHCI_PTR_T | UHCI_PTR_VF | UHCI_PTR_TD);
std->td.td_status = htole32(status);
std->td.td_token = htole32(
UHCI_TD_SET_ENDPT(UE_GET_ADDR(endpt)) |
UHCI_TD_SET_DEVADDR(addr) |
UHCI_TD_SET_PID(UHCI_TD_PID_OUT) |
UHCI_TD_SET_DT(tog) |
UHCI_TD_SET_MAXLEN(0)
);
std->td.td_buffer = 0;
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
std->link.std = NULL;
if (prev) {
prev->link.std = std;
prev->td.td_link = htole32(
std->physaddr | UHCI_PTR_VF | UHCI_PTR_TD
);
usb_syncmem(&prev->dma, prev->offs, sizeof(prev->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
tog ^= 1;
}
*lstd = std;
*toggle = tog;
}
void
uhci_device_clear_toggle(struct usbd_pipe *pipe)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
upipe->nexttoggle = 0;
}
void
uhci_noop(struct usbd_pipe *pipe)
{
}
int
uhci_device_bulk_init(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
int endpt = ed->bEndpointAddress;
int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
int len = xfer->ux_bufsize;
int err = 0;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, len,
xfer->ux_flags, 0);
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
uxfer->ux_type = UX_BULK;
err = uhci_alloc_std_chain(sc, xfer, len, isread, &uxfer->ux_stdstart);
if (err)
return err;
#ifdef UHCI_DEBUG
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_tds(uxfer->ux_stdstart);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
return 0;
}
Static void
uhci_device_bulk_fini(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
KASSERT(ux->ux_type == UX_BULK);
if (ux->ux_nstd) {
uhci_free_stds(sc, ux);
kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
}
}
usbd_status
uhci_device_bulk_transfer(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return uhci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
usbd_status
uhci_device_bulk_start(struct usbd_xfer *xfer)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
const bool polling = sc->sc_bus.ub_usepolling;
int len;
int endpt;
int isread;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
xfer->ux_length, xfer->ux_flags, 0);
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
KASSERT(xfer->ux_length <= xfer->ux_bufsize);
len = xfer->ux_length;
endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
sqh = upipe->bulk.sqh;
/* Take lock here to protect nexttoggle */
if (!polling)
mutex_enter(&sc->sc_lock);
uhci_reset_std_chain(sc, xfer, len, isread, &upipe->nexttoggle,
&dataend);
data = ux->ux_stdstart;
ux->ux_stdend = dataend;
dataend->td.td_status |= htole32(UHCI_TD_IOC);
usb_syncmem(&dataend->dma,
dataend->offs + offsetof(uhci_td_t, td_status),
sizeof(dataend->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef UHCI_DEBUG
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
DPRINTFN(10, "before transfer", 0, 0, 0, 0);
uhci_dump_tds(data);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
ux->ux_isdone = false;
#endif
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
/* uhci_add_bulk() will do usb_syncmem(sqh) */
uhci_add_bulk(sc, sqh);
uhci_add_intr_list(sc, ux);
usbd_xfer_schedule_timeout(xfer);
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
/* Abort a device bulk request. */
void
uhci_device_bulk_abort(struct usbd_xfer *xfer)
{
uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
usbd_xfer_abort(xfer);
}
/*
* To allow the hardware time to notice we simply wait.
*/
Static void
uhci_abortx(struct usbd_xfer *xfer)
{
UHCIHIST_FUNC(); UHCIHIST_CALLED();
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
uhci_soft_td_t *std;
DPRINTFN(1,"xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
ASSERT_SLEEPABLE();
KASSERTMSG((xfer->ux_status == USBD_CANCELLED ||
xfer->ux_status == USBD_TIMEOUT),
"bad abort status: %d", xfer->ux_status);
/*
* If we're dying, skip the hardware action and just notify the
* software that we're done.
*/
if (sc->sc_dying) {
DPRINTFN(4, "xfer %#jx dying %ju", (uintptr_t)xfer,
xfer->ux_status, 0, 0);
goto dying;
}
/*
* HC Step 1: Make interrupt routine and hardware ignore xfer.
*/
uhci_del_intr_list(sc, ux);
DPRINTF("stop ux=%#jx", (uintptr_t)ux, 0, 0, 0);
for (std = ux->ux_stdstart; std != NULL; std = std->link.std) {
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/*
* HC Step 2: Wait until we know hardware has finished any possible
* use of the xfer.
*/
/* Hardware finishes in 1ms */
usb_delay_ms_locked(upipe->pipe.up_dev->ud_bus, 2, &sc->sc_lock);
/*
* HC Step 3: Notify completion to waiting xfers.
