NetBSD/sys/dev/usb/if_run.c
jdolecek 232edc8c48 disable inlining for couple functions which allocate usb_device_request_t
on stack to reduce total run_init() stack usage from 7KB to 2KB
2020-06-24 21:06:39 +00:00

5080 lines
132 KiB
C

/* $NetBSD: if_run.c,v 1.42 2020/06/24 21:06:39 jdolecek Exp $ */
/* $OpenBSD: if_run.c,v 1.90 2012/03/24 15:11:04 jsg Exp $ */
/*-
* Copyright (c) 2008-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2700U/RT2800U/RT3000U/RT3900E chipset driver.
* http://www.ralinktech.com/
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_run.c,v 1.42 2020/06/24 21:06:39 jdolecek Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/callout.h>
#include <sys/module.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/atomic.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/ic/rt2860reg.h> /* shared with ral(4) */
#include <dev/usb/if_runvar.h>
#ifdef RUN_DEBUG
#define DPRINTF(x) do { if (run_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (run_debug >= (n)) printf x; } while (0)
int run_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
#define IEEE80211_HAS_ADDR4(wh) IEEE80211_IS_DSTODS(wh)
#define USB_ID(v, p) { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }
static const struct usb_devno run_devs[] = {
USB_ID(ABOCOM, RT2770),
USB_ID(ABOCOM, RT2870),
USB_ID(ABOCOM, RT3070),
USB_ID(ABOCOM, RT3071),
USB_ID(ABOCOM, RT3072),
USB_ID(ABOCOM2, RT2870_1),
USB_ID(ACCTON, RT2770),
USB_ID(ACCTON, RT2870_1),
USB_ID(ACCTON, RT2870_2),
USB_ID(ACCTON, RT2870_3),
USB_ID(ACCTON, RT2870_4),
USB_ID(ACCTON, RT2870_5),
USB_ID(ACCTON, RT3070),
USB_ID(ACCTON, RT3070_1),
USB_ID(ACCTON, RT3070_2),
USB_ID(ACCTON, RT3070_3),
USB_ID(ACCTON, RT3070_4),
USB_ID(ACCTON, RT3070_5),
USB_ID(ACCTON, RT3070_6),
USB_ID(AIRTIES, RT3070),
USB_ID(AIRTIES, RT3070_2),
USB_ID(ALLWIN, RT2070),
USB_ID(ALLWIN, RT2770),
USB_ID(ALLWIN, RT2870),
USB_ID(ALLWIN, RT3070),
USB_ID(ALLWIN, RT3071),
USB_ID(ALLWIN, RT3072),
USB_ID(ALLWIN, RT3572),
USB_ID(AMIGO, RT2870_1),
USB_ID(AMIGO, RT2870_2),
USB_ID(AMIT, CGWLUSB2GNR),
USB_ID(AMIT, RT2870_1),
USB_ID(AMIT2, RT2870),
USB_ID(ASUSTEK, RT2870_1),
USB_ID(ASUSTEK, RT2870_2),
USB_ID(ASUSTEK, RT2870_3),
USB_ID(ASUSTEK, RT2870_4),
USB_ID(ASUSTEK, RT2870_5),
USB_ID(ASUSTEK, RT3070),
USB_ID(ASUSTEK, RT3070_1),
USB_ID(ASUSTEK, USBN53),
USB_ID(ASUSTEK, USBN66),
USB_ID(ASUSTEK2, USBN11),
USB_ID(AZUREWAVE, RT2870_1),
USB_ID(AZUREWAVE, RT2870_2),
USB_ID(AZUREWAVE, RT3070),
USB_ID(AZUREWAVE, RT3070_2),
USB_ID(AZUREWAVE, RT3070_3),
USB_ID(AZUREWAVE, RT3070_4),
USB_ID(AZUREWAVE, RT3070_5),
USB_ID(BELKIN, F5D8053V3),
USB_ID(BELKIN, F5D8055),
USB_ID(BELKIN, F5D8055V2),
USB_ID(BELKIN, F6D4050V1),
USB_ID(BELKIN, F6D4050V2),
USB_ID(BELKIN, F7D1101V2),
USB_ID(BELKIN, RT2870_1),
USB_ID(BELKIN, RT2870_2),
USB_ID(BELKIN, RTL8192CU_2),
USB_ID(BEWAN, RT3070),
USB_ID(CISCOLINKSYS, AE1000),
USB_ID(CISCOLINKSYS, AM10),
USB_ID(CISCOLINKSYS2, RT3070),
USB_ID(CISCOLINKSYS3, RT3070),
USB_ID(CONCEPTRONIC, RT2870_1),
USB_ID(CONCEPTRONIC, RT2870_2),
USB_ID(CONCEPTRONIC, RT2870_3),
USB_ID(CONCEPTRONIC, RT2870_4),
USB_ID(CONCEPTRONIC, RT2870_5),
USB_ID(CONCEPTRONIC, RT2870_6),
USB_ID(CONCEPTRONIC, RT2870_7),
USB_ID(CONCEPTRONIC, RT2870_8),
USB_ID(CONCEPTRONIC, RT3070_1),
USB_ID(CONCEPTRONIC, RT3070_2),
USB_ID(CONCEPTRONIC, RT3070_3),
USB_ID(COREGA, CGWLUSB300GNM),
USB_ID(COREGA, RT2870_1),
USB_ID(COREGA, RT2870_2),
USB_ID(COREGA, RT2870_3),
USB_ID(COREGA, RT3070),
USB_ID(CYBERTAN, RT2870),
USB_ID(DLINK, RT2870),
USB_ID(DLINK, RT3072),
USB_ID(DLINK, DWA127),
USB_ID(DLINK, DWA140B3),
USB_ID(DLINK, DWA160B2),
USB_ID(DLINK, DWA162),
USB_ID(DLINK2, DWA130),
USB_ID(DLINK2, RT2870_1),
USB_ID(DLINK2, RT2870_2),
USB_ID(DLINK2, RT3070_1),
USB_ID(DLINK2, RT3070_2),
USB_ID(DLINK2, RT3070_3),
USB_ID(DLINK2, RT3070_4),
USB_ID(DLINK2, RT3070_5),
USB_ID(DLINK2, RT3072),
USB_ID(DLINK2, RT3072_1),
USB_ID(DVICO, RT3070),
USB_ID(EDIMAX, EW7717),
USB_ID(EDIMAX, EW7718),
USB_ID(EDIMAX, EW7722UTN),
USB_ID(EDIMAX, RT2870_1),
USB_ID(ENCORE, RT3070),
USB_ID(ENCORE, RT3070_2),
USB_ID(ENCORE, RT3070_3),
USB_ID(GIGABYTE, GNWB31N),
USB_ID(GIGABYTE, GNWB32L),
USB_ID(GIGABYTE, RT2870_1),
USB_ID(GIGASET, RT3070_1),
USB_ID(GIGASET, RT3070_2),
USB_ID(GUILLEMOT, HWNU300),
USB_ID(HAWKING, HWUN2),
USB_ID(HAWKING, RT2870_1),
USB_ID(HAWKING, RT2870_2),
USB_ID(HAWKING, RT2870_3),
USB_ID(HAWKING, RT2870_4),
USB_ID(HAWKING, RT2870_5),
USB_ID(HAWKING, RT3070),
USB_ID(IODATA, RT3072_1),
USB_ID(IODATA, RT3072_2),
USB_ID(IODATA, RT3072_3),
USB_ID(IODATA, RT3072_4),
USB_ID(LINKSYS4, RT3070),
USB_ID(LINKSYS4, WUSB100),
USB_ID(LINKSYS4, WUSB54GC_3),
USB_ID(LINKSYS4, WUSB600N),
USB_ID(LINKSYS4, WUSB600NV2),
USB_ID(LOGITEC, LANW300NU2),
USB_ID(LOGITEC, LANW300NU2S),
USB_ID(LOGITEC, LAN_W300ANU2),
USB_ID(LOGITEC, LAN_W450ANU2E),
USB_ID(LOGITEC, RT2870_1),
USB_ID(LOGITEC, RT2870_2),
USB_ID(LOGITEC, RT2870_3),
USB_ID(LOGITEC, RT3020),
USB_ID(MELCO, RT2870_1),
USB_ID(MELCO, RT2870_2),
USB_ID(MELCO, WLIUCAG300N),
USB_ID(MELCO, WLIUCG300N),
USB_ID(MELCO, WLIUCG301N),
USB_ID(MELCO, WLIUCGN),
USB_ID(MELCO, WLIUCGNHP),
USB_ID(MELCO, WLIUCGNM),
USB_ID(MELCO, WLIUCGNM2T),
USB_ID(MOTOROLA4, RT2770),
USB_ID(MOTOROLA4, RT3070),
USB_ID(MSI, RT3070),
USB_ID(MSI, RT3070_2),
USB_ID(MSI, RT3070_3),
USB_ID(MSI, RT3070_4),
USB_ID(MSI, RT3070_5),
USB_ID(MSI, RT3070_6),
USB_ID(MSI, RT3070_7),
USB_ID(MSI, RT3070_8),
USB_ID(MSI, RT3070_9),
USB_ID(MSI, RT3070_10),
USB_ID(MSI, RT3070_11),
USB_ID(MSI, RT3070_12),
USB_ID(MSI, RT3070_13),
USB_ID(MSI, RT3070_14),
USB_ID(MSI, RT3070_15),
USB_ID(OVISLINK, RT3071),
USB_ID(OVISLINK, RT3072),
USB_ID(PARA, RT3070),
USB_ID(PEGATRON, RT2870),
USB_ID(PEGATRON, RT3070),
USB_ID(PEGATRON, RT3070_2),
USB_ID(PEGATRON, RT3070_3),
USB_ID(PEGATRON, RT3072),
USB_ID(PHILIPS, RT2870),
USB_ID(PLANEX2, GWUS300MINIS),
USB_ID(PLANEX2, GWUSMICRO300),
USB_ID(PLANEX2, GWUSMICRON),
USB_ID(PLANEX2, GWUS300MINIX),
USB_ID(PLANEX2, RT3070),
USB_ID(QCOM, RT2870),
USB_ID(QUANTA, RT3070),
USB_ID(RALINK, RT2070),
USB_ID(RALINK, RT2770),
USB_ID(RALINK, RT2870),
USB_ID(RALINK, RT3070),
USB_ID(RALINK, RT3071),
USB_ID(RALINK, RT3072),
USB_ID(RALINK, RT3370),
USB_ID(RALINK, RT3572),
USB_ID(RALINK, RT3573),
USB_ID(RALINK, RT5370),
USB_ID(RALINK, RT5572),
USB_ID(RALINK, RT8070),
USB_ID(SAMSUNG, RT2870_1),
USB_ID(SENAO, RT2870_1),
USB_ID(SENAO, RT2870_2),
USB_ID(SENAO, RT2870_3),
USB_ID(SENAO, RT2870_4),
USB_ID(SENAO, RT3070),
USB_ID(SENAO, RT3071),
USB_ID(SENAO, RT3072),
USB_ID(SENAO, RT3072_2),
USB_ID(SENAO, RT3072_3),
USB_ID(SENAO, RT3072_4),
USB_ID(SENAO, RT3072_5),
USB_ID(SITECOMEU, RT2870_1),
USB_ID(SITECOMEU, RT2870_2),
USB_ID(SITECOMEU, RT2870_3),
USB_ID(SITECOMEU, RT3070_1),
USB_ID(SITECOMEU, RT3070_3),
USB_ID(SITECOMEU, RT3072_3),
USB_ID(SITECOMEU, RT3072_4),
USB_ID(SITECOMEU, RT3072_5),
USB_ID(SITECOMEU, RT3072_6),
USB_ID(SITECOMEU, WL302),
USB_ID(SITECOMEU, WL315),
USB_ID(SITECOMEU, WL321),
USB_ID(SITECOMEU, WL324),
USB_ID(SITECOMEU, WL329),
USB_ID(SITECOMEU, WL343),
USB_ID(SITECOMEU, WL344),
USB_ID(SITECOMEU, WL345),
USB_ID(SITECOMEU, WL349V4),
USB_ID(SITECOMEU, WL608),
USB_ID(SITECOMEU, WLA4000),
USB_ID(SITECOMEU, WLA5000),
USB_ID(SPARKLAN, RT2870_1),
USB_ID(SPARKLAN, RT2870_2),
USB_ID(SPARKLAN, RT3070),
USB_ID(SWEEX2, LW153),
USB_ID(SWEEX2, LW303),
USB_ID(SWEEX2, LW313),
USB_ID(TOSHIBA, RT3070),
USB_ID(UMEDIA, RT2870_1),
USB_ID(UMEDIA, TEW645UB),
USB_ID(ZCOM, RT2870_1),
USB_ID(ZCOM, RT2870_2),
USB_ID(ZINWELL, RT2870_1),
USB_ID(ZINWELL, RT2870_2),
USB_ID(ZINWELL, RT3070),
USB_ID(ZINWELL, RT3072),
USB_ID(ZINWELL, RT3072_2),
USB_ID(ZYXEL, NWD2105),
USB_ID(ZYXEL, NWD211AN),
USB_ID(ZYXEL, RT2870_1),
USB_ID(ZYXEL, RT2870_2),
USB_ID(ZYXEL, RT3070),
};
static int run_match(device_t, cfdata_t, void *);
static void run_attach(device_t, device_t, void *);
static int run_detach(device_t, int);
static int run_activate(device_t, enum devact);
CFATTACH_DECL_NEW(run, sizeof(struct run_softc),
run_match, run_attach, run_detach, run_activate);
static int run_alloc_rx_ring(struct run_softc *);
static void run_free_rx_ring(struct run_softc *);
static int run_alloc_tx_ring(struct run_softc *, int);
static void run_free_tx_ring(struct run_softc *, int);
static int run_load_microcode(struct run_softc *);
static int run_reset(struct run_softc *);
static int run_read(struct run_softc *, uint16_t, uint32_t *);
static int run_read_region_1(struct run_softc *, uint16_t,
uint8_t *, int);
static int run_write_2(struct run_softc *, uint16_t, uint16_t);
static int run_write(struct run_softc *, uint16_t, uint32_t);
static int run_write_region_1(struct run_softc *, uint16_t,
const uint8_t *, int);
static int run_set_region_4(struct run_softc *, uint16_t,
uint32_t, int);
static int run_efuse_read(struct run_softc *, uint16_t,
uint16_t *, int);
static int run_efuse_read_2(struct run_softc *, uint16_t,
uint16_t *);
static int run_eeprom_read_2(struct run_softc *, uint16_t,
uint16_t *);
static int run_rt2870_rf_write(struct run_softc *, uint8_t,
uint32_t);
static int run_rt3070_rf_read(struct run_softc *, uint8_t,
uint8_t *);
static int run_rt3070_rf_write(struct run_softc *, uint8_t,
uint8_t);
static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
static int run_bbp_write(struct run_softc *, uint8_t, uint8_t);
static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
static const char * run_get_rf(uint16_t);
static void run_rt3593_get_txpower(struct run_softc *);
static void run_get_txpower(struct run_softc *);
static int run_read_eeprom(struct run_softc *);
static struct ieee80211_node *
run_node_alloc(struct ieee80211_node_table *);
static int run_media_change(struct ifnet *);
static void run_next_scan(void *);
static void run_task(void *);
static void run_do_async(struct run_softc *,
void (*)(struct run_softc *, void *), void *, int);
static int run_newstate(struct ieee80211com *,
enum ieee80211_state, int);
static void run_newstate_cb(struct run_softc *, void *);
static int run_updateedca(struct ieee80211com *);
static void run_updateedca_cb(struct run_softc *, void *);
#ifdef RUN_HWCRYPTO
static int run_set_key(struct ieee80211com *,
const struct ieee80211_key *, const uint8_t *);
static void run_set_key_cb(struct run_softc *, void *);
static int run_delete_key(struct ieee80211com *,
const struct ieee80211_key *);
static void run_delete_key_cb(struct run_softc *, void *);
#endif
static void run_calibrate_to(void *);
static void run_calibrate_cb(struct run_softc *, void *);
static void run_newassoc(struct ieee80211_node *, int);
static void run_rx_frame(struct run_softc *, uint8_t *, int);
static void run_rxeof(struct usbd_xfer *, void *,
usbd_status);
static void run_txeof(struct usbd_xfer *, void *,
usbd_status);
static int run_tx(struct run_softc *, struct mbuf *,
struct ieee80211_node *);
static void run_start(struct ifnet *);
static void run_watchdog(struct ifnet *);
static int run_ioctl(struct ifnet *, u_long, void *);
static void run_select_chan_group(struct run_softc *, int);
static void run_iq_calib(struct run_softc *, u_int);
static void run_set_agc(struct run_softc *, uint8_t);
static void run_set_rx_antenna(struct run_softc *, int);
static void run_rt2870_set_chan(struct run_softc *, u_int);
static void run_rt3070_set_chan(struct run_softc *, u_int);
static void run_rt3572_set_chan(struct run_softc *, u_int);
static void run_rt3593_set_chan(struct run_softc *, u_int);
static void run_rt5390_set_chan(struct run_softc *, u_int);
static void run_rt5592_set_chan(struct run_softc *, u_int);
static int run_set_chan(struct run_softc *,
struct ieee80211_channel *);
static void run_updateprot(struct run_softc *);
static void run_enable_tsf_sync(struct run_softc *);
static void run_enable_mrr(struct run_softc *);
static void run_set_txpreamble(struct run_softc *);
static void run_set_basicrates(struct run_softc *);
static void run_set_leds(struct run_softc *, uint16_t);
static void run_set_bssid(struct run_softc *, const uint8_t *);
static void run_set_macaddr(struct run_softc *, const uint8_t *);
static void run_updateslot(struct ifnet *);
static void run_updateslot_cb(struct run_softc *, void *);
static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
static void run_rt5390_bbp_init(struct run_softc *);
static int run_bbp_init(struct run_softc *);
static int run_rt3070_rf_init(struct run_softc *);
static int run_rt3593_rf_init(struct run_softc *);
static int run_rt5390_rf_init(struct run_softc *);
static int run_rt3070_filter_calib(struct run_softc *, uint8_t,