*/
dying:
#ifdef DIAGNOSTIC
ux->ux_isdone = true;
#endif
usb_transfer_complete(xfer);
DPRINTFN(14, "end", 0, 0, 0, 0);
KASSERT(mutex_owned(&sc->sc_lock));
}
/* Close a device bulk pipe. */
void
uhci_device_bulk_close(struct usbd_pipe *pipe)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
KASSERT(mutex_owned(&sc->sc_lock));
uhci_free_sqh(sc, upipe->bulk.sqh);
pipe->up_endpoint->ue_toggle = upipe->nexttoggle;
}
int
uhci_device_ctrl_init(struct usbd_xfer *xfer)
{
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
usb_device_request_t *req = &xfer->ux_request;
struct usbd_device *dev = upipe->pipe.up_dev;
uhci_softc_t *sc = dev->ud_bus->ub_hcpriv;
uhci_soft_td_t *data = NULL;
int len;
usbd_status err;
int isread;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(3, "xfer=%#jx len=%jd, addr=%jd, endpt=%jd",
(uintptr_t)xfer, xfer->ux_bufsize, dev->ud_addr,
upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress);
isread = req->bmRequestType & UT_READ;
len = xfer->ux_bufsize;
uxfer->ux_type = UX_CTRL;
/* Set up data transaction */
if (len != 0) {
err = uhci_alloc_std_chain(sc, xfer, len, isread, &data);
if (err)
return err;
}
/* Set up interrupt info. */
uxfer->ux_setup = upipe->ctrl.setup;
uxfer->ux_stat = upipe->ctrl.stat;
uxfer->ux_data = data;
return 0;
}
Static void
uhci_device_ctrl_fini(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
KASSERT(ux->ux_type == UX_CTRL);
if (ux->ux_nstd) {
uhci_free_stds(sc, ux);
kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
}
}
usbd_status
uhci_device_ctrl_transfer(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return uhci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
usbd_status
uhci_device_ctrl_start(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *uxfer = UHCI_XFER2UXFER(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
usb_device_request_t *req = &xfer->ux_request;
struct usbd_device *dev = upipe->pipe.up_dev;
int addr = dev->ud_addr;
int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
uhci_soft_td_t *setup, *stat, *next, *dataend;
uhci_soft_qh_t *sqh;
const bool polling = sc->sc_bus.ub_usepolling;
int len;
int isread;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
if (sc->sc_dying)
return USBD_IOERROR;
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
DPRINTFN(3, "type=0x%02jx, request=0x%02jx, "
"wValue=0x%04jx, wIndex=0x%04jx",
req->bmRequestType, req->bRequest, UGETW(req->wValue),
UGETW(req->wIndex));
DPRINTFN(3, "len=%jd, addr=%jd, endpt=%jd",
UGETW(req->wLength), dev->ud_addr, endpt, 0);
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
setup = upipe->ctrl.setup;
stat = upipe->ctrl.stat;
sqh = upipe->ctrl.sqh;
memcpy(KERNADDR(&upipe->ctrl.reqdma, 0), req, sizeof(*req));
usb_syncmem(&upipe->ctrl.reqdma, 0, sizeof(*req), BUS_DMASYNC_PREWRITE);
if (!polling)
mutex_enter(&sc->sc_lock);
/* Set up data transaction */
if (len != 0) {
upipe->nexttoggle = 1;
next = uxfer->ux_data;
uhci_reset_std_chain(sc, xfer, len, isread,
&upipe->nexttoggle, &dataend);
dataend->link.std = stat;
dataend->td.td_link = htole32(stat->physaddr | UHCI_PTR_TD);
usb_syncmem(&dataend->dma,
dataend->offs + offsetof(uhci_td_t, td_link),
sizeof(dataend->td.td_link),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
} else {
next = stat;
}
const uint32_t status = UHCI_TD_ZERO_ACTLEN(
UHCI_TD_SET_ERRCNT(3) |
UHCI_TD_ACTIVE |
(dev->ud_speed == USB_SPEED_LOW ? UHCI_TD_LS : 0)
);
setup->link.std = next;
setup->td.td_link = htole32(next->physaddr | UHCI_PTR_TD);
setup->td.td_status = htole32(status);
setup->td.td_token = htole32(UHCI_TD_SETUP(sizeof(*req), endpt, addr));
setup->td.td_buffer = htole32(DMAADDR(&upipe->ctrl.reqdma, 0));
usb_syncmem(&setup->dma, setup->offs, sizeof(setup->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
stat->link.std = NULL;
stat->td.td_link = htole32(UHCI_PTR_T);
stat->td.td_status = htole32(status | UHCI_TD_IOC);
stat->td.td_token =
htole32(isread ? UHCI_TD_OUT(0, endpt, addr, 1) :
UHCI_TD_IN (0, endpt, addr, 1));
stat->td.td_buffer = htole32(0);
usb_syncmem(&stat->dma, stat->offs, sizeof(stat->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef UHCI_DEBUG
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
DPRINTF("before transfer", 0, 0, 0, 0);
uhci_dump_tds(setup);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
/* Set up interrupt info. */
uxfer->ux_setup = setup;
uxfer->ux_stat = stat;
KASSERT(uxfer->ux_isdone);
#ifdef DIAGNOSTIC
uxfer->ux_isdone = false;
#endif
sqh->elink = setup;
sqh->qh.qh_elink = htole32(setup->physaddr | UHCI_PTR_TD);
/* uhci_add_?s_ctrl() will do usb_syncmem(sqh) */
if (dev->ud_speed == USB_SPEED_LOW)
uhci_add_ls_ctrl(sc, sqh);
else
uhci_add_hs_ctrl(sc, sqh);
uhci_add_intr_list(sc, uxfer);
#ifdef UHCI_DEBUG
if (uhcidebug >= 12) {
uhci_soft_td_t *std;
uhci_soft_qh_t *xqh;
uhci_soft_qh_t *sxqh;
int maxqh = 0;
uhci_physaddr_t link;
DPRINTFN(12, "--- dump start ---", 0, 0, 0, 0);
DPRINTFN(12, "follow from [0]", 0, 0, 0, 0);
for (std = sc->sc_vframes[0].htd, link = 0;
(link & UHCI_PTR_QH) == 0;
std = std->link.std) {
link = le32toh(std->td.td_link);
uhci_dump_td(std);
}
sxqh = (uhci_soft_qh_t *)std;
uhci_dump_qh(sxqh);
for (xqh = sxqh;
xqh != NULL;
xqh = (maxqh++ == 5 || xqh->hlink == sxqh ||
xqh->hlink == xqh ? NULL : xqh->hlink)) {
uhci_dump_qh(xqh);
}
DPRINTFN(12, "Enqueued QH:", 0, 0, 0, 0);
uhci_dump_qh(sqh);
uhci_dump_tds(sqh->elink);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
usbd_xfer_schedule_timeout(xfer);
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
int
uhci_device_intr_init(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
int endpt = ed->bEndpointAddress;
int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
int len = xfer->ux_bufsize;
int err;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
xfer->ux_length, xfer->ux_flags, 0);
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
KASSERT(len != 0);
ux->ux_type = UX_INTR;
ux->ux_nstd = 0;
err = uhci_alloc_std_chain(sc, xfer, len, isread, &ux->ux_stdstart);
return err;
}
Static void
uhci_device_intr_fini(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
KASSERT(ux->ux_type == UX_INTR);
if (ux->ux_nstd) {
uhci_free_stds(sc, ux);
kmem_free(ux->ux_stds, sizeof(uhci_soft_td_t *) * ux->ux_nstd);
}
}
usbd_status
uhci_device_intr_transfer(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* so start it first.
*/
return uhci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
usbd_status
uhci_device_intr_start(struct usbd_xfer *xfer)
{
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
uhci_soft_td_t *data, *dataend;
uhci_soft_qh_t *sqh;
const bool polling = sc->sc_bus.ub_usepolling;
int isread, endpt;
int i;
if (sc->sc_dying)
return USBD_IOERROR;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(3, "xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer,
xfer->ux_length, xfer->ux_flags, 0);
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
KASSERT(xfer->ux_length <= xfer->ux_bufsize);
endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
data = ux->ux_stdstart;
KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
ux->ux_isdone = false;
#endif
/* Take lock to protect nexttoggle */
if (!polling)
mutex_enter(&sc->sc_lock);
uhci_reset_std_chain(sc, xfer, xfer->ux_length, isread,
&upipe->nexttoggle, &dataend);
dataend->td.td_status |= htole32(UHCI_TD_IOC);
usb_syncmem(&dataend->dma,
dataend->offs + offsetof(uhci_td_t, td_status),
sizeof(dataend->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
ux->ux_stdend = dataend;
#ifdef UHCI_DEBUG
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_tds(data);
uhci_dump_qh(upipe->intr.qhs[0]);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
DPRINTFN(10, "qhs[0]=%#jx", (uintptr_t)upipe->intr.qhs[0], 0, 0, 0);
for (i = 0; i < upipe->intr.npoll; i++) {
sqh = upipe->intr.qhs[i];
sqh->elink = data;
sqh->qh.qh_elink = htole32(data->physaddr | UHCI_PTR_TD);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
uhci_add_intr_list(sc, ux);
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
#ifdef UHCI_DEBUG
if (uhcidebug >= 10) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_tds(data);
uhci_dump_qh(upipe->intr.qhs[0]);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
return USBD_IN_PROGRESS;
}
/* Abort a device control request. */
void
uhci_device_ctrl_abort(struct usbd_xfer *xfer)
{
uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
usbd_xfer_abort(xfer);
}
/* Close a device control pipe. */
void
uhci_device_ctrl_close(struct usbd_pipe *pipe)
{
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
uhci_free_sqh(sc, upipe->ctrl.sqh);
uhci_free_std_locked(sc, upipe->ctrl.setup);
uhci_free_std_locked(sc, upipe->ctrl.stat);
usb_freemem(&sc->sc_bus, &upipe->ctrl.reqdma);
}
/* Abort a device interrupt request. */
void
uhci_device_intr_abort(struct usbd_xfer *xfer)
{
uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTF("xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);
usbd_xfer_abort(xfer);
}
/* Close a device interrupt pipe. */
void
uhci_device_intr_close(struct usbd_pipe *pipe)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
int i, npoll;
KASSERT(mutex_owned(&sc->sc_lock));
/* Unlink descriptors from controller data structures. */
npoll = upipe->intr.npoll;
for (i = 0; i < npoll; i++)
uhci_remove_intr(sc, upipe->intr.qhs[i]);
/*
* We now have to wait for any activity on the physical
* descriptors to stop.
*/
usb_delay_ms_locked(&sc->sc_bus, 2, &sc->sc_lock);
for (i = 0; i < npoll; i++)
uhci_free_sqh(sc, upipe->intr.qhs[i]);
kmem_free(upipe->intr.qhs, npoll * sizeof(uhci_soft_qh_t *));
}
int
uhci_device_isoc_init(struct usbd_xfer *xfer)
{
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
KASSERT(!(xfer->ux_rqflags & URQ_REQUEST));
KASSERT(xfer->ux_nframes != 0);
KASSERT(ux->ux_isdone);
ux->ux_type = UX_ISOC;
return 0;
}
Static void
uhci_device_isoc_fini(struct usbd_xfer *xfer)
{
struct uhci_xfer *ux __diagused = UHCI_XFER2UXFER(xfer);
KASSERT(ux->ux_type == UX_ISOC);
}
usbd_status
uhci_device_isoc_transfer(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
usbd_status err __diagused;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(5, "xfer=%#jx", (uintptr_t)xfer, 0, 0, 0);
/* Put it on our queue, */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
KASSERT(err == USBD_NORMAL_COMPLETION);