uint8_t, uint8_t *);
static void run_rt3070_rf_setup(struct run_softc *);
static void run_rt3593_rf_setup(struct run_softc *);
static void run_rt5390_rf_setup(struct run_softc *);
static int run_txrx_enable(struct run_softc *);
static int run_adjust_freq_offset(struct run_softc *);
static int run_init(struct ifnet *);
static void run_stop(struct ifnet *, int);
#ifndef IEEE80211_STA_ONLY
static int run_setup_beacon(struct run_softc *);
#endif
static const struct {
uint32_t reg;
uint32_t val;
} rt2870_def_mac[] = {
RT2870_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2860_def_bbp[] = {
RT2860_DEF_BBP
}, rt5390_def_bbp[] = {
RT5390_DEF_BBP
}, rt5592_def_bbp[] = {
RT5592_DEF_BBP
};
/*
* Default values for BBP register R196 for RT5592.
*/
static const uint8_t rt5592_bbp_r196[] = {
0xe0, 0x1f, 0x38, 0x32, 0x08, 0x28, 0x19, 0x0a, 0xff, 0x00,
0x16, 0x10, 0x10, 0x0b, 0x36, 0x2c, 0x26, 0x24, 0x42, 0x36,
0x30, 0x2d, 0x4c, 0x46, 0x3d, 0x40, 0x3e, 0x42, 0x3d, 0x40,
0x3c, 0x34, 0x2c, 0x2f, 0x3c, 0x35, 0x2e, 0x2a, 0x49, 0x41,
0x36, 0x31, 0x30, 0x30, 0x0e, 0x0d, 0x28, 0x21, 0x1c, 0x16,
0x50, 0x4a, 0x43, 0x40, 0x10, 0x10, 0x10, 0x10, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x7d, 0x14, 0x32, 0x2c, 0x36, 0x4c, 0x43, 0x2c,
0x2e, 0x36, 0x30, 0x6e
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2860_rf2850[] = {
RT2860_RF2850
};
static const struct {
uint8_t n, r, k;
} rt3070_freqs[] = {
RT3070_RF3052
};
static const struct rt5592_freqs {
uint16_t n;
uint8_t k, m, r;
} rt5592_freqs_20mhz[] = {
RT5592_RF5592_20MHZ
},rt5592_freqs_40mhz[] = {
RT5592_RF5592_40MHZ
};
static const struct {
uint8_t reg;
uint8_t val;
} rt3070_def_rf[] = {
RT3070_DEF_RF
}, rt3572_def_rf[] = {
RT3572_DEF_RF
},rt3593_def_rf[] = {
RT3593_DEF_RF
},rt5390_def_rf[] = {
RT5390_DEF_RF
},rt5392_def_rf[] = {
RT5392_DEF_RF
},rt5592_def_rf[] = {
RT5592_DEF_RF
},rt5592_2ghz_def_rf[] = {
RT5592_2GHZ_DEF_RF
},rt5592_5ghz_def_rf[] = {
RT5592_5GHZ_DEF_RF
};
static const struct {
u_int firstchan;
u_int lastchan;
uint8_t reg;
uint8_t val;
} rt5592_chan_5ghz[] = {
RT5592_CHAN_5GHZ
};
static int
firmware_load(const char *dname, const char *iname, uint8_t **ucodep,
size_t *sizep)
{
firmware_handle_t fh;
int error;
if ((error = firmware_open(dname, iname, &fh)) != 0)
return error;
*sizep = firmware_get_size(fh);
if ((*ucodep = firmware_malloc(*sizep)) == NULL) {
firmware_close(fh);
return ENOMEM;
}
if ((error = firmware_read(fh, 0, *ucodep, *sizep)) != 0)
firmware_free(*ucodep, *sizep);
firmware_close(fh);
return error;
}
static int
run_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return (usb_lookup(run_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
run_attach(device_t parent, device_t self, void *aux)
{
struct run_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
int i, nrx, ntx, ntries, error;
uint32_t ver;
aprint_naive("\n");
aprint_normal("\n");
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
error = usbd_set_config_no(sc->sc_udev, 1, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
return;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not get interface handle\n");
return;
}
/*
* Find all bulk endpoints. There are 7 bulk endpoints: 1 for RX
* and 6 for TX (4 EDCAs + HCCA + Prio).
* Update 03-14-2009: some devices like the Planex GW-US300MiniS
* seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
*/
nrx = ntx = 0;
id = usbd_get_interface_descriptor(sc->sc_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK)
continue;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
sc->rxq.pipe_no = ed->bEndpointAddress;
nrx++;
} else if (ntx < RUN_MAXEPOUT) {
sc->txq[ntx].pipe_no = ed->bEndpointAddress;
ntx++;
}
}
/* make sure we've got them all */
if (nrx < 1 || ntx < RUN_MAXEPOUT) {
aprint_error_dev(sc->sc_dev, "missing endpoint\n");
return;
}
usb_init_task(&sc->sc_task, run_task, sc, 0);
callout_init(&sc->scan_to, 0);
callout_setfunc(&sc->scan_to, run_next_scan, sc);
callout_init(&sc->calib_to, 0);
callout_setfunc(&sc->calib_to, run_calibrate_to, sc);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
/* wait for the chip to settle */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0)
return;
if (ver != 0 && ver != 0xffffffff)
break;
DELAY(10);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for NIC to initialize\n");
return;
}
sc->mac_ver = ver >> 16;
sc->mac_rev = ver & 0xffff;
/*
* Per the comment in run_write_region_1(), "the WRITE_REGION_1
* command is not stable on RT2860", but WRITE_REGION_1 calls
* of up to 64 bytes have been tested and found to work with
* mac_ver 0x5390, and they reduce the run time of "ifconfig
* run0 up" from 30 seconds to a couple of seconds on OHCI.
* Enable WRITE_REGION_1 for the tested version only. As other
* versions are tested and found to work, they can be added
* here.
*/
if (sc->mac_ver == 0x5390)
sc->sc_flags |= RUN_USE_BLOCK_WRITE;
/* retrieve RF rev. no and various other things from EEPROM */
run_read_eeprom(sc);
aprint_verbose_dev(sc->sc_dev,
"MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n",
sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev), sc->ntxchains,
sc->nrxchains, ether_sprintf(ic->ic_myaddr));
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_HOSTAP | /* HostAP mode supported */
#endif
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
#ifdef RUN_HWCRYPTO
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_TKIP | /* TKIP */
IEEE80211_C_AES_CCM | /* AES CCMP */
IEEE80211_C_TKIPMIC | /* TKIPMIC */
#endif
IEEE80211_C_WME | /* WME */
IEEE80211_C_WPA; /* WPA/RSN */
if (sc->rf_rev == RT2860_RF_2750 ||
sc->rf_rev == RT2860_RF_2850 ||
sc->rf_rev == RT3070_RF_3052 ||
sc->rf_rev == RT3070_RF_3053 ||
sc->rf_rev == RT5592_RF_5592) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 14; i < (int)__arraycount(rt2860_rf2850); i++) {
uint8_t chan = rt2860_rf2850[i].chan;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = run_init;
ifp->if_ioctl = run_ioctl;
ifp->if_start = run_start;
ifp->if_watchdog = run_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = run_node_alloc;
ic->ic_newassoc = run_newassoc;
ic->ic_updateslot = run_updateslot;
ic->ic_wme.wme_update = run_updateedca;
#ifdef RUN_HWCRYPTO
ic->ic_crypto.cs_key_set = run_set_key;
ic->ic_crypto.cs_key_delete = run_delete_key;
#endif
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = run_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
run_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RUN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RUN_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
static int
run_detach(device_t self, int flags)
{
struct run_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
int s;
if (ifp->if_softc == NULL)
return 0;
pmf_device_deregister(self);
s = splusb();
sc->sc_flags |= RUN_DETACHING;
if (ifp->if_flags & IFF_RUNNING) {
run_stop(ifp, 0);
callout_halt(&sc->scan_to, NULL);
callout_halt(&sc->calib_to, NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER,
NULL);
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
callout_destroy(&sc->scan_to);
callout_destroy(&sc->calib_to);
return 0;
}
static int
run_activate(device_t self, enum devact act)
{
struct run_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(sc->sc_ic.ic_ifp);
return 0;
default:
return EOPNOTSUPP;
}
}
static int
run_alloc_rx_ring(struct run_softc *sc)
{
struct run_rx_ring *rxq = &sc->rxq;
int i, error;
error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0, &rxq->pipeh);
if (error != 0)
goto fail;
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
struct run_rx_data *data = &rxq->data[i];
data->sc = sc; /* backpointer for callbacks */
error = usbd_create_xfer(sc->rxq.pipeh, RUN_MAX_RXSZ,
0, 0, &data->xfer);
if (error)
goto fail;
data->buf = usbd_get_buffer(data->xfer);
}
if (error != 0)
fail: run_free_rx_ring(sc);
return error;
}
static void
run_free_rx_ring(struct run_softc *sc)
{
struct run_rx_ring *rxq = &sc->rxq;
int i;
if (rxq->pipeh != NULL) {
usbd_abort_pipe(rxq->pipeh);
}
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
if (rxq->data[i].xfer != NULL)
usbd_destroy_xfer(rxq->data[i].xfer);
rxq->data[i].xfer = NULL;
}
if (rxq->pipeh != NULL) {
usbd_close_pipe(rxq->pipeh);
rxq->pipeh = NULL;
}
}
static int
run_alloc_tx_ring(struct run_softc *sc, int qid)
{
struct run_tx_ring *txq = &sc->txq[qid];
int i, error;
uint16_t txwisize;
txwisize = sizeof(struct rt2860_txwi);
if (sc->mac_ver == 0x5592)
txwisize += sizeof(uint32_t);
txq->cur = txq->queued = 0;
error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0, &txq->pipeh);
if (error != 0)
goto fail;
for (i = 0; i < RUN_TX_RING_COUNT; i++) {
struct run_tx_data *data = &txq->data[i];
data->sc = sc; /* backpointer for callbacks */
data->qid = qid;
error = usbd_create_xfer(txq->pipeh, RUN_MAX_TXSZ,
USBD_FORCE_SHORT_XFER, 0, &data->xfer);
if (error)
goto fail;
data->buf = usbd_get_buffer(data->xfer);
/* zeroize the TXD + TXWI part */
memset(data->buf, 0, sizeof(struct rt2870_txd) + txwisize);
}
if (error != 0)
fail: run_free_tx_ring(sc, qid);
return error;
}
static void
run_free_tx_ring(struct run_softc *sc, int qid)
{
struct run_tx_ring *txq = &sc->txq[qid];
int i;
if (txq->pipeh != NULL) {
usbd_abort_pipe(txq->pipeh);
usbd_close_pipe(txq->pipeh);
txq->pipeh = NULL;
}
for (i = 0; i < RUN_TX_RING_COUNT; i++) {
if (txq->data[i].xfer != NULL)
usbd_destroy_xfer(txq->data[i].xfer);
txq->data[i].xfer = NULL;
}
}
static int __noinline
run_load_microcode(struct run_softc *sc)
{
usb_device_request_t req;
const char *fwname;
u_char *ucode = NULL; /* XXX gcc 4.8.3: maybe-uninitialized */
size_t size = 0; /* XXX gcc 4.8.3: maybe-uninitialized */
uint32_t tmp;
int ntries, error;
/* RT3071/RT3072 use a different firmware */
if (sc->mac_ver != 0x2860 &&
sc->mac_ver != 0x2872 &&
sc->mac_ver != 0x3070)
fwname = "run-rt3071";
else
fwname = "run-rt2870";
if ((error = firmware_load("run", fwname, &ucode, &size)) != 0) {
device_printf(sc->sc_dev,
"error %d, could not read firmware %s\n", error, fwname);
return error;
}
if (size != 4096) {
device_printf(sc->sc_dev,
"invalid firmware size (should be 4KB)\n");
firmware_free(ucode, size);
return EINVAL;
}
run_read(sc, RT2860_ASIC_VER_ID, &tmp);
/* write microcode image */
run_write_region_1(sc, RT2870_FW_BASE, ucode, size);
firmware_free(ucode, size);
run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 8);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if ((error = usbd_do_request(sc->sc_udev, &req, NULL)) != 0)
return error;
usbd_delay_ms(sc->sc_udev, 10);
run_write(sc, RT2860_H2M_BBPAGENT, 0);
run_write(sc, RT2860_H2M_MAILBOX, 0);
run_write(sc, RT2860_H2M_INTSRC, 0);
if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0)
return error;
/* wait until microcontroller is ready */
for (ntries = 0; ntries < 1000; ntries++) {
if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0)
return error;
if (tmp & RT2860_MCU_READY)
break;
usbd_delay_ms(sc->sc_udev, 10);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for MCU to initialize\n");
return ETIMEDOUT;
}
sc->sc_flags |= RUN_FWLOADED;
DPRINTF(("microcode successfully loaded after %d tries\n", ntries));
return 0;
}
static int __noinline
run_reset(struct run_softc *sc)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 1);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return usbd_do_request(sc->sc_udev, &req, NULL);
}
static int __noinline
run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
{
uint32_t tmp;
int error;
error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof(tmp));
if (error == 0)
*val = le32toh(tmp);
else
*val = 0xffffffff;
return error;
}
static int
run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_READ_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
return usbd_do_request(sc->sc_udev, &req, buf);
}
static int
run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_2;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
return usbd_do_request(sc->sc_udev, &req, NULL);
}
static int __noinline
run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = htole32(val);
return run_write_region_1(sc, reg, (uint8_t *)&tmp, sizeof(tmp));
}
static int
run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
int len)
{
int error = 0;
if (sc->sc_flags & RUN_USE_BLOCK_WRITE) {
usb_device_request_t req;
/*
* NOTE: It appears the WRITE_REGION_1 command cannot be
* passed a huge amount of data, which will crash the
* firmware. Limit amount of data passed to 64 bytes at a
* time.