/* insert into schedule, */
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
struct isoc *isoc = &upipe->isoc;
uhci_soft_td_t *std = NULL;
uint32_t buf, len, status, offs;
int i, next, nframes;
int rd = UE_GET_DIR(upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN;
DPRINTFN(5, "used=%jd next=%jd xfer=%#jx nframes=%jd",
isoc->inuse, isoc->next, (uintptr_t)xfer, xfer->ux_nframes);
if (sc->sc_dying)
return USBD_IOERROR;
if (xfer->ux_status == USBD_IN_PROGRESS) {
/* This request has already been entered into the frame list */
printf("%s: xfer=%p in frame list\n", __func__, xfer);
/* XXX */
}
#ifdef DIAGNOSTIC
if (isoc->inuse >= UHCI_VFRAMELIST_COUNT)
printf("%s: overflow!\n", __func__);
#endif
KASSERT(xfer->ux_nframes != 0);
if (xfer->ux_length)
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
mutex_enter(&sc->sc_lock);
next = isoc->next;
if (next == -1) {
/* Not in use yet, schedule it a few frames ahead. */
next = (UREAD2(sc, UHCI_FRNUM) + 3) % UHCI_VFRAMELIST_COUNT;
DPRINTFN(2, "start next=%jd", next, 0, 0, 0);
}
xfer->ux_status = USBD_IN_PROGRESS;
ux->ux_curframe = next;
offs = 0;
status = UHCI_TD_ZERO_ACTLEN(UHCI_TD_SET_ERRCNT(0) |
UHCI_TD_ACTIVE |
UHCI_TD_IOS);
nframes = xfer->ux_nframes;
for (i = 0; i < nframes; i++) {
buf = DMAADDR(&xfer->ux_dmabuf, offs);
std = isoc->stds[next];
if (++next >= UHCI_VFRAMELIST_COUNT)
next = 0;
len = xfer->ux_frlengths[i];
KASSERTMSG(len <= __SHIFTOUT_MASK(UHCI_TD_MAXLEN_MASK),
"len %d", len);
std->td.td_buffer = htole32(buf);
usb_syncmem(&xfer->ux_dmabuf, offs, len,
rd ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
if (i == nframes - 1)
status |= UHCI_TD_IOC;
std->td.td_status = htole32(status);
std->td.td_token &= htole32(~UHCI_TD_MAXLEN_MASK);
std->td.td_token |= htole32(UHCI_TD_SET_MAXLEN(len));
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef UHCI_DEBUG
if (uhcidebug >= 5) {
DPRINTF("--- dump start ---", 0, 0, 0, 0);
DPRINTF("TD %jd", i, 0, 0, 0);
uhci_dump_td(std);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
}
#endif
offs += len;
const bus_addr_t bend __diagused =
DMAADDR(&xfer->ux_dmabuf, offs - 1);
KASSERT(((buf ^ bend) & ~PAGE_MASK) == 0);
}
isoc->next = next;
isoc->inuse += xfer->ux_nframes;
/* Set up interrupt info. */
ux->ux_stdstart = std;
ux->ux_stdend = std;
KASSERT(ux->ux_isdone);
#ifdef DIAGNOSTIC
ux->ux_isdone = false;
#endif
uhci_add_intr_list(sc, ux);
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
void
uhci_device_isoc_abort(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
uhci_soft_td_t **stds = upipe->isoc.stds;
uhci_soft_td_t *std;
int i, n, nframes, maxlen, len;
KASSERT(mutex_owned(&sc->sc_lock));
/* Transfer is already done. */
if (xfer->ux_status != USBD_NOT_STARTED &&
xfer->ux_status != USBD_IN_PROGRESS) {
return;
}
/* Give xfer the requested abort code. */
xfer->ux_status = USBD_CANCELLED;
/* make hardware ignore it, */
nframes = xfer->ux_nframes;
n = ux->ux_curframe;
maxlen = 0;
for (i = 0; i < nframes; i++) {
std = stds[n];
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->td.td_status &= htole32(~(UHCI_TD_ACTIVE | UHCI_TD_IOC));
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_token),
sizeof(std->td.td_token),
BUS_DMASYNC_POSTWRITE);
len = UHCI_TD_GET_MAXLEN(le32toh(std->td.td_token));
if (len > maxlen)
maxlen = len;
if (++n >= UHCI_VFRAMELIST_COUNT)
n = 0;
}
/* and wait until we are sure the hardware has finished. */
delay(maxlen);
#ifdef DIAGNOSTIC
ux->ux_isdone = true;
#endif
/* Remove from interrupt list. */
uhci_del_intr_list(sc, ux);
/* Run callback. */
usb_transfer_complete(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
}
void
uhci_device_isoc_close(struct usbd_pipe *pipe)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
uhci_soft_td_t *std, *vstd;
struct isoc *isoc;
int i;
KASSERT(mutex_owned(&sc->sc_lock));
/*
* Make sure all TDs are marked as inactive.
* Wait for completion.
* Unschedule.
* Deallocate.
*/
isoc = &upipe->isoc;
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = isoc->stds[i];
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
std->td.td_status &= htole32(~UHCI_TD_ACTIVE);
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_status),
sizeof(std->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
/* wait for completion */
usb_delay_ms_locked(&sc->sc_bus, 2, &sc->sc_lock);
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = isoc->stds[i];
for (vstd = sc->sc_vframes[i].htd;
vstd != NULL && vstd->link.std != std;
vstd = vstd->link.std)
;
if (vstd == NULL) {
/*panic*/
printf("%s: %p not found\n", __func__, std);
mutex_exit(&sc->sc_lock);
return;
}
vstd->link = std->link;
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_link),
sizeof(std->td.td_link),
BUS_DMASYNC_POSTWRITE);
vstd->td.td_link = std->td.td_link;
usb_syncmem(&vstd->dma,
vstd->offs + offsetof(uhci_td_t, td_link),
sizeof(vstd->td.td_link),
BUS_DMASYNC_PREWRITE);
uhci_free_std_locked(sc, std);
}
kmem_free(isoc->stds, UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *));
}
usbd_status
uhci_setup_isoc(struct usbd_pipe *pipe)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
int addr = upipe->pipe.up_dev->ud_addr;
int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
int rd = UE_GET_DIR(endpt) == UE_DIR_IN;
uhci_soft_td_t *std, *vstd;
uint32_t token;
struct isoc *isoc;
int i;
isoc = &upipe->isoc;
isoc->stds = kmem_alloc(
UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *), KM_SLEEP);
if (isoc->stds == NULL)
return USBD_NOMEM;
token = rd ? UHCI_TD_IN (0, endpt, addr, 0) :
UHCI_TD_OUT(0, endpt, addr, 0);
/* Allocate the TDs and mark as inactive; */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = uhci_alloc_std(sc);
if (std == 0)
goto bad;
std->td.td_status = htole32(UHCI_TD_IOS); /* iso, inactive */
std->td.td_token = htole32(token);
usb_syncmem(&std->dma, std->offs, sizeof(std->td),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
isoc->stds[i] = std;
}
mutex_enter(&sc->sc_lock);
/* Insert TDs into schedule. */
for (i = 0; i < UHCI_VFRAMELIST_COUNT; i++) {
std = isoc->stds[i];
vstd = sc->sc_vframes[i].htd;
usb_syncmem(&vstd->dma,
vstd->offs + offsetof(uhci_td_t, td_link),
sizeof(vstd->td.td_link),
BUS_DMASYNC_POSTWRITE);
std->link = vstd->link;
std->td.td_link = vstd->td.td_link;
usb_syncmem(&std->dma,
std->offs + offsetof(uhci_td_t, td_link),
sizeof(std->td.td_link),
BUS_DMASYNC_PREWRITE);
vstd->link.std = std;
vstd->td.td_link = htole32(std->physaddr | UHCI_PTR_TD);
usb_syncmem(&vstd->dma,
vstd->offs + offsetof(uhci_td_t, td_link),
sizeof(vstd->td.td_link),
BUS_DMASYNC_PREWRITE);
}
mutex_exit(&sc->sc_lock);
isoc->next = -1;
isoc->inuse = 0;
return USBD_NORMAL_COMPLETION;
bad:
while (--i >= 0)
uhci_free_std(sc, isoc->stds[i]);
kmem_free(isoc->stds, UHCI_VFRAMELIST_COUNT * sizeof(uhci_soft_td_t *));
return USBD_NOMEM;
}
void
uhci_device_isoc_done(struct usbd_xfer *xfer)
{
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
struct uhci_xfer *ux = UHCI_XFER2UXFER(xfer);
int i, offs;
int rd = UE_GET_DIR(upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(4, "length=%jd, ux_state=0x%08jx",
xfer->ux_actlen, xfer->ux_state, 0, 0);
#ifdef DIAGNOSTIC
if (ux->ux_stdend == NULL) {
printf("%s: xfer=%p stdend==NULL\n", __func__, xfer);
#ifdef UHCI_DEBUG
DPRINTF("--- dump start ---", 0, 0, 0, 0);
uhci_dump_ii(ux);
DPRINTF("--- dump end ---", 0, 0, 0, 0);
#endif
return;
}
#endif
/* Turn off the interrupt since it is active even if the TD is not. */
usb_syncmem(&ux->ux_stdend->dma,
ux->ux_stdend->offs + offsetof(uhci_td_t, td_status),
sizeof(ux->ux_stdend->td.td_status),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
ux->ux_stdend->td.td_status &= htole32(~UHCI_TD_IOC);
usb_syncmem(&ux->ux_stdend->dma,
ux->ux_stdend->offs + offsetof(uhci_td_t, td_status),
sizeof(ux->ux_stdend->td.td_status),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
offs = 0;
for (i = 0; i < xfer->ux_nframes; i++) {
usb_syncmem(&xfer->ux_dmabuf, offs, xfer->ux_frlengths[i],
rd ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
offs += xfer->ux_frlengths[i];
}
}
void
uhci_device_intr_done(struct usbd_xfer *xfer)
{
uhci_softc_t *sc __diagused = UHCI_XFER2SC(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
uhci_soft_qh_t *sqh;
int i, npoll;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(5, "length=%jd", xfer->ux_actlen, 0, 0, 0);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
npoll = upipe->intr.npoll;
for (i = 0; i < npoll; i++) {
sqh = upipe->intr.qhs[i];
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
const int endpt = upipe->pipe.up_endpoint->ue_edesc->bEndpointAddress;
const bool isread = UE_GET_DIR(endpt) == UE_DIR_IN;
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
/* Deallocate request data structures */
void
uhci_device_ctrl_done(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
int len = UGETW(xfer->ux_request.wLength);
int isread = (xfer->ux_request.bmRequestType & UT_READ);
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
UHCIHIST_FUNC(); UHCIHIST_CALLED();
KASSERT(xfer->ux_rqflags & URQ_REQUEST);
/* XXXNH move to uhci_idone??? */
if (upipe->pipe.up_dev->ud_speed == USB_SPEED_LOW)
uhci_remove_ls_ctrl(sc, upipe->ctrl.sqh);
else
uhci_remove_hs_ctrl(sc, upipe->ctrl.sqh);
if (len) {
usb_syncmem(&xfer->ux_dmabuf, 0, len,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
usb_syncmem(&upipe->ctrl.reqdma, 0,
sizeof(usb_device_request_t), BUS_DMASYNC_POSTWRITE);
DPRINTF("length=%jd", xfer->ux_actlen, 0, 0, 0);
}
/* Deallocate request data structures */
void
uhci_device_bulk_done(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(xfer->ux_pipe);
usb_endpoint_descriptor_t *ed = xfer->ux_pipe->up_endpoint->ue_edesc;