*/
while (len > 0) {
int delta = MIN(len, 64);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, delta);
error = usbd_do_request(sc->sc_udev, &req,
__UNCONST(buf));
if (error != 0)
break;
reg += delta;
buf += delta;
len -= delta;
}
} else {
/*
* NB: the WRITE_REGION_1 command is not stable on RT2860.
* We thus issue multiple WRITE_2 commands instead.
*/
int i;
KASSERT((len & 1) == 0);
for (i = 0; i < len && error == 0; i += 2)
error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
}
return error;
}
static int
run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int count)
{
int error = 0;
if (sc->sc_flags & RUN_USE_BLOCK_WRITE) {
while (count > 0) {
int i, delta;
uint32_t tmp[16];
delta = MIN(count, __arraycount(tmp));
for (i = 0; i < delta; i++)
tmp[i] = htole32(val);
error = run_write_region_1(sc, reg, (uint8_t *)tmp,
delta * sizeof(uint32_t));
if (error != 0)
break;
reg += delta * sizeof(uint32_t);
count -= delta;
}
} else {
for (; count > 0 && error == 0; count--, reg += 4)
error = run_write(sc, reg, val);
}
return error;
}
static int
run_efuse_read(struct run_softc *sc, uint16_t addr, uint16_t *val, int count)
{
uint32_t tmp;
uint16_t reg;
int error, ntries;
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return error;
if (count == 2)
addr *= 2;
/*-
* Read one 16-byte block into registers EFUSE_DATA[0-3]:
* DATA0: F E D C
* DATA1: B A 9 8
* DATA2: 7 6 5 4
* DATA3: 3 2 1 0
*/
tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
run_write(sc, RT3070_EFUSE_CTRL, tmp);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return error;
if (!(tmp & RT3070_EFSROM_KICK))
break;
usbd_delay_ms(sc->sc_udev, 2);
}
if (ntries == 100)
return ETIMEDOUT;
if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
*val = 0xffff; /* address not found */
return 0;
}
/* determine to which 32-bit register our 16-bit word belongs */
reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
if ((error = run_read(sc, reg, &tmp)) != 0)
return error;
tmp >>= (8 * (addr & 0x3));
*val = (addr & 1) ? tmp >> 16 : tmp & 0xffff;
return 0;
}
/* Read 16-bit from eFUSE ROM for RT3xxxx. */
static int
run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
return run_efuse_read(sc, addr, val, 2);
}
static int
run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
usb_device_request_t req;
uint16_t tmp;
int error;
addr *= 2;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_EEPROM_READ;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, sizeof(tmp));
error = usbd_do_request(sc->sc_udev, &req, &tmp);
if (error == 0)
*val = le16toh(tmp);
else
*val = 0xffff;
return error;
}
static __inline int
run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
/* either eFUSE ROM or EEPROM */
return sc->sc_srom_read(sc, addr, val);
}
static int
run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
return error;
if (!(tmp & RT2860_RF_REG_CTRL))
break;
}
if (ntries == 10)
return ETIMEDOUT;
/* RF registers are 24-bit on the RT2860 */
tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
(val & 0x3fffff) << 2 | (reg & 3);
return run_write(sc, RT2860_RF_CSR_CFG0, tmp);
}
static int
run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return ETIMEDOUT;
tmp = RT3070_RF_KICK | reg << 8;
if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
return error;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return ETIMEDOUT;
*val = tmp & 0xff;
return 0;
}
static int
run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
return run_write(sc, RT3070_RF_CSR_CFG, tmp);
}
static int
run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
return error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
*val = tmp & 0xff;
return 0;
}
static int
run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
return run_write(sc, RT2860_BBP_CSR_CFG, tmp);
}
/*
* Send a command to the 8051 microcontroller unit.
*/
static int
run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
return error;
if (!(tmp & RT2860_H2M_BUSY))
break;
}
if (ntries == 100)
return ETIMEDOUT;
tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
error = run_write(sc, RT2860_HOST_CMD, cmd);
return error;
}
/*
* Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
* Used to adjust per-rate Tx power registers.
*/
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
int8_t i, b4;
for (i = 0; i < 8; i++) {
b4 = b32 & 0xf;
b4 += delta;
if (b4 < 0)
b4 = 0;
else if (b4 > 0xf)
b4 = 0xf;
b32 = b32 >> 4 | b4 << 28;
}
return b32;
}
static const char *
run_get_rf(uint16_t rev)
{
switch (rev) {
case RT2860_RF_2820: return "RT2820";
case RT2860_RF_2850: return "RT2850";
case RT2860_RF_2720: return "RT2720";
case RT2860_RF_2750: return "RT2750";
case RT3070_RF_3020: return "RT3020";
case RT3070_RF_2020: return "RT2020";
case RT3070_RF_3021: return "RT3021";
case RT3070_RF_3022: return "RT3022";
case RT3070_RF_3052: return "RT3052";
case RT3070_RF_3053: return "RT3053";
case RT5592_RF_5592: return "RT5592";
case RT5390_RF_5370: return "RT5370";
case RT5390_RF_5372: return "RT5372";
}
return "unknown";
}
static void
run_rt3593_get_txpower(struct run_softc *sc)
{
uint16_t addr, val;
int i;
/* Read power settings for 2GHz channels. */
for (i = 0; i < 14; i += 2) {
addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE1 :
RT2860_EEPROM_PWR2GHZ_BASE1;
run_srom_read(sc, addr + i / 2, &val);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
addr = (sc->ntxchains == 3) ? RT3593_EEPROM_PWR2GHZ_BASE2 :
RT2860_EEPROM_PWR2GHZ_BASE2;
run_srom_read(sc, addr + i / 2, &val);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
if (sc->ntxchains == 3) {
run_srom_read(sc, RT3593_EEPROM_PWR2GHZ_BASE3 + i / 2,
&val);
sc->txpow3[i + 0] = (int8_t)(val & 0xff);
sc->txpow3[i + 1] = (int8_t)(val >> 8);
}
}
/* Fix broken Tx power entries. */
for (i = 0; i < 14; i++) {
if (sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
if (sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
if (sc->ntxchains == 3) {
if (sc->txpow3[i] > 31)
sc->txpow3[i] = 5;
}
}
/* Read power settings for 5GHz channels. */
for (i = 0; i < 40; i += 2) {
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
if (sc->ntxchains == 3) {
run_srom_read(sc, RT3593_EEPROM_PWR5GHZ_BASE3 + i / 2,
&val);
sc->txpow3[i + 14] = (int8_t)(val & 0xff);
sc->txpow3[i + 15] = (int8_t)(val >> 8);
}
}
}
static void
run_get_txpower(struct run_softc *sc)
{
uint16_t val;
int i;
/* Read power settings for 2GHz channels. */
for (i = 0; i < 14; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
if (sc->mac_ver != 0x5390) {
run_srom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
}
}
/* Fix broken Tx power entries. */
for (i = 0; i < 14; i++) {
if (sc->mac_ver >= 0x5390) {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 39)
sc->txpow1[i] = 5;
} else {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
}
if (sc->mac_ver > 0x5390) {
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 39)
sc->txpow2[i] = 5;
} else if (sc->mac_ver < 0x5390) {
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
}
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]));
}
/* Read power settings for 5GHz channels. */
for (i = 0; i < 40; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
}
/* Fix broken Tx power entries. */
for (i = 0; i < 40; i++ ) {
if (sc->mac_ver != 0x5592) {
if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
sc->txpow1[14 + i] = 5;
if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
sc->txpow2[14 + i] = 5;
}
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
sc->txpow2[14 + i]));
}
}
static int
run_read_eeprom(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int8_t delta_2ghz, delta_5ghz;
uint32_t tmp;
uint16_t val;
int ridx, ant, i;
/* check whether the ROM is eFUSE ROM or EEPROM */
sc->sc_srom_read = run_eeprom_read_2;
if (sc->mac_ver >= 0x3070) {
run_read(sc, RT3070_EFUSE_CTRL, &tmp);
DPRINTF(("EFUSE_CTRL=0x%08x\n", tmp));
if (tmp & RT3070_SEL_EFUSE)
sc->sc_srom_read = run_efuse_read_2;
}
/* read ROM version */
run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
/* read MAC address */
run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
if (sc->mac_ver < 0x3593) {
/* read vendor BBP settings */
for (i = 0; i < 10; i++) {
run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
sc->bbp[i].val = val & 0xff;
sc->bbp[i].reg = val >> 8;
DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg,
sc->bbp[i].val));
}
if (sc->mac_ver >= 0x3071) {
/* read vendor RF settings */
for (i = 0; i < 8; i++) {
run_srom_read(sc, RT3071_EEPROM_RF_BASE + i,
&val);
sc->rf[i].val = val & 0xff;
sc->rf[i].reg = val >> 8;
DPRINTF(("RF%d=0x%02x\n", sc->rf[i].reg,
sc->rf[i].val));
}
}
}
/* read RF frequency offset from EEPROM */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS :
RT3593_EEPROM_FREQ, &val);
sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff));
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_FREQ_LEDS :
RT3593_EEPROM_FREQ, &val);
if ((val >> 8) != 0xff) {
/* read LEDs operating mode */
sc->leds = val >> 8;
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED1 :
RT3593_EEPROM_LED1, &sc->led[0]);
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED2 :
RT3593_EEPROM_LED2, &sc->led[1]);
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LED3 :
RT3593_EEPROM_LED3, &sc->led[2]);
} else {
/* broken EEPROM, use default settings */
sc->leds = 0x01;
sc->led[0] = 0x5555;
sc->led[1] = 0x2221;
sc->led[2] = 0x5627; /* differs from RT2860 */
}
DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
sc->leds, sc->led[0], sc->led[1], sc->led[2]));
/* read RF information */
if (sc->mac_ver == 0x5390 || sc->mac_ver == 0x5392)
run_srom_read(sc, 0x00, &val);
else
run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
if (val == 0xffff) {
DPRINTF(("invalid EEPROM antenna info, using default\n"));
if (sc->mac_ver == 0x3572) {
/* default to RF3052 2T2R */
sc->rf_rev = RT3070_RF_3052;
sc->ntxchains = 2;
sc->nrxchains = 2;
} else if (sc->mac_ver >= 0x3070) {
/* default to RF3020 1T1R */
sc->rf_rev = RT3070_RF_3020;
sc->ntxchains = 1;
sc->nrxchains = 1;
} else {
/* default to RF2820 1T2R */
sc->rf_rev = RT2860_RF_2820;
sc->ntxchains = 1;
sc->nrxchains = 2;
}
} else {
if (sc->mac_ver == 0x5390 || sc->mac_ver == 0x5392) {
sc->rf_rev = val;
run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
} else
sc->rf_rev = (val >> 8) & 0xf;
sc->ntxchains = (val >> 4) & 0xf;
sc->nrxchains = val & 0xf;
}
DPRINTF(("EEPROM RF rev=0x%04x chains=%dT%dR\n",
sc->rf_rev, sc->ntxchains, sc->nrxchains));
run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
DPRINTF(("EEPROM CFG 0x%04x\n", val));
/* check if driver should patch the DAC issue */
if ((val >> 8) != 0xff)
sc->patch_dac = (val >> 15) & 1;
if ((val & 0xff) != 0xff) {
sc->ext_5ghz_lna = (val >> 3) & 1;
sc->ext_2ghz_lna = (val >> 2) & 1;
/* check if RF supports automatic Tx access gain control */
sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
/* check if we have a hardware radio switch */
sc->rfswitch = val & 1;
}
/* Read Tx power settings. */
if (sc->mac_ver == 0x3593)
run_rt3593_get_txpower(sc);
else
run_get_txpower(sc);
/* read Tx power compensation for each Tx rate */
run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
delta_2ghz = delta_5ghz = 0;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_2ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_2ghz = -delta_2ghz;
}
val >>= 8;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_5ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_5ghz = -delta_5ghz;
}
DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
delta_2ghz, delta_5ghz));
for (ridx = 0; ridx < 5; ridx++) {
uint32_t reg;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val);
reg = val;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val);
reg |= (uint32_t)val << 16;
sc->txpow20mhz[ridx] = reg;
sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
"40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
}
DPRINTF(("mac_ver %hx\n", sc->mac_ver));
/* read RSSI offsets and LNA gains from EEPROM */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_2GHZ :
RT3593_EEPROM_RSSI1_2GHZ, &val);
sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
sc->rssi_2ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_2GHZ :
RT3593_EEPROM_RSSI2_2GHZ, &val);
if (sc->mac_ver >= 0x3070) {
if (sc->mac_ver == 0x3593) {
sc->txmixgain_2ghz = 0;
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
} else {
/*
* On RT3070 chips (limited to 2 Rx chains), this ROM
* field contains the Tx mixer gain for the 2GHz band.