int endpt = ed->bEndpointAddress;
int isread = UE_GET_DIR(endpt) == UE_DIR_IN;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(5, "xfer=%#jx sc=%#jx upipe=%#jx", (uintptr_t)xfer,
(uintptr_t)sc, (uintptr_t)upipe, 0);
KASSERT(mutex_owned(&sc->sc_lock));
uhci_remove_bulk(sc, upipe->bulk.sqh);
if (xfer->ux_length) {
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
}
DPRINTFN(5, "length=%jd", xfer->ux_actlen, 0, 0, 0);
}
/* Add interrupt QH, called with vflock. */
void
uhci_add_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *eqh;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(4, "n=%jd sqh=%#jx", sqh->pos, (uintptr_t)sqh, 0, 0);
eqh = vf->eqh;
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_POSTWRITE);
sqh->hlink = eqh->hlink;
sqh->qh.qh_hlink = eqh->qh.qh_hlink;
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
eqh->hlink = sqh;
eqh->qh.qh_hlink = htole32(sqh->physaddr | UHCI_PTR_QH);
usb_syncmem(&eqh->dma, eqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(eqh->qh.qh_hlink), BUS_DMASYNC_PREWRITE);
vf->eqh = sqh;
vf->bandwidth++;
}
/* Remove interrupt QH. */
void
uhci_remove_intr(uhci_softc_t *sc, uhci_soft_qh_t *sqh)
{
struct uhci_vframe *vf = &sc->sc_vframes[sqh->pos];
uhci_soft_qh_t *pqh;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(4, "n=%jd sqh=%#jx", sqh->pos, (uintptr_t)sqh, 0, 0);
/* See comment in uhci_remove_ctrl() */
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
if (!(sqh->qh.qh_elink & htole32(UHCI_PTR_T))) {
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
delay(UHCI_QH_REMOVE_DELAY);
}
pqh = uhci_find_prev_qh(vf->hqh, sqh);
usb_syncmem(&sqh->dma, sqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(sqh->qh.qh_hlink),
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
pqh->hlink = sqh->hlink;
pqh->qh.qh_hlink = sqh->qh.qh_hlink;
usb_syncmem(&pqh->dma, pqh->offs + offsetof(uhci_qh_t, qh_hlink),
sizeof(pqh->qh.qh_hlink),
BUS_DMASYNC_PREWRITE);
delay(UHCI_QH_REMOVE_DELAY);
if (vf->eqh == sqh)
vf->eqh = pqh;
vf->bandwidth--;
}
usbd_status
uhci_device_setintr(uhci_softc_t *sc, struct uhci_pipe *upipe, int ival)
{
uhci_soft_qh_t *sqh;
int i, npoll;
u_int bestbw, bw, bestoffs, offs;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTFN(2, "pipe=%#jx", (uintptr_t)upipe, 0, 0, 0);
if (ival == 0) {
printf("%s: 0 interval\n", __func__);
return USBD_INVAL;
}
if (ival > UHCI_VFRAMELIST_COUNT)
ival = UHCI_VFRAMELIST_COUNT;
npoll = howmany(UHCI_VFRAMELIST_COUNT, ival);
DPRINTF("ival=%jd npoll=%jd", ival, npoll, 0, 0);
upipe->intr.npoll = npoll;
upipe->intr.qhs =
kmem_alloc(npoll * sizeof(uhci_soft_qh_t *), KM_SLEEP);
/*
* Figure out which offset in the schedule that has most
* bandwidth left over.
*/
#define MOD(i) ((i) & (UHCI_VFRAMELIST_COUNT-1))
for (bestoffs = offs = 0, bestbw = ~0; offs < ival; offs++) {
for (bw = i = 0; i < npoll; i++)
bw += sc->sc_vframes[MOD(i * ival + offs)].bandwidth;
if (bw < bestbw) {
bestbw = bw;
bestoffs = offs;
}
}
DPRINTF("bw=%jd offs=%jd", bestbw, bestoffs, 0, 0);
for (i = 0; i < npoll; i++) {
upipe->intr.qhs[i] = sqh = uhci_alloc_sqh(sc);
sqh->elink = NULL;
sqh->qh.qh_elink = htole32(UHCI_PTR_T);
usb_syncmem(&sqh->dma,
sqh->offs + offsetof(uhci_qh_t, qh_elink),
sizeof(sqh->qh.qh_elink),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sqh->pos = MOD(i * ival + bestoffs);
}
#undef MOD
mutex_enter(&sc->sc_lock);
/* Enter QHs into the controller data structures. */
for (i = 0; i < npoll; i++)
uhci_add_intr(sc, upipe->intr.qhs[i]);
mutex_exit(&sc->sc_lock);
DPRINTFN(5, "returns %#jx", (uintptr_t)upipe, 0, 0, 0);
return USBD_NORMAL_COMPLETION;
}
/* Open a new pipe. */
usbd_status
uhci_open(struct usbd_pipe *pipe)
{
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
struct usbd_bus *bus = pipe->up_dev->ud_bus;
struct uhci_pipe *upipe = UHCI_PIPE2UPIPE(pipe);
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
usbd_status err = USBD_NOMEM;
int ival;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTF("pipe=%#jx, addr=%jd, endpt=%jd (%jd)",
(uintptr_t)pipe, pipe->up_dev->ud_addr, ed->bEndpointAddress,
bus->ub_rhaddr);
if (sc->sc_dying)
return USBD_IOERROR;
upipe->aborting = 0;
/* toggle state needed for bulk endpoints */
upipe->nexttoggle = pipe->up_endpoint->ue_toggle;
if (pipe->up_dev->ud_addr == bus->ub_rhaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
pipe->up_methods = &uhci_root_intr_methods;
break;
default:
return USBD_INVAL;
}
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
pipe->up_methods = &uhci_device_ctrl_methods;
upipe->ctrl.sqh = uhci_alloc_sqh(sc);
if (upipe->ctrl.sqh == NULL)
goto bad;
upipe->ctrl.setup = uhci_alloc_std(sc);
if (upipe->ctrl.setup == NULL) {
uhci_free_sqh(sc, upipe->ctrl.sqh);
goto bad;
}
upipe->ctrl.stat = uhci_alloc_std(sc);
if (upipe->ctrl.stat == NULL) {
uhci_free_sqh(sc, upipe->ctrl.sqh);
uhci_free_std(sc, upipe->ctrl.setup);
goto bad;
}
err = usb_allocmem(&sc->sc_bus,
sizeof(usb_device_request_t), 0,
USBMALLOC_COHERENT, &upipe->ctrl.reqdma);
if (err) {
uhci_free_sqh(sc, upipe->ctrl.sqh);
uhci_free_std(sc, upipe->ctrl.setup);
uhci_free_std(sc, upipe->ctrl.stat);
goto bad;
}
break;
case UE_INTERRUPT:
pipe->up_methods = &uhci_device_intr_methods;
ival = pipe->up_interval;
if (ival == USBD_DEFAULT_INTERVAL)
ival = ed->bInterval;
return uhci_device_setintr(sc, upipe, ival);
case UE_ISOCHRONOUS:
pipe->up_serialise = false;
pipe->up_methods = &uhci_device_isoc_methods;
return uhci_setup_isoc(pipe);
case UE_BULK:
pipe->up_methods = &uhci_device_bulk_methods;
upipe->bulk.sqh = uhci_alloc_sqh(sc);
if (upipe->bulk.sqh == NULL)
goto bad;
break;
}
}
return USBD_NORMAL_COMPLETION;
bad:
return USBD_NOMEM;
}
/*
* Data structures and routines to emulate the root hub.