*/
if ((val & 0xff) != 0xff)
sc->txmixgain_2ghz = val & 0x7;
}
DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz));
} else {
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
}
if (sc->mac_ver == 0x3593)
run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val);
sc->lna[2] = val >> 8; /* channel group 2 */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI1_5GHZ :
RT3593_EEPROM_RSSI1_5GHZ, &val);
sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
sc->rssi_5ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_RSSI2_5GHZ :
RT3593_EEPROM_RSSI2_5GHZ, &val);
if (sc->mac_ver == 0x3572) {
/*
* On RT3572 chips (limited to 2 Rx chains), this ROM
* field contains the Tx mixer gain for the 5GHz band.
*/
if ((val & 0xff) != 0xff)
sc->txmixgain_5ghz = val & 0x7;
DPRINTF(("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz));
} else {
sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
}
if (sc->mac_ver == 0x3593) {
sc->txmixgain_5ghz = 0;
run_srom_read(sc, RT3593_EEPROM_LNA_5GHZ, &val);
}
sc->lna[3] = val >> 8; /* channel group 3 */
run_srom_read(sc, (sc->mac_ver != 0x3593) ? RT2860_EEPROM_LNA :
RT3593_EEPROM_LNA, &val);
sc->lna[0] = val & 0xff; /* channel group 0 */
sc->lna[1] = val >> 8; /* channel group 1 */
/* fix broken 5GHz LNA entries */
if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 2));
sc->lna[2] = sc->lna[1];
}
if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 3));
sc->lna[3] = sc->lna[1];
}
/* fix broken RSSI offset entries */
for (ant = 0; ant < 3; ant++) {
if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
ant + 1, sc->rssi_2ghz[ant]));
sc->rssi_2ghz[ant] = 0;
}
if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
ant + 1, sc->rssi_5ghz[ant]));
sc->rssi_5ghz[ant] = 0;
}
}
return 0;
}
static struct ieee80211_node *
run_node_alloc(struct ieee80211_node_table *nt)
{
struct run_node *rn =
malloc(sizeof(struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
return rn ? &rn->ni : NULL;
}
static int
run_media_change(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
run_init(ifp);
return 0;
}
static void
run_next_scan(void *arg)
{
struct run_softc *sc = arg;
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic);
}
static void
run_task(void *arg)
{
struct run_softc *sc = arg;
struct run_host_cmd_ring *ring = &sc->cmdq;
struct run_host_cmd *cmd;
int s;
/* process host commands */
s = splusb();
while (ring->next != ring->cur) {
cmd = &ring->cmd[ring->next];
splx(s);
membar_consumer();
/* callback */
cmd->cb(sc, cmd->data);
s = splusb();
atomic_dec_uint(&ring->queued);
ring->next = (ring->next + 1) % RUN_HOST_CMD_RING_COUNT;
}
wakeup(ring);
splx(s);
}
static void
run_do_async(struct run_softc *sc, void (*cb)(struct run_softc *, void *),
void *arg, int len)
{
struct run_host_cmd_ring *ring = &sc->cmdq;
struct run_host_cmd *cmd;
int s;
if (sc->sc_flags & RUN_DETACHING)
return;
s = splusb();
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof(cmd->data));
memcpy(cmd->data, arg, len);
membar_producer();
ring->cur = (ring->cur + 1) % RUN_HOST_CMD_RING_COUNT;
/* if there is no pending command already, schedule a task */
if (atomic_inc_uint_nv(&ring->queued) == 1)
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
splx(s);
}
static int
run_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct run_softc *sc = ic->ic_ifp->if_softc;
struct run_cmd_newstate cmd;
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
/* do it in a process context */
cmd.state = nstate;
cmd.arg = arg;
run_do_async(sc, run_newstate_cb, &cmd, sizeof(cmd));
return 0;
}
static void
run_newstate_cb(struct run_softc *sc, void *arg)
{
struct run_cmd_newstate *cmd = arg;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp, sta[3];
uint8_t wcid;
int s;
s = splnet();
ostate = ic->ic_state;
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
run_set_leds(sc, RT2860_LED_RADIO);
}
switch (cmd->state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
run_write(sc, RT2860_BCN_TIME_CFG,
tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN));
}
break;
case IEEE80211_S_SCAN:
run_set_chan(sc, ic->ic_curchan);
callout_schedule(&sc->scan_to, hz / 5);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
run_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
run_set_chan(sc, ic->ic_curchan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
run_updateslot(ifp);
run_enable_mrr(sc);
run_set_txpreamble(sc);
run_set_basicrates(sc);
run_set_bssid(sc, ni->ni_bssid);
}
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS)
(void)run_setup_beacon(sc);
#endif
if (ic->ic_opmode == IEEE80211_M_STA) {
/* add BSS entry to the WCID table */
wcid = RUN_AID2WCID(ni->ni_associd);
run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
ni->ni_macaddr, IEEE80211_ADDR_LEN);
/* fake a join to init the tx rate */
run_newassoc(ni, 1);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
run_enable_tsf_sync(sc);
/* clear statistic registers used by AMRR */
run_read_region_1(sc, RT2860_TX_STA_CNT0,
(uint8_t *)sta, sizeof(sta));
/* start calibration timer */
callout_schedule(&sc->calib_to, hz);
}
/* turn link LED on */
run_set_leds(sc, RT2860_LED_RADIO |
(IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ?
RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
break;
}
(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
splx(s);
}
static int
run_updateedca(struct ieee80211com *ic)
{
/* do it in a process context */
run_do_async(ic->ic_ifp->if_softc, run_updateedca_cb, NULL, 0);
return 0;
}
/* ARGSUSED */
static void
run_updateedca_cb(struct run_softc *sc, void *arg)
{
struct ieee80211com *ic = &sc->sc_ic;
int s, aci;
s = splnet();
/* update MAC TX configuration registers */
for (aci = 0; aci < WME_NUM_AC; aci++) {
run_write(sc, RT2860_EDCA_AC_CFG(aci),
ic->ic_wme.wme_params[aci].wmep_logcwmax << 16 |
ic->ic_wme.wme_params[aci].wmep_logcwmin << 12 |
ic->ic_wme.wme_params[aci].wmep_aifsn << 8 |
ic->ic_wme.wme_params[aci].wmep_txopLimit);
}
/* update SCH/DMA registers too */
run_write(sc, RT2860_WMM_AIFSN_CFG,
ic->ic_wme.wme_params[WME_AC_VO].wmep_aifsn << 12 |
ic->ic_wme.wme_params[WME_AC_VI].wmep_aifsn << 8 |
ic->ic_wme.wme_params[WME_AC_BK].wmep_aifsn << 4 |
ic->ic_wme.wme_params[WME_AC_BE].wmep_aifsn);
run_write(sc, RT2860_WMM_CWMIN_CFG,
ic->ic_wme.wme_params[WME_AC_VO].wmep_logcwmin << 12 |
ic->ic_wme.wme_params[WME_AC_VI].wmep_logcwmin << 8 |
ic->ic_wme.wme_params[WME_AC_BK].wmep_logcwmin << 4 |
ic->ic_wme.wme_params[WME_AC_BE].wmep_logcwmin);
run_write(sc, RT2860_WMM_CWMAX_CFG,
ic->ic_wme.wme_params[WME_AC_VO].wmep_logcwmax << 12 |
ic->ic_wme.wme_params[WME_AC_VI].wmep_logcwmax << 8 |
ic->ic_wme.wme_params[WME_AC_BK].wmep_logcwmax << 4 |
ic->ic_wme.wme_params[WME_AC_BE].wmep_logcwmax);
run_write(sc, RT2860_WMM_TXOP0_CFG,
ic->ic_wme.wme_params[WME_AC_BK].wmep_txopLimit << 16 |
ic->ic_wme.wme_params[WME_AC_BE].wmep_txopLimit);
run_write(sc, RT2860_WMM_TXOP1_CFG,
ic->ic_wme.wme_params[WME_AC_VO].wmep_txopLimit << 16 |
ic->ic_wme.wme_params[WME_AC_VI].wmep_txopLimit);
splx(s);
}
#ifdef RUN_HWCRYPTO
static int
run_set_key(struct ieee80211com *ic, const struct ieee80211_key *k,
const uint8_t *mac)
{
struct run_softc *sc = ic->ic_ifp->if_softc;
struct ieee80211_node *ni = ic->ic_bss;
struct run_cmd_key cmd;
/* do it in a process context */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
run_do_async(sc, run_set_key_cb, &cmd, sizeof(cmd));
return 1;
}
static void
run_set_key_cb(struct run_softc *sc, void *arg)
{
#ifndef IEEE80211_STA_ONLY
struct ieee80211com *ic = &sc->sc_ic;
#endif
struct run_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t attr;
uint16_t base;
uint8_t mode, wcid, iv[8];
/* map net80211 cipher to RT2860 security mode */
switch (k->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
k->wk_flags |= IEEE80211_KEY_GROUP; /* XXX */
if (k->wk_keylen == 5)
mode = RT2860_MODE_WEP40;
else
mode = RT2860_MODE_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
mode = RT2860_MODE_TKIP;
break;
case IEEE80211_CIPHER_AES_CCM:
mode = RT2860_MODE_AES_CCMP;
break;
default:
return;
}
if (k->wk_flags & IEEE80211_KEY_GROUP) {
wcid = 0; /* NB: update WCID0 for group keys */
base = RT2860_SKEY(0, k->wk_keyix);
} else {
wcid = RUN_AID2WCID(cmd->associd);
base = RT2860_PKEY(wcid);
}
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
run_write_region_1(sc, base, k->wk_key, 16);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
run_write_region_1(sc, base + 16, &k->wk_key[16], 8);
run_write_region_1(sc, base + 24, &k->wk_key[24], 8);
} else
#endif
{
run_write_region_1(sc, base + 16, &k->wk_key[24], 8);
run_write_region_1(sc, base + 24, &k->wk_key[16], 8);
}
} else {
/* roundup len to 16-bit: XXX fix write_region_1() instead */
run_write_region_1(sc, base, k->wk_key,
(k->wk_keylen + 1) & ~1);
}
if (!(k->wk_flags & IEEE80211_KEY_GROUP) ||
(k->wk_flags & IEEE80211_KEY_XMIT)) {
/* set initial packet number in IV+EIV */
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
memset(iv, 0, sizeof(iv));
iv[3] = sc->sc_ic.ic_crypto.cs_def_txkey << 6;
} else {
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
iv[0] = k->wk_keytsc >> 8;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = k->wk_keytsc;
} else /* CCMP */ {
iv[0] = k->wk_keytsc;
iv[1] = k->wk_keytsc >> 8;
iv[2] = 0;
}
iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV;
iv[4] = k->wk_keytsc >> 16;
iv[5] = k->wk_keytsc >> 24;
iv[6] = k->wk_keytsc >> 32;
iv[7] = k->wk_keytsc >> 40;
}
run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8);
}
if (k->wk_flags & IEEE80211_KEY_GROUP) {
/* install group key */
run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
attr &= ~(0xf << (k->wk_keyix * 4));
attr |= mode << (k->wk_keyix * 4);
run_write(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* install pairwise key */
run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
run_write(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
static int
run_delete_key(struct ieee80211com *ic, const struct ieee80211_key *k)
{
struct run_softc *sc = ic->ic_ifp->if_softc;
struct ieee80211_node *ni = ic->ic_bss;
struct run_cmd_key cmd;
/* do it in a process context */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
run_do_async(sc, run_delete_key_cb, &cmd, sizeof(cmd));
return 1;
}
static void
run_delete_key_cb(struct run_softc *sc, void *arg)
{
struct run_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t attr;
uint8_t wcid;
if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
k->wk_flags |= IEEE80211_KEY_GROUP; /* XXX */
if (k->wk_flags & IEEE80211_KEY_GROUP) {
/* remove group key */
run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
attr &= ~(0xf << (k->wk_keyix * 4));
run_write(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* remove pairwise key */
wcid = RUN_AID2WCID(cmd->associd);
run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
attr &= ~0xf;
run_write(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
#endif
static void
run_calibrate_to(void *arg)
{
/* do it in a process context */
run_do_async(arg, run_calibrate_cb, NULL, 0);
/* next timeout will be rescheduled in the calibration task */
}
/* ARGSUSED */
static void
run_calibrate_cb(struct run_softc *sc, void *arg)
{
struct ifnet *ifp = &sc->sc_if;
uint32_t sta[3];
int s, error;
/* read statistic counters (clear on read) and update AMRR state */
error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
sizeof(sta));
if (error != 0)
goto skip;
DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n",
le32toh(sta[1]) >> 16, le32toh(sta[1]) & 0xffff,
le32toh(sta[0]) & 0xffff));
s = splnet();
/* count failed TX as errors */
if_statadd(ifp, if_oerrors, le32toh(sta[0]) & 0xffff);
sc->amn.amn_retrycnt =
(le32toh(sta[0]) & 0xffff) + /* failed TX count */
(le32toh(sta[1]) >> 16); /* TX retransmission count */
sc->amn.amn_txcnt =
sc->amn.amn_retrycnt +
(le32toh(sta[1]) & 0xffff); /* successful TX count */
ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
splx(s);
skip: callout_schedule(&sc->calib_to, hz);
}
static void
run_newassoc(struct ieee80211_node *ni, int isnew)
{
struct run_softc *sc = ni->ni_ic->ic_ifp->if_softc;
struct run_node *rn = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t rate;
int ridx, i, j;
DPRINTF(("new assoc isnew=%d addr=%s\n",
isnew, ether_sprintf(ni->ni_macaddr)));
ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
/* start at lowest available bit-rate, AMRR will raise */
ni->ni_txrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
/* convert 802.11 rate to hardware rate index */
for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
rn->ridx[i] = ridx;
/* determine rate of control response frames */
for (j = i; j >= 0; j--) {
if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
rt2860_rates[rn->ridx[i]].phy ==
rt2860_rates[rn->ridx[j]].phy)
break;
}
if (j >= 0) {
rn->ctl_ridx[i] = rn->ridx[j];
} else {
/* no basic rate found, use mandatory one */
rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
}
DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n",
rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]));
}
}
/*
* Return the Rx chain with the highest RSSI for a given frame.