*/
/*
* The USB hub protocol requires that SET_FEATURE(PORT_RESET) also
* enables the port, and also states that SET_FEATURE(PORT_ENABLE)
* should not be used by the USB subsystem. As we cannot issue a
* SET_FEATURE(PORT_ENABLE) externally, we must ensure that the port
* will be enabled as part of the reset.
*
* On the VT83C572, the port cannot be successfully enabled until the
* outstanding "port enable change" and "connection status change"
* events have been reset.
*/
Static usbd_status
uhci_portreset(uhci_softc_t *sc, int index)
{
int lim, port, x;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else
return USBD_IOERROR;
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PR);
usb_delay_ms(&sc->sc_bus, USB_PORT_ROOT_RESET_DELAY);
DPRINTF("uhci port %jd reset, status0 = 0x%04jx", index,
UREAD2(sc, port), 0, 0);
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~(UHCI_PORTSC_PR | UHCI_PORTSC_SUSP));
delay(100);
DPRINTF("uhci port %jd reset, status1 = 0x%04jx", index,
UREAD2(sc, port), 0, 0);
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
for (lim = 10; --lim > 0;) {
usb_delay_ms(&sc->sc_bus, USB_PORT_RESET_DELAY);
x = UREAD2(sc, port);
DPRINTF("uhci port %jd iteration %ju, status = 0x%04jx", index,
lim, x, 0);
if (!(x & UHCI_PORTSC_CCS)) {
/*
* No device is connected (or was disconnected
* during reset). Consider the port reset.
* The delay must be long enough to ensure on
* the initial iteration that the device
* connection will have been registered. 50ms
* appears to be sufficient, but 20ms is not.
*/
DPRINTFN(3, "uhci port %jd loop %ju, device detached",
index, lim, 0, 0);
break;
}
if (x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)) {
/*
* Port enabled changed and/or connection
* status changed were set. Reset either or
* both raised flags (by writing a 1 to that
* bit), and wait again for state to settle.
*/
UWRITE2(sc, port, URWMASK(x) |
(x & (UHCI_PORTSC_POEDC | UHCI_PORTSC_CSC)));
continue;
}
if (x & UHCI_PORTSC_PE)
/* Port is enabled */
break;
UWRITE2(sc, port, URWMASK(x) | UHCI_PORTSC_PE);
}
DPRINTFN(3, "uhci port %jd reset, status2 = 0x%04jx", index,
UREAD2(sc, port), 0, 0);
if (lim <= 0) {
DPRINTF("uhci port %jd reset timed out", index,
0, 0, 0);
return USBD_TIMEOUT;
}
sc->sc_isreset = 1;
return USBD_NORMAL_COMPLETION;
}
Static int
uhci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
uhci_softc_t *sc = UHCI_BUS2SC(bus);
int port, x;
int status, change, totlen = 0;
uint16_t len, value, index;
usb_port_status_t ps;
usbd_status err;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
if (sc->sc_dying)
return -1;
DPRINTF("type=0x%02jx request=%02jx", req->bmRequestType,
req->bRequest, 0, 0);
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
DPRINTF("wValue=0x%04jx", value, 0, 0, 0);
if (len == 0)
break;
switch (value) {
#define sd ((usb_string_descriptor_t *)buf)
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "UHCI root hub");
break;
#undef sd
default:
/* default from usbroothub */
return buflen;
}
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTF("UR_CLEAR_PORT_FEATURE port=%jd feature=%jd", index,
value, 0, 0);
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return -1;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
if (!(x & UHCI_PORTSC_SUSP)) /* not suspended */
break;
UWRITE2(sc, port, x | UHCI_PORTSC_RD);
/* see USB2 spec ch. 7.1.7.7 */
usb_delay_ms(&sc->sc_bus, 20);
UWRITE2(sc, port, x & ~UHCI_PORTSC_SUSP);
/* 10ms resume delay must be provided by caller */
break;
case UHF_PORT_RESET:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x & ~UHCI_PORTSC_PR);
break;
case UHF_C_PORT_CONNECTION:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_CSC);
break;
case UHF_C_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_POEDC);
break;
case UHF_C_PORT_OVER_CURRENT:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_OCIC);
break;
case UHF_C_PORT_RESET:
sc->sc_isreset = 0;
break;
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_POWER:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
default:
return -1;
}
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return -1;
}
if (len > 0) {
*(uint8_t *)buf =
UHCI_PORTSC_GET_LS(UREAD2(sc, port));
totlen = 1;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if (len == 0)
break;
if ((value & 0xff) != 0) {
return -1;
}
usb_hub_descriptor_t hubd;
totlen = uimin(buflen, sizeof(hubd));
memcpy(&hubd, buf, totlen);
hubd.bNbrPorts = 2;
memcpy(buf, &hubd, totlen);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
if (len != 4) {
return -1;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return -1;
}
if (len != 4) {
return -1;
}
x = UREAD2(sc, port);
status = change = 0;
if (x & UHCI_PORTSC_CCS)
status |= UPS_CURRENT_CONNECT_STATUS;
if (x & UHCI_PORTSC_CSC)
change |= UPS_C_CONNECT_STATUS;
if (x & UHCI_PORTSC_PE)
status |= UPS_PORT_ENABLED;
if (x & UHCI_PORTSC_POEDC)
change |= UPS_C_PORT_ENABLED;
if (x & UHCI_PORTSC_OCI)
status |= UPS_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_OCIC)
change |= UPS_C_OVERCURRENT_INDICATOR;
if (x & UHCI_PORTSC_SUSP)
status |= UPS_SUSPEND;
if (x & UHCI_PORTSC_LSDA)
status |= UPS_LOW_SPEED;
status |= UPS_PORT_POWER;
if (sc->sc_isreset)
change |= UPS_C_PORT_RESET;
USETW(ps.wPortStatus, status);
USETW(ps.wPortChange, change);
totlen = uimin(len, sizeof(ps));
memcpy(buf, &ps, totlen);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
return -1;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
if (index == 1)
port = UHCI_PORTSC1;
else if (index == 2)
port = UHCI_PORTSC2;
else {
return -1;
}
switch(value) {
case UHF_PORT_ENABLE:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_PE);
break;
case UHF_PORT_SUSPEND:
x = URWMASK(UREAD2(sc, port));
UWRITE2(sc, port, x | UHCI_PORTSC_SUSP);
break;
case UHF_PORT_RESET:
err = uhci_portreset(sc, index);
if (err != USBD_NORMAL_COMPLETION)
return -1;
return 0;
case UHF_PORT_POWER:
/* Pretend we turned on power */
return 0;
case UHF_C_PORT_CONNECTION:
case UHF_C_PORT_ENABLE:
case UHF_C_PORT_OVER_CURRENT:
case UHF_PORT_CONNECTION:
case UHF_PORT_OVER_CURRENT:
case UHF_PORT_LOW_SPEED:
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_RESET:
default:
return -1;
}
break;
default:
/* default from usbroothub */
DPRINTF("returning %jd (usbroothub default)",
buflen, 0, 0, 0);
return buflen;
}
DPRINTF("returning %jd", totlen, 0, 0, 0);
return totlen;
}
/* Abort a root interrupt request. */
void
uhci_root_intr_abort(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
/*
* Try to stop the callout before it starts. If we got in too
* late, too bad; but if the callout had yet to run and time
* out the xfer, cancel it ourselves.
*/
callout_stop(&sc->sc_poll_handle);
if (sc->sc_intr_xfer == NULL)
return;
KASSERT(sc->sc_intr_xfer == xfer);
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
xfer->ux_status = USBD_CANCELLED;
#ifdef DIAGNOSTIC
UHCI_XFER2UXFER(xfer)->ux_isdone = true;
#endif
usb_transfer_complete(xfer);
}
usbd_status
uhci_root_intr_transfer(struct usbd_xfer *xfer)
{
uhci_softc_t *sc = UHCI_XFER2SC(xfer);
usbd_status err;
/* Insert last in queue. */
mutex_enter(&sc->sc_lock);
err = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (err)
return err;
/*
* Pipe isn't running (otherwise err would be USBD_INPROG),
* start first
*/
return uhci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
/* Start a transfer on the root interrupt pipe */
usbd_status
uhci_root_intr_start(struct usbd_xfer *xfer)
{
struct usbd_pipe *pipe = xfer->ux_pipe;
uhci_softc_t *sc = UHCI_PIPE2SC(pipe);
unsigned int ival;
const bool polling = sc->sc_bus.ub_usepolling;
UHCIHIST_FUNC(); UHCIHIST_CALLED();
DPRINTF("xfer=%#jx len=%jd flags=%jd", (uintptr_t)xfer, xfer->ux_length,
xfer->ux_flags, 0);
if (sc->sc_dying)
return USBD_IOERROR;
if (!polling)
mutex_enter(&sc->sc_lock);
KASSERT(sc->sc_intr_xfer == NULL);
/* XXX temporary variable needed to avoid gcc3 warning */
ival = xfer->ux_pipe->up_endpoint->ue_edesc->bInterval;
sc->sc_ival = mstohz(ival);
callout_schedule(&sc->sc_poll_handle, sc->sc_ival);
sc->sc_intr_xfer = xfer;
xfer->ux_status = USBD_IN_PROGRESS;
if (!polling)
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
/* Close the root interrupt pipe. */
void
uhci_root_intr_close(struct usbd_pipe *pipe)
{
uhci_softc_t *sc __diagused = UHCI_PIPE2SC(pipe);
UHCIHIST_FUNC(); UHCIHIST_CALLED();
KASSERT(mutex_owned(&sc->sc_lock));
/*
* The caller must arrange to have aborted the pipe already, so
* there can be no intr xfer in progress. The callout may
* still be pending from a prior intr xfer -- if it has already
* fired, it will see there is nothing to do, and do nothing.
*/
KASSERT(sc->sc_intr_xfer == NULL);
KASSERT(!callout_pending(&sc->sc_poll_handle));
}