*/
static __inline uint8_t
run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
{
uint8_t rxchain = 0;
if (sc->nrxchains > 1) {
if (rxwi->rssi[1] > rxwi->rssi[rxchain])
rxchain = 1;
if (sc->nrxchains > 2)
if (rxwi->rssi[2] > rxwi->rssi[rxchain])
rxchain = 2;
}
return rxchain;
}
static void
run_rx_frame(struct run_softc *sc, uint8_t *buf, int dmalen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct rt2870_rxd *rxd;
struct rt2860_rxwi *rxwi;
struct mbuf *m;
uint32_t flags;
uint16_t len, rxwisize, phy;
uint8_t ant, rssi;
int s;
#ifdef RUN_HWCRYPTO
int decrypted = 0;
#endif
rxwi = (struct rt2860_rxwi *)buf;
rxwisize = sizeof(struct rt2860_rxwi);
if (sc->mac_ver == 0x5592)
rxwisize += sizeof(uint64_t);
else if (sc->mac_ver == 0x3593)
rxwisize += sizeof(uint32_t);
len = le16toh(rxwi->len) & 0xfff;
if (__predict_false(len > dmalen)) {
DPRINTF(("bad RXWI length %u > %u\n", len, dmalen));
return;
}
/* Rx descriptor is located at the end */
rxd = (struct rt2870_rxd *)(buf + dmalen);
flags = le32toh(rxd->flags);
if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
if_statinc(ifp, if_ierrors);
return;
}
wh = (struct ieee80211_frame *)(buf + rxwisize);
if (__predict_false((flags & RT2860_RX_MICERR))) {
/* report MIC failures to net80211 for TKIP */
ieee80211_notify_michael_failure(ic, wh, 0/* XXX */);
if_statinc(ifp, if_ierrors);
return;
}
if (flags & RT2860_RX_L2PAD) {
u_int hdrlen = ieee80211_hdrspace(ic, wh);
memmove((uint8_t *)wh + 2, wh, hdrlen);
wh = (struct ieee80211_frame *)((uint8_t *)wh + 2);
}
#ifdef RUN_HWCRYPTO
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
decrypted = 1;
}
#endif
/* could use m_devget but net80211 wants contig mgmt frames */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
if_statinc(ifp, if_ierrors);
return;
}
if (len > MHLEN) {
if (__predict_true(len <= MCLBYTES))
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
if_statinc(ifp, if_ierrors);
m_freem(m);
return;
}
}
/* finalize mbuf */
m_set_rcvif(m, ifp);
memcpy(mtod(m, void *), wh, len);
m->m_pkthdr.len = m->m_len = len;
ant = run_maxrssi_chain(sc, rxwi);
rssi = rxwi->rssi[ant];
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_antsignal = rssi;
tap->wr_antenna = ant;
tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
tap->wr_rate = 2; /* in case it can't be found below */
phy = le16toh(rxwi->phy);
switch (phy & RT2860_PHY_MODE) {
case RT2860_PHY_CCK:
switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
}
if (phy & RT2860_PHY_SHPRE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case RT2860_PHY_OFDM:
switch (phy & RT2860_PHY_MCS) {
case 0: tap->wr_rate = 12; break;
case 1: tap->wr_rate = 18; break;
case 2: tap->wr_rate = 24; break;
case 3: tap->wr_rate = 36; break;
case 4: tap->wr_rate = 48; break;
case 5: tap->wr_rate = 72; break;
case 6: tap->wr_rate = 96; break;
case 7: tap->wr_rate = 108; break;
}
break;
}
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
s = splnet();
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
#ifdef RUN_HWCRYPTO
if (decrypted) {
uint32_t icflags = ic->ic_flags;
ic->ic_flags &= ~IEEE80211_F_DROPUNENC; /* XXX */
ieee80211_input(ic, m, ni, rssi, 0);
ic->ic_flags = icflags;
} else
#endif
ieee80211_input(ic, m, ni, rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
/*
* In HostAP mode, ieee80211_input() will enqueue packets in if_snd
* without calling if_start().
*/
if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
run_start(ifp);
splx(s);
}
static void
run_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct run_rx_data *data = priv;
struct run_softc *sc = data->sc;
uint8_t *buf;
uint32_t dmalen;
int xferlen;
uint16_t rxwisize;
if (__predict_false(sc->sc_flags & RUN_DETACHING))
return;
rxwisize = sizeof(struct rt2860_rxwi);
if (sc->mac_ver == 0x5592)
rxwisize += sizeof(uint64_t);
else if (sc->mac_ver == 0x3593)
rxwisize += sizeof(uint32_t);
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF(("RX status=%s\n", usbd_errstr(status)));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->rxq.pipeh);
if (status != USBD_CANCELLED)
goto skip;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL);
if (__predict_false(xferlen < (int)(sizeof(uint32_t) +
rxwisize + sizeof(struct rt2870_rxd)))) {
DPRINTF(("xfer too short %d\n", xferlen));
goto skip;
}
/* HW can aggregate multiple 802.11 frames in a single USB xfer */
buf = data->buf;
while (xferlen > 8) {
dmalen = le32toh(*(uint32_t *)buf) & 0xffff;
if (__predict_false((dmalen >= (uint32_t)-8) || dmalen == 0 ||
(dmalen & 3) != 0)) {
DPRINTF(("bad DMA length %u (%x)\n", dmalen, dmalen));
break;
}
if (__predict_false(dmalen + 8 > (uint32_t)xferlen)) {
DPRINTF(("bad DMA length %u > %d\n",
dmalen + 8, xferlen));
break;
}
run_rx_frame(sc, buf + sizeof(uint32_t), dmalen);
buf += dmalen + 8;
xferlen -= dmalen + 8;
}
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, data, data->buf, RUN_MAX_RXSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, run_rxeof);
status = usbd_transfer(xfer);
if (status != USBD_NORMAL_COMPLETION &&
status != USBD_IN_PROGRESS)
device_printf(sc->sc_dev, "requeuing rx failed: %s\n",
usbd_errstr(status));
}
static void
run_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct run_tx_data *data = priv;
struct run_softc *sc = data->sc;
struct run_tx_ring *txq = &sc->txq[data->qid];
struct ifnet *ifp = &sc->sc_if;
int s;
s = splnet();
txq->queued--;
sc->qfullmsk &= ~(1 << data->qid);
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
DPRINTF(("%s: usb error on tx: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status)));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(txq->pipeh);
if_statinc(ifp, if_oerrors);
splx(s);
return;
}
sc->sc_tx_timer = 0;
if_statinc(ifp, if_opackets);
ifp->if_flags &= ~IFF_OACTIVE;
run_start(ifp);
splx(s);
}
static int
run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct run_node *rn = (void *)ni;
struct ieee80211_frame *wh;
#ifndef RUN_HWCRYPTO
struct ieee80211_key *k;
#endif
struct run_tx_ring *ring;
struct run_tx_data *data;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
uint16_t qos, dur, mcs;
uint16_t txwisize;
uint8_t type, tid, qid;
int hasqos, ridx, ctl_ridx, xferlen;
uint8_t pad;
usbd_status status;
wh = mtod(m, struct ieee80211_frame *);
#ifndef RUN_HWCRYPTO
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
#endif
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ((struct ieee80211_qosframe *)wh)->i_qos[0];
tid = qos & IEEE80211_QOS_TID;
qid = TID_TO_WME_AC(tid);
} else {
qos = 0;
tid = 0;
qid = WME_AC_BE;
}
ring = &sc->txq[qid];
data = &ring->data[ring->cur];
/* pickup a rate index */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
ridx = sc->fixed_ridx;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else {
ridx = rn->ridx[ni->ni_txrate];
ctl_ridx = rn->ctl_ridx[ni->ni_txrate];
}
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
txwisize = sizeof(struct rt2860_txwi);
if (sc->mac_ver == 0x5592)
txwisize += sizeof(uint32_t);
xferlen = txwisize + m->m_pkthdr.len;
/* roundup to 32-bit alignment */
xferlen = (xferlen + 3) & ~3;
txd = (struct rt2870_txd *)data->buf;
txd->flags = RT2860_TX_QSEL_EDCA;
txd->len = htole16(xferlen);
/*
* Ether both are true or both are false, the header
* are nicely aligned to 32-bit. So, no L2 padding.
*/
if (IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh))
pad = 0;
else
pad = 2;
/* setup TX Wireless Information */
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->flags = 0;
txwi->xflags = hasqos ? 0 : RT2860_TX_NSEQ;
txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ?
RUN_AID2WCID(ni->ni_associd) : 0xff;
txwi->len = htole16(m->m_pkthdr.len - pad);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
txwi->phy = htole16(RT2860_PHY_CCK);
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else
mcs |= RT2860_PHY_OFDM;
txwi->phy = htole16(mcs);
txwi->txop = RT2860_TX_TXOP_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) !=
IEEE80211_QOS_ACKPOLICY_NOACK)) {
txwi->xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ctl_ridx].sp_ack_dur;
else
dur = rt2860_rates[ctl_ridx].lp_ack_dur;
*(uint16_t *)wh->i_dur = htole16(dur);
}
#ifndef IEEE80211_STA_ONLY
/* ask MAC to insert timestamp into probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
/* NOTE: beacons do not pass through tx_data() */
txwi->flags |= RT2860_TX_TS;
#endif
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct run_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rt2860_rates[ridx].rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wt_hwqueue = qid;
if (mcs & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
}
m_copydata(m, 0, m->m_pkthdr.len, ((uint8_t *)txwi) + txwisize);
m_freem(m);
xferlen += sizeof(*txd) + 4;
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, RUN_TX_TIMEOUT, run_txeof);
status = usbd_transfer(data->xfer);
if (__predict_false(status != USBD_IN_PROGRESS &&
status != USBD_NORMAL_COMPLETION)) {
device_printf(sc->sc_dev, "queuing tx failed: %s\n",
usbd_errstr(status));
return EIO;
}
ieee80211_free_node(ni);
ring->cur = (ring->cur + 1) % RUN_TX_RING_COUNT;
if (++ring->queued >= RUN_TX_RING_COUNT)
sc->qfullmsk |= 1 << qid;
return 0;
}
static void
run_start(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
if (sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* send pending management frames first */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* encapsulate and send data frames */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < (int)sizeof(*eh) &&
(m = m_pullup(m, sizeof(*eh))) == NULL) {
if_statinc(ifp, if_oerrors);
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
if_statinc(ifp, if_oerrors);
continue;
}
bpf_mtap(ifp, m, BPF_D_OUT);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
if_statinc(ifp, if_oerrors);
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
if (run_tx(sc, m, ni) != 0) {
ieee80211_free_node(ni);
if_statinc(ifp, if_oerrors);
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
run_watchdog(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
/* run_init(ifp); XXX needs a process context! */
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
static int
run_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP|IFF_RUNNING:
break;
case IFF_UP:
run_init(ifp);
break;
case IFF_RUNNING:
run_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
run_init(ifp);
}
error = 0;
}
splx(s);
return error;
}
static void
run_select_chan_group(struct run_softc *sc, int group)
{
uint32_t tmp;
uint8_t agc;
run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
if (sc->mac_ver < 0x3572)
run_bbp_write(sc, 86, 0x00);
if (sc->mac_ver == 0x3593) {
run_bbp_write(sc, 77, 0x98);
run_bbp_write(sc, 83, (group == 0) ? 0x8a : 0x9a);
}
if (group == 0) {
if (sc->ext_2ghz_lna) {
if (sc->mac_ver >= 0x5390)
run_bbp_write(sc, 75, 0x52);
else {
run_bbp_write(sc, 82, 0x62);
run_bbp_write(sc, 75, 0x46);
}
} else {
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 79, 0x1c);
run_bbp_write(sc, 80, 0x0e);
run_bbp_write(sc, 81, 0x3a);
run_bbp_write(sc, 82, 0x62);
run_bbp_write(sc, 195, 0x80);
run_bbp_write(sc, 196, 0xe0);
run_bbp_write(sc, 195, 0x81);
run_bbp_write(sc, 196, 0x1f);
run_bbp_write(sc, 195, 0x82);
run_bbp_write(sc, 196, 0x38);
run_bbp_write(sc, 195, 0x83);
run_bbp_write(sc, 196, 0x32);
run_bbp_write(sc, 195, 0x85);
run_bbp_write(sc, 196, 0x28);
run_bbp_write(sc, 195, 0x86);
run_bbp_write(sc, 196, 0x19);
} else if (sc->mac_ver >= 0x5390) {
run_bbp_write(sc, 75, 0x50);
} else {
run_bbp_write(sc, 82,
(sc->mac_ver == 0x3593) ? 0x62 : 0x84);
run_bbp_write(sc, 75, 0x50);
}
}
} else {
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 79, 0x18);
run_bbp_write(sc, 80, 0x08);
run_bbp_write(sc, 81, 0x38);
run_bbp_write(sc, 82, 0x92);
run_bbp_write(sc, 195, 0x80);
run_bbp_write(sc, 196, 0xf0);
run_bbp_write(sc, 195, 0x81);
run_bbp_write(sc, 196, 0x1e);
run_bbp_write(sc, 195, 0x82);
run_bbp_write(sc, 196, 0x28);
run_bbp_write(sc, 195, 0x83);
run_bbp_write(sc, 196, 0x20);
run_bbp_write(sc, 195, 0x85);
run_bbp_write(sc, 196, 0x7f);
run_bbp_write(sc, 195, 0x86);
run_bbp_write(sc, 196, 0x7f);
} else if (sc->mac_ver == 0x3572)
run_bbp_write(sc, 82, 0x94);
else
run_bbp_write(sc, 82,
(sc->mac_ver == 0x3593) ? 0x82 : 0xf2);
if (sc->ext_5ghz_lna)
run_bbp_write(sc, 75, 0x46);
else
run_bbp_write(sc, 75, 0x50);
}
run_read(sc, RT2860_TX_BAND_CFG, &tmp);
tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
run_write(sc, RT2860_TX_BAND_CFG, tmp);
/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
if (sc->mac_ver == 0x3593)
tmp |= RT3593_LNA_PE_G2_EN | RT3593_LNA_PE_A2_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE1_EN;
if (group == 0) { /* 2GHz */
tmp |= RT2860_PA_PE_G0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_G1_EN;
} else { /* 5GHz */
tmp |= RT2860_PA_PE_A0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_A1_EN;
if (sc->mac_ver == 0x3593) {
if (sc->ntxchains > 2)
tmp |= RT3593_PA_PE_G2_EN;
}
}
if (sc->mac_ver == 0x3572) {
run_rt3070_rf_write(sc, 8, 0x00);
run_write(sc, RT2860_TX_PIN_CFG, tmp);
run_rt3070_rf_write(sc, 8, 0x80);
} else
run_write(sc, RT2860_TX_PIN_CFG, tmp);
if (sc->mac_ver == 0x5592) {
run_bbp_write(sc, 195, 0x8d);
run_bbp_write(sc, 196, 0x1a);
}
if (sc->mac_ver == 0x3593) {
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x01010000;
if (group == 0)
tmp |= 0x00010000;
tmp = (tmp & ~0x00009090) | 0x00000090;
run_write(sc, RT2860_GPIO_CTRL, tmp);
}
/* set initial AGC value */
if (group == 0) { /* 2GHz band */
if (sc->mac_ver >= 0x3070)
agc = 0x1c + sc->lna[0] * 2;
else
agc = 0x2e + sc->lna[0];
} else { /* 5GHz band */
if (sc->mac_ver == 0x3572)
agc = 0x22 + (sc->lna[group] * 5) / 3;
else
agc = 0x32 + (sc->lna[group] * 5) / 3;
}
run_set_agc(sc, agc);
}
static void
run_rt2870_set_chan(struct run_softc *sc, u_int chan)
{
const struct rfprog *rfprog = rt2860_rf2850;
uint32_t r2, r3, r4;
int8_t txpow1, txpow2;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
r2 = rfprog[i].r2;
if (sc->ntxchains == 1)
r2 |= 1 << 12; /* 1T: disable Tx chain 2 */
if (sc->nrxchains == 1)
r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
r2 |= 1 << 4; /* 2R: disable Rx chain 3 */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (chan > 14) {
if (txpow1 >= 0)
txpow1 = txpow1 << 1 | 1;
else
txpow1 = (7 + txpow1) << 1;
if (txpow2 >= 0)
txpow2 = txpow2 << 1 | 1;
else
txpow2 = (7 + txpow2) << 1;
}
r3 = rfprog[i].r3 | txpow1 << 7;
r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
usbd_delay_ms(sc->sc_udev, 10);
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
usbd_delay_ms(sc->sc_udev, 10);
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
}
static void
run_rt3070_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
int i;
KASSERT(chan >= 1 && chan <= 14); /* RT3070 is 2GHz only */
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++)
continue;
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
run_rt3070_rf_read(sc, 6, &rf);
rf = (rf & ~0x03) | rt3070_freqs[i].r;
run_rt3070_rf_write(sc, 6, rf);
/* set Tx0 power */
run_rt3070_rf_read(sc, 12, &rf);
rf = (rf & ~0x1f) | txpow1;
run_rt3070_rf_write(sc, 12, rf);
/* set Tx1 power */
run_rt3070_rf_read(sc, 13, &rf);
rf = (rf & ~0x1f) | txpow2;
run_rt3070_rf_write(sc, 13, rf);
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
else if (sc->ntxchains == 2)
rf |= 1 << 7; /* 2T: disable Tx chain 3 */
if (sc->nrxchains == 1)
rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
rf |= 1 << 6; /* 2R: disable Rx chain 3 */
run_rt3070_rf_write(sc, 1, rf);
/* set RF offset */
run_rt3070_rf_read(sc, 23, &rf);
rf = (rf & ~0x7f) | sc->freq;
run_rt3070_rf_write(sc, 23, rf);
/* program RF filter */
run_rt3070_rf_read(sc, 24, &rf); /* Tx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
run_rt3070_rf_write(sc, 24, rf);
run_rt3070_rf_read(sc, 31, &rf); /* Rx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
run_rt3070_rf_write(sc, 31, rf);
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
run_rt3070_rf_write(sc, 7, rf | 0x01);
}
static void
run_rt3572_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint32_t tmp;
uint8_t rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (chan <= 14) {
run_bbp_write(sc, 25, sc->bbp25);
run_bbp_write(sc, 26, sc->bbp26);
} else {
/* enable IQ phase correction */
run_bbp_write(sc, 25, 0x09);
run_bbp_write(sc, 26, 0xff);
}
run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k);
run_rt3070_rf_read(sc, 6, &rf);
rf = (rf & ~0x0f) | rt3070_freqs[i].r;
rf |= (chan <= 14) ? 0x08 : 0x04;
run_rt3070_rf_write(sc, 6, rf);
/* set PLL mode */
run_rt3070_rf_read(sc, 5, &rf);
rf &= ~(0x08 | 0x04);
rf |= (chan <= 14) ? 0x04 : 0x08;
run_rt3070_rf_write(sc, 5, rf);
/* set Tx power for chain 0 */
if (chan <= 14)
rf = 0x60 | txpow1;
else
rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3);
run_rt3070_rf_write(sc, 12, rf);
/* set Tx power for chain 1 */
if (chan <= 14)
rf = 0x60 | txpow2;
else
rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3);
run_rt3070_rf_write(sc, 13, rf);
/* set Tx/Rx streams */
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
else if (sc->ntxchains == 2)
rf |= 1 << 7; /* 2T: disable Tx chain 3 */
if (sc->nrxchains == 1)
rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
rf |= 1 << 6; /* 2R: disable Rx chain 3 */
run_rt3070_rf_write(sc, 1, rf);
/* set RF offset */
run_rt3070_rf_read(sc, 23, &rf);
rf = (rf & ~0x7f) | sc->freq;
run_rt3070_rf_write(sc, 23, rf);
/* program RF filter */
rf = sc->rf24_20mhz;
run_rt3070_rf_write(sc, 24, rf); /* Tx */
run_rt3070_rf_write(sc, 31, rf); /* Rx */
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14);
run_rt3070_rf_write(sc, 7, rf);
/* TSSI */
rf = (chan <= 14) ? 0xc3 : 0xc0;
run_rt3070_rf_write(sc, 9, rf);
/* set loop filter 1 */
run_rt3070_rf_write(sc, 10, 0xf1);
/* set loop filter 2 */
run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00);
/* set tx_mx2_ic */
run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43);
/* set tx_mx1_ic */
if (chan <= 14)
rf = 0x48 | sc->txmixgain_2ghz;
else
rf = 0x78 | sc->txmixgain_5ghz;
run_rt3070_rf_write(sc, 16, rf);
/* set tx_lo1 */
run_rt3070_rf_write(sc, 17, 0x23);
/* set tx_lo2 */
if (chan <= 14)
rf = 0x93;
else if (chan <= 64)
rf = 0xb7;
else if (chan <= 128)
rf = 0x74;
else
rf = 0x72;
run_rt3070_rf_write(sc, 19, rf);
/* set rx_lo1 */
if (chan <= 14)
rf = 0xb3;
else if (chan <= 64)
rf = 0xf6;
else if (chan <= 128)
rf = 0xf4;
else
rf = 0xf3;
run_rt3070_rf_write(sc, 20, rf);
/* set pfd_delay */
if (chan <= 14)
rf = 0x15;
else if (chan <= 64)
rf = 0x3d;
else
rf = 0x01;
run_rt3070_rf_write(sc, 25, rf);
/* set rx_lo2 */
run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87);
/* set ldo_rf_vc */
run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01);
/* set drv_cc */
run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x8080;
if (chan <= 14)
tmp |= 0x80;
run_write(sc, RT2860_GPIO_CTRL, tmp);
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
run_rt3070_rf_write(sc, 7, rf | 0x01);
usbd_delay_ms(sc->sc_udev, 2);
}
static void
run_rt3593_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2, txpow3;
uint8_t h20mhz, rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
txpow3 = (sc->ntxchains == 3) ? sc->txpow3[i] : 0;
if (chan <= 14) {
run_bbp_write(sc, 25, sc->bbp25);
run_bbp_write(sc, 26, sc->bbp26);
} else {
/* Enable IQ phase correction. */
run_bbp_write(sc, 25, 0x09);
run_bbp_write(sc, 26, 0xff);
}
run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f);
run_rt3070_rf_read(sc, 11, &rf);
rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03);
run_rt3070_rf_write(sc, 11, rf);
/* Set pll_idoh. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x4c;
rf |= (chan <= 14) ? 0x44 : 0x48;
run_rt3070_rf_write(sc, 11, rf);
if (chan <= 14)
rf = txpow1 & 0x1f;
else
rf = 0x40 | ((txpow1 & 0x18) << 1) | (txpow1 & 0x07);
run_rt3070_rf_write(sc, 53, rf);
if (chan <= 14)
rf = txpow2 & 0x1f;
else
rf = 0x40 | ((txpow2 & 0x18) << 1) | (txpow2 & 0x07);
run_rt3070_rf_write(sc, 55, rf);
if (chan <= 14)
rf = txpow3 & 0x1f;
else
rf = 0x40 | ((txpow3 & 0x18) << 1) | (txpow3 & 0x07);
run_rt3070_rf_write(sc, 54, rf);
rf = RT3070_RF_BLOCK | RT3070_PLL_PD;
if (sc->ntxchains == 3)
rf |= RT3070_TX0_PD | RT3070_TX1_PD | RT3070_TX2_PD;
else
rf |= RT3070_TX0_PD | RT3070_TX1_PD;
rf |= RT3070_RX0_PD | RT3070_RX1_PD | RT3070_RX2_PD;
run_rt3070_rf_write(sc, 1, rf);
run_adjust_freq_offset(sc);
run_rt3070_rf_write(sc, 31, (chan <= 14) ? 0xa0 : 0x80);
h20mhz = (sc->rf24_20mhz & 0x20) >> 5;
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x06) | (h20mhz << 1) | (h20mhz << 2);
run_rt3070_rf_write(sc, 30, rf);
run_rt3070_rf_read(sc, 36, &rf);
if (chan <= 14)
rf |= 0x80;
else
rf &= ~0x80;
run_rt3070_rf_write(sc, 36, rf);
/* Set vcolo_bs. */
run_rt3070_rf_write(sc, 34, (chan <= 14) ? 0x3c : 0x20);
/* Set pfd_delay. */
run_rt3070_rf_write(sc, 12, (chan <= 14) ? 0x1a : 0x12);
/* Set vco bias current control. */
run_rt3070_rf_read(sc, 6, &rf);
rf &= ~0xc0;
if (chan <= 14)
rf |= 0x40;
else if (chan <= 128)
rf |= 0x80;
else
rf |= 0x40;
run_rt3070_rf_write(sc, 6, rf);
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
run_rt3070_rf_write(sc, 10, (chan <= 14) ? 0xd3 : 0xd8);
run_rt3070_rf_write(sc, 13, (chan <= 14) ? 0x12 : 0x23);
run_rt3070_rf_read(sc, 51, &rf);
rf = (rf & ~0x03) | 0x01;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_mx1_cc. */
run_rt3070_rf_read(sc, 51, &rf);
rf &= ~0x1c;
rf |= (chan <= 14) ? 0x14 : 0x10;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_mx1_ic. */
run_rt3070_rf_read(sc, 51, &rf);
rf &= ~0xe0;
rf |= (chan <= 14) ? 0x60 : 0x40;
run_rt3070_rf_write(sc, 51, rf);
/* Set tx_lo1_ic. */
run_rt3070_rf_read(sc, 49, &rf);
rf &= ~0x1c;
rf |= (chan <= 14) ? 0x0c : 0x08;
run_rt3070_rf_write(sc, 49, rf);
/* Set tx_lo1_en. */
run_rt3070_rf_read(sc, 50, &rf);
run_rt3070_rf_write(sc, 50, rf & ~0x20);
/* Set drv_cc. */
run_rt3070_rf_read(sc, 57, &rf);
rf &= ~0xfc;
rf |= (chan <= 14) ? 0x6c : 0x3c;
run_rt3070_rf_write(sc, 57, rf);
/* Set rx_mix1_ic, rxa_lnactr, lna_vc, lna_inbias_en and lna_en. */
run_rt3070_rf_write(sc, 44, (chan <= 14) ? 0x93 : 0x9b);
/* Set drv_gnd_a, tx_vga_cc_a and tx_mx2_gain. */
run_rt3070_rf_write(sc, 52, (chan <= 14) ? 0x45 : 0x05);
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf &= ~RT5390_VCOCAL;
rf |= (chan <= 14) ? RT5390_VCOCAL : 0xbe;
run_rt3070_rf_write(sc, 3, rf);
if (chan <= 14)
rf = 0x23;
else if (chan <= 64)
rf = 0x36;
else if (chan <= 128)
rf = 0x32;
else
rf = 0x30;
run_rt3070_rf_write(sc, 39, rf);
if (chan <= 14)
rf = 0xbb;
else if (chan <= 64)
rf = 0xeb;
else if (chan <= 128)
rf = 0xb3;
else
rf = 0x9b;
run_rt3070_rf_write(sc, 45, rf);
/* Set FEQ/AEQ control. */
run_bbp_write(sc, 105, 0x34);
}
static void
run_rt5390_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_rt3070_rf_write(sc, 8, rt3070_freqs[i].n);
run_rt3070_rf_write(sc, 9, rt3070_freqs[i].k & 0x0f);
run_rt3070_rf_read(sc, 11, &rf);
rf = (rf & ~0x03) | (rt3070_freqs[i].r & 0x03);
run_rt3070_rf_write(sc, 11, rf);
run_rt3070_rf_read(sc, 49, &rf);
rf = (rf & ~0x3f) | (txpow1 & 0x3f);
/* The valid range of the RF R49 is 0x00 to 0x27. */
if ((rf & 0x3f) > 0x27)
rf = (rf & ~0x3f) | 0x27;
run_rt3070_rf_write(sc, 49, rf);
if (sc->mac_ver == 0x5392) {
run_rt3070_rf_read(sc, 50, &rf);
rf = (rf & ~0x3f) | (txpow2 & 0x3f);
/* The valid range of the RF R50 is 0x00 to 0x27. */
if ((rf & 0x3f) > 0x27)
rf = (rf & ~0x3f) | 0x27;
run_rt3070_rf_write(sc, 50, rf);
}
run_rt3070_rf_read(sc, 1, &rf);
rf |= RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD;
if (sc->mac_ver == 0x5392)
rf |= RT3070_RX1_PD | RT3070_TX1_PD;
run_rt3070_rf_write(sc, 1, rf);
if (sc->mac_ver != 0x5392) {
run_rt3070_rf_read(sc, 2, &rf);
rf |= 0x80;
run_rt3070_rf_write(sc, 2, rf);
usbd_delay_ms(sc->sc_udev, 10);
rf &= 0x7f;
run_rt3070_rf_write(sc, 2, rf);
}
run_adjust_freq_offset(sc);
if (sc->mac_ver == 0x5392) {
/* Fix for RT5392C. */
if (sc->mac_rev >= 0x0223) {
if (chan <= 4)
rf = 0x0f;
else if (chan >= 5 && chan <= 7)
rf = 0x0e;
else
rf = 0x0d;
run_rt3070_rf_write(sc, 23, rf);
if (chan <= 4)
rf = 0x0c;
else if (chan == 5)
rf = 0x0b;
else if (chan >= 6 && chan <= 7)
rf = 0x0a;
else if (chan >= 8 && chan <= 10)
rf = 0x09;
else
rf = 0x08;
run_rt3070_rf_write(sc, 59, rf);
} else {
if (chan <= 11)
rf = 0x0f;
else
rf = 0x0b;
run_rt3070_rf_write(sc, 59, rf);
}
} else {
/* Fix for RT5390F. */
if (sc->mac_rev >= 0x0502) {
if (chan <= 11)
rf = 0x43;
else
rf = 0x23;
run_rt3070_rf_write(sc, 55, rf);
if (chan <= 11)
rf = 0x0f;
else if (chan == 12)
rf = 0x0d;
else
rf = 0x0b;
run_rt3070_rf_write(sc, 59, rf);
} else {
run_rt3070_rf_write(sc, 55, 0x44);
run_rt3070_rf_write(sc, 59, 0x8f);
}
}
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf |= RT5390_VCOCAL;
run_rt3070_rf_write(sc, 3, rf);
}
static void
run_rt5592_set_chan(struct run_softc *sc, u_int chan)
{
const struct rt5592_freqs *freqs;
uint32_t tmp;
uint8_t reg, rf, txpow_bound;
int8_t txpow1, txpow2;
int i;
run_read(sc, RT5592_DEBUG_INDEX, &tmp);
freqs = (tmp & RT5592_SEL_XTAL) ?
rt5592_freqs_40mhz : rt5592_freqs_20mhz;
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++, freqs++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1c000000;
if (chan > 14)
tmp |= 0x14000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
/* N setting. */
run_rt3070_rf_write(sc, 8, freqs->n & 0xff);
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~(1 << 4);
rf |= ((freqs->n & 0x0100) >> 8) << 4;
run_rt3070_rf_write(sc, 9, rf);
/* K setting. */
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~0x0f;
rf |= (freqs->k & 0x0f);
run_rt3070_rf_write(sc, 9, rf);
/* Mode setting. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x0c;
rf |= ((freqs->m - 0x8) & 0x3) << 2;
run_rt3070_rf_write(sc, 11, rf);
run_rt3070_rf_read(sc, 9, &rf);
rf &= ~(1 << 7);
rf |= (((freqs->m - 0x8) & 0x4) >> 2) << 7;
run_rt3070_rf_write(sc, 9, rf);
/* R setting. */
run_rt3070_rf_read(sc, 11, &rf);
rf &= ~0x03;
rf |= (freqs->r - 0x1);
run_rt3070_rf_write(sc, 11, rf);
if (chan <= 14) {
/* Initialize RF registers for 2GHZ. */
for (i = 0; i < (int)__arraycount(rt5592_2ghz_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_2ghz_def_rf[i].reg,
rt5592_2ghz_def_rf[i].val);
}
rf = (chan <= 10) ? 0x07 : 0x06;
run_rt3070_rf_write(sc, 23, rf);
run_rt3070_rf_write(sc, 59, rf);
run_rt3070_rf_write(sc, 55, 0x43);
/*
* RF R49/R50 Tx power ALC code.
* G-band bit<7:6>=1:0, bit<5:0> range from 0x0 ~ 0x27.
*/
reg = 2;
txpow_bound = 0x27;
} else {
/* Initialize RF registers for 5GHZ. */
for (i = 0; i < (int)__arraycount(rt5592_5ghz_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_5ghz_def_rf[i].reg,
rt5592_5ghz_def_rf[i].val);
}
for (i = 0; i < (int)__arraycount(rt5592_chan_5ghz); i++) {
if (chan >= rt5592_chan_5ghz[i].firstchan &&
chan <= rt5592_chan_5ghz[i].lastchan) {
run_rt3070_rf_write(sc, rt5592_chan_5ghz[i].reg,
rt5592_chan_5ghz[i].val);
}
}
/*
* RF R49/R50 Tx power ALC code.
* A-band bit<7:6>=1:1, bit<5:0> range from 0x0 ~ 0x2b.
*/
reg = 3;
txpow_bound = 0x2b;
}
/* RF R49 ch0 Tx power ALC code. */
run_rt3070_rf_read(sc, 49, &rf);
rf &= ~0xc0;
rf |= (reg << 6);
rf = (rf & ~0x3f) | (txpow1 & 0x3f);
if ((rf & 0x3f) > txpow_bound)
rf = (rf & ~0x3f) | txpow_bound;
run_rt3070_rf_write(sc, 49, rf);
/* RF R50 ch1 Tx power ALC code. */
run_rt3070_rf_read(sc, 50, &rf);
rf &= ~(1 << 7 | 1 << 6);
rf |= (reg << 6);
rf = (rf & ~0x3f) | (txpow2 & 0x3f);
if ((rf & 0x3f) > txpow_bound)
rf = (rf & ~0x3f) | txpow_bound;
run_rt3070_rf_write(sc, 50, rf);
/* Enable RF_BLOCK, PLL_PD, RX0_PD, and TX0_PD. */
run_rt3070_rf_read(sc, 1, &rf);
rf |= (RT3070_RF_BLOCK | RT3070_PLL_PD | RT3070_RX0_PD | RT3070_TX0_PD);
if (sc->ntxchains > 1)
rf |= RT3070_TX1_PD;
if (sc->nrxchains > 1)
rf |= RT3070_RX1_PD;
run_rt3070_rf_write(sc, 1, rf);
run_rt3070_rf_write(sc, 6, 0xe4);
run_rt3070_rf_write(sc, 30, 0x10);
run_rt3070_rf_write(sc, 31, 0x80);
run_rt3070_rf_write(sc, 32, 0x80);
run_adjust_freq_offset(sc);
/* Enable VCO calibration. */
run_rt3070_rf_read(sc, 3, &rf);
rf |= RT5390_VCOCAL;
run_rt3070_rf_write(sc, 3, rf);
}
static void
run_iq_calib(struct run_softc *sc, u_int chan)
{
uint16_t val;
/* Tx0 IQ gain. */
run_bbp_write(sc, 158, 0x2c);
if (chan <= 14)
run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX0_2GHZ, &val, 1);
else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX0_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx0 IQ phase. */
run_bbp_write(sc, 158, 0x2d);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX0_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX0_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx1 IQ gain. */
run_bbp_write(sc, 158, 0x4a);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_GAIN_CAL_TX1_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_GAIN_CAL_TX1_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* Tx1 IQ phase. */
run_bbp_write(sc, 158, 0x4b);
if (chan <= 14) {
run_efuse_read(sc, RT5390_EEPROM_IQ_PHASE_CAL_TX1_2GHZ,
&val, 1);
} else if (chan <= 64) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH36_TO_CH64_5GHZ,
&val, 1);
} else if (chan <= 138) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH100_TO_CH138_5GHZ,
&val, 1);
} else if (chan <= 165) {
run_efuse_read(sc,
RT5390_EEPROM_IQ_PHASE_CAL_TX1_CH140_TO_CH165_5GHZ,
&val, 1);
} else
val = 0;
run_bbp_write(sc, 159, val);
/* RF IQ compensation control. */
run_bbp_write(sc, 158, 0x04);
run_efuse_read(sc, RT5390_EEPROM_RF_IQ_COMPENSATION_CTL,
&val, 1);
run_bbp_write(sc, 159, val);
/* RF IQ imbalance compensation control. */
run_bbp_write(sc, 158, 0x03);
run_efuse_read(sc,
RT5390_EEPROM_RF_IQ_IMBALANCE_COMPENSATION_CTL, &val, 1);
run_bbp_write(sc, 159, val);
}
static void
run_set_agc(struct run_softc *sc, uint8_t agc)
{
uint8_t bbp;
if (sc->mac_ver == 0x3572) {
run_bbp_read(sc, 27, &bbp);
bbp &= ~(0x3 << 5);
run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */
run_bbp_write(sc, 66, agc);
run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */
run_bbp_write(sc, 66, agc);
} else
run_bbp_write(sc, 66, agc);
}
static void
run_set_rx_antenna(struct run_softc *sc, int aux)
{
uint32_t tmp;
uint8_t bbp152;
if (aux) {
if (sc->rf_rev == RT5390_RF_5370) {
run_bbp_read(sc, 152, &bbp152);
bbp152 &= ~0x80;
run_bbp_write(sc, 152, bbp152);
} else {
run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x0808;
tmp |= 0x08;
run_write(sc, RT2860_GPIO_CTRL, tmp);
}
} else {
if (sc->rf_rev == RT5390_RF_5370) {
run_bbp_read(sc, 152, &bbp152);
bbp152 |= 0x80;
run_bbp_write(sc, 152, bbp152);
} else {
run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, !aux);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
tmp &= ~0x0808;
run_write(sc, RT2860_GPIO_CTRL, tmp);
}
}
}
static int
run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan, group;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return EINVAL;
if (sc->mac_ver == 0x5592)
run_rt5592_set_chan(sc, chan);
else if (sc->mac_ver >= 0x5390)
run_rt5390_set_chan(sc, chan);
else if (sc->mac_ver == 0x3593)
run_rt3593_set_chan(sc, chan);
else if (sc->mac_ver == 0x3572)
run_rt3572_set_chan(sc, chan);
else if (sc->mac_ver >= 0x3070)
run_rt3070_set_chan(sc, chan);
else
run_rt2870_set_chan(sc, chan);
/* determine channel group */
if (chan <= 14)
group = 0;
else if (chan <= 64)
group = 1;
else if (chan <= 128)
group = 2;
else
group = 3;
/* XXX necessary only when group has changed! */
run_select_chan_group(sc, group);
usbd_delay_ms(sc->sc_udev, 10);
/* Perform IQ calibration. */
if (sc->mac_ver >= 0x5392)
run_iq_calib(sc, chan);
return 0;
}
static void
run_updateprot(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
/* setup protection frame rate (MCS code) */
tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
rt2860_rates[RT2860_RIDX_OFDM6].mcs | RT2860_PHY_OFDM :
rt2860_rates[RT2860_RIDX_CCK11].mcs;
/* CCK frames don't require protection */
run_write(sc, RT2860_CCK_PROT_CFG, tmp);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
tmp |= RT2860_PROT_CTRL_RTS_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
tmp |= RT2860_PROT_CTRL_CTS;
}
run_write(sc, RT2860_OFDM_PROT_CFG, tmp);
}
static void
run_enable_tsf_sync(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
tmp &= ~0x1fffff;
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* Local TSF is always updated with remote TSF on beacon
* reception.
*/
tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
}
#ifndef IEEE80211_STA_ONLY
else if (ic->ic_opmode == IEEE80211_M_IBSS) {
tmp |= RT2860_BCN_TX_EN;
/*
* Local TSF is updated with remote TSF on beacon reception
* only if the remote TSF is greater than local TSF.
*/
tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
tmp |= RT2860_BCN_TX_EN;
/* SYNC with nobody */
tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
}
#endif
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
}
static void
run_enable_mrr(struct run_softc *sc)
{
#define CCK(mcs) (mcs)
#define OFDM(mcs) (1 << 3 | (mcs))
run_write(sc, RT2860_LG_FBK_CFG0,
OFDM(6) << 28 | /* 54->48 */
OFDM(5) << 24 | /* 48->36 */
OFDM(4) << 20 | /* 36->24 */
OFDM(3) << 16 | /* 24->18 */
OFDM(2) << 12 | /* 18->12 */
OFDM(1) << 8 | /* 12-> 9 */
OFDM(0) << 4 | /* 9-> 6 */
OFDM(0)); /* 6-> 6 */
run_write(sc, RT2860_LG_FBK_CFG1,
CCK(2) << 12 | /* 11->5.5 */
CCK(1) << 8 | /* 5.5-> 2 */
CCK(0) << 4 | /* 2-> 1 */
CCK(0)); /* 1-> 1 */
#undef OFDM
#undef CCK
}
static void
run_set_txpreamble(struct run_softc *sc)
{
uint32_t tmp;
run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2860_CCK_SHORT_EN;
else
tmp &= ~RT2860_CCK_SHORT_EN;
run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
}
static void
run_set_basicrates(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* set basic rates mask */
if (ic->ic_curmode == IEEE80211_MODE_11B)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
else /* 11g */
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
}
static void
run_set_leds(struct run_softc *sc, uint16_t which)
{
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
which | (sc->leds & 0x7f));
}
static void
run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
{
run_write(sc, RT2860_MAC_BSSID_DW0,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
run_write(sc, RT2860_MAC_BSSID_DW1,
bssid[4] | bssid[5] << 8);
}
static void
run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
{
run_write(sc, RT2860_MAC_ADDR_DW0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
run_write(sc, RT2860_MAC_ADDR_DW1,
addr[4] | addr[5] << 8 | 0xff << 16);
}
static void
run_updateslot(struct ifnet *ifp)
{
/* do it in a process context */
run_do_async(ifp->if_softc, run_updateslot_cb, NULL, 0);
}
/* ARGSUSED */
static void
run_updateslot_cb(struct run_softc *sc, void *arg)
{
uint32_t tmp;
run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
tmp &= ~0xff;
tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}
static int8_t
run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_curchan;
int delta;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
u_int chan = ieee80211_chan2ieee(ic, c);
delta = sc->rssi_5ghz[rxchain];
/* determine channel group */
if (chan <= 64)
delta -= sc->lna[1];
else if (chan <= 128)
delta -= sc->lna[2];
else
delta -= sc->lna[3];
} else
delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
return -12 - delta - rssi;
}
static void
run_rt5390_bbp_init(struct run_softc *sc)
{
u_int i;
uint8_t bbp;
/* Apply maximum likelihood detection for 2 stream case. */
run_bbp_read(sc, 105, &bbp);
if (sc->nrxchains > 1)
run_bbp_write(sc, 105, bbp | RT5390_MLD);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
if (sc->mac_ver == 0x5592) {
for (i = 0; i < (int)__arraycount(rt5592_def_bbp); i++) {
run_bbp_write(sc, rt5592_def_bbp[i].reg,
rt5592_def_bbp[i].val);
}
for (i = 0; i < (int)__arraycount(rt5592_bbp_r196); i++) {
run_bbp_write(sc, 195, i + 0x80);
run_bbp_write(sc, 196, rt5592_bbp_r196[i]);
}
} else {
for (i = 0; i < (int)__arraycount(rt5390_def_bbp); i++) {
run_bbp_write(sc, rt5390_def_bbp[i].reg,
rt5390_def_bbp[i].val);
}
}
if (sc->mac_ver == 0x5392) {
run_bbp_write(sc, 88, 0x90);
run_bbp_write(sc, 95, 0x9a);
run_bbp_write(sc, 98, 0x12);
run_bbp_write(sc, 106, 0x12);
run_bbp_write(sc, 134, 0xd0);
run_bbp_write(sc, 135, 0xf6);
run_bbp_write(sc, 148, 0x84);
}
run_bbp_read(sc, 152, &bbp);
run_bbp_write(sc, 152, bbp | 0x80);
/* Fix BBP254 for RT5592C. */
if (sc->mac_ver == 0x5592 && sc->mac_rev >= 0x0221) {
run_bbp_read(sc, 254, &bbp);
run_bbp_write(sc, 254, bbp | 0x80);
}
/* Disable hardware antenna diversity. */
if (sc->mac_ver == 0x5390)
run_bbp_write(sc, 154, 0);
/* Initialize Rx CCK/OFDM frequency offset report. */
run_bbp_write(sc, 142, 1);
run_bbp_write(sc, 143, 57);
}
static int
run_bbp_init(struct run_softc *sc)
{
int i, error, ntries;
uint8_t bbp0;
/* wait for BBP to wake up */
for (ntries = 0; ntries < 20; ntries++) {
if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
return error;
if (bbp0 != 0 && bbp0 != 0xff)
break;
}
if (ntries == 20)
return ETIMEDOUT;
/* initialize BBP registers to default values */
if (sc->mac_ver >= 0x5390)
run_rt5390_bbp_init(sc);
else {
for (i = 0; i < (int)__arraycount(rt2860_def_bbp); i++) {
run_bbp_write(sc, rt2860_def_bbp[i].reg,
rt2860_def_bbp[i].val);
}
}
if (sc->mac_ver == 0x3593) {
run_bbp_write(sc, 79, 0x13);
run_bbp_write(sc, 80, 0x05);
run_bbp_write(sc, 81, 0x33);
run_bbp_write(sc, 86, 0x46);
run_bbp_write(sc, 137, 0x0f);
}
/* fix BBP84 for RT2860E */
if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
run_bbp_write(sc, 84, 0x19);
if (sc->mac_ver >= 0x3070 && (sc->mac_ver != 0x3593 &&
sc->mac_ver != 0x5592)) {
run_bbp_write(sc, 79, 0x13);
run_bbp_write(sc, 80, 0x05);
run_bbp_write(sc, 81, 0x33);
} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
run_bbp_write(sc, 69, 0x16);
run_bbp_write(sc, 73, 0x12);
}
return 0;
}
static int
run_rt3070_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf, target, bbp4;
int i;
run_rt3070_rf_read(sc, 30, &rf);
/* toggle RF R30 bit 7 */
run_rt3070_rf_write(sc, 30, rf | 0x80);
usbd_delay_ms(sc->sc_udev, 10);
run_rt3070_rf_write(sc, 30, rf & ~0x80);
/* initialize RF registers to default value */
if (sc->mac_ver == 0x3572) {
for (i = 0; i < (int)__arraycount(rt3572_def_rf); i++) {
run_rt3070_rf_write(sc, rt3572_def_rf[i].reg,
rt3572_def_rf[i].val);
}
} else {
for (i = 0; i < (int)__arraycount(rt3070_def_rf); i++) {
run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
rt3070_def_rf[i].val);
}
}
if (sc->mac_ver == 0x3572) {
run_rt3070_rf_read(sc, 6, &rf);
run_rt3070_rf_write(sc, 6, rf | 0x40);
run_rt3070_rf_write(sc, 31, 0x14);
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1f000000;
if (sc->mac_rev < 0x0211 && sc->patch_dac)
tmp |= 0x0d000000; /* 1.3V */
else
tmp |= 0x01000000; /* 1.2V */
run_write(sc, RT3070_LDO_CFG0, tmp);
} else if (sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 6, &rf);
run_rt3070_rf_write(sc, 6, rf | 0x40);
run_rt3070_rf_write(sc, 31, 0x14);
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1f000000;
if (sc->mac_rev < 0x0211)
tmp |= 0x0d000000; /* 1.35V */
else
tmp |= 0x01000000; /* 1.2V */
run_write(sc, RT3070_LDO_CFG0, tmp);
/* patch LNA_PE_G1 */
run_read(sc, RT3070_GPIO_SWITCH, &tmp);
run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
} else if (sc->mac_ver == 0x3070 && sc->mac_rev < 0x0201) {
/*
* Change voltage from 1.2V to 1.35V for RT3070.
* The DAC issue (RT3070_LD0_CFG0) has been fixed
* in RT3070(F).
*/
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x0f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
}
/* select 20MHz bandwidth */
run_rt3070_rf_read(sc, 31, &rf);
run_rt3070_rf_write(sc, 31, rf & ~0x20);
/* calibrate filter for 20MHz bandwidth */
sc->rf24_20mhz = 0x1f; /* default value */
target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13;
run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz);
/* select 40MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
run_rt3070_rf_read(sc, 31, &rf);
run_rt3070_rf_write(sc, 31, rf | 0x20);
/* calibrate filter for 40MHz bandwidth */
sc->rf24_40mhz = 0x2f; /* default value */
target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15;
run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz);
/* go back to 20MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, bbp4 & ~0x18);
if (sc->mac_ver == 0x3572) {
/* save default BBP registers 25 and 26 values */
run_bbp_read(sc, 25, &sc->bbp25);
run_bbp_read(sc, 26, &sc->bbp26);
} else if (sc->mac_rev < 0x0211)
run_rt3070_rf_write(sc, 27, 0x03);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 17, &rf);
rf &= ~RT3070_TX_LO1;
if ((sc->mac_ver == 0x3070 ||
(sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) &&
!sc->ext_2ghz_lna)
rf |= 0x20; /* fix for long range Rx issue */
if (sc->txmixgain_2ghz >= 1)
rf = (rf & ~0x7) | sc->txmixgain_2ghz;
run_rt3070_rf_write(sc, 17, rf);
}
if (sc->mac_ver == 0x3071) {
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
run_rt3070_rf_write(sc, 1, rf);
run_rt3070_rf_read(sc, 15, &rf);
run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
run_rt3070_rf_read(sc, 20, &rf);
run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
run_rt3070_rf_read(sc, 21, &rf);
run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
}
if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) {
/* fix Tx to Rx IQ glitch by raising RF voltage */
run_rt3070_rf_read(sc, 27, &rf);
rf &= ~0x77;
if (sc->mac_rev < 0x0211)
rf |= 0x03;
run_rt3070_rf_write(sc, 27, rf);
}
return 0;
}
static int
run_rt3593_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf;
int i;
/* Disable the GPIO bits 4 and 7 for LNA PE control. */
run_read(sc, RT3070_GPIO_SWITCH, &tmp);
tmp &= ~(1 << 4 | 1 << 7);
run_write(sc, RT3070_GPIO_SWITCH, tmp);
/* Initialize RF registers to default value. */
for (i = 0; i < __arraycount(rt3593_def_rf); i++) {
run_rt3070_rf_write(sc, rt3593_def_rf[i].reg,
rt3593_def_rf[i].val);
}
/* Toggle RF R2 to initiate calibration. */
run_rt3070_rf_write(sc, 2, RT5390_RESCAL);
/* Initialize RF frequency offset. */
run_adjust_freq_offset(sc);
run_rt3070_rf_read(sc, 18, &rf);
run_rt3070_rf_write(sc, 18, rf | RT3593_AUTOTUNE_BYPASS);
/*
* Increase voltage from 1.2V to 1.35V, wait for 1 msec to
* decrease voltage back to 1.2V.
*/
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x1f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
usbd_delay_ms(sc->sc_udev, 1);
tmp = (tmp & ~0x1f000000) | 0x01000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
sc->rf24_20mhz = 0x1f;
sc->rf24_40mhz = 0x2f;
/* Save default BBP registers 25 and 26 values. */
run_bbp_read(sc, 25, &sc->bbp25);
run_bbp_read(sc, 26, &sc->bbp26);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
return 0;
}
static int
run_rt5390_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf;
int i;
/* Toggle RF R2 to initiate calibration. */
if (sc->mac_ver == 0x5390) {
run_rt3070_rf_read(sc, 2, &rf);
run_rt3070_rf_write(sc, 2, rf | RT5390_RESCAL);
usbd_delay_ms(sc->sc_udev, 10);
run_rt3070_rf_write(sc, 2, rf & ~RT5390_RESCAL);
} else {
run_rt3070_rf_write(sc, 2, RT5390_RESCAL);
usbd_delay_ms(sc->sc_udev, 10);
}
/* Initialize RF registers to default value. */
if (sc->mac_ver == 0x5592) {
for (i = 0; i < __arraycount(rt5592_def_rf); i++) {
run_rt3070_rf_write(sc, rt5592_def_rf[i].reg,
rt5592_def_rf[i].val);
}
/* Initialize RF frequency offset. */
run_adjust_freq_offset(sc);
} else if (sc->mac_ver == 0x5392) {
for (i = 0; i < __arraycount(rt5392_def_rf); i++) {
run_rt3070_rf_write(sc, rt5392_def_rf[i].reg,
rt5392_def_rf[i].val);
}
if (sc->mac_rev >= 0x0223) {
run_rt3070_rf_write(sc, 23, 0x0f);
run_rt3070_rf_write(sc, 24, 0x3e);
run_rt3070_rf_write(sc, 51, 0x32);
run_rt3070_rf_write(sc, 53, 0x22);
run_rt3070_rf_write(sc, 56, 0xc1);
run_rt3070_rf_write(sc, 59, 0x0f);
}
} else {
for (i = 0; i < __arraycount(rt5390_def_rf); i++) {
run_rt3070_rf_write(sc, rt5390_def_rf[i].reg,
rt5390_def_rf[i].val);
}
if (sc->mac_rev >= 0x0502) {
run_rt3070_rf_write(sc, 6, 0xe0);
run_rt3070_rf_write(sc, 25, 0x80);
run_rt3070_rf_write(sc, 46, 0x73);
run_rt3070_rf_write(sc, 53, 0x00);
run_rt3070_rf_write(sc, 56, 0x42);
run_rt3070_rf_write(sc, 61, 0xd1);
}
}
sc->rf24_20mhz = 0x1f; /* default value */
sc->rf24_40mhz = (sc->mac_ver == 0x5592) ? 0 : 0x2f;
if (sc->mac_rev < 0x0211)
run_rt3070_rf_write(sc, 27, 0x3);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
return 0;
}
static int
run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
uint8_t *val)
{
uint8_t rf22, rf24;
uint8_t bbp55_pb, bbp55_sb, delta;
int ntries;
/* program filter */
run_rt3070_rf_read(sc, 24, &rf24);
rf24 = (rf24 & 0xc0) | init; /* initial filter value */
run_rt3070_rf_write(sc, 24, rf24);
/* enable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 | 0x01);
/* set power and frequency of passband test tone */
run_bbp_write(sc, 24, 0x00);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
usbd_delay_ms(sc->sc_udev, 10);
/* read received power */
run_bbp_read(sc, 55, &bbp55_pb);
if (bbp55_pb != 0)
break;
}
if (ntries == 100)
return ETIMEDOUT;
/* set power and frequency of stopband test tone */
run_bbp_write(sc, 24, 0x06);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
usbd_delay_ms(sc->sc_udev, 10);
/* read received power */
run_bbp_read(sc, 55, &bbp55_sb);
delta = bbp55_pb - bbp55_sb;
if (delta > target)
break;
/* reprogram filter */
rf24++;
run_rt3070_rf_write(sc, 24, rf24);
}
if (ntries < 100) {
if (rf24 != init)
rf24--; /* backtrack */
*val = rf24;
run_rt3070_rf_write(sc, 24, rf24);
}
/* restore initial state */
run_bbp_write(sc, 24, 0x00);
/* disable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
return 0;
}
static void
run_rt3070_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
int i;
if (sc->mac_ver == 0x3572) {
/* enable DC filter */
if (sc->mac_rev >= 0x0201)
run_bbp_write(sc, 103, 0xc0);
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
if (sc->mac_rev >= 0x0211) {
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
run_rt3070_rf_read(sc, 16, &rf);
rf = (rf & ~0x07) | sc->txmixgain_2ghz;
run_rt3070_rf_write(sc, 16, rf);
} else if (sc->mac_ver == 0x3071) {
/* enable DC filter */
if (sc->mac_rev >= 0x0201)
run_bbp_write(sc, 103, 0xc0);
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
if (sc->mac_rev >= 0x0211) {
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
} else if (sc->mac_ver == 0x3070) {
if (sc->mac_rev >= 0x0201) {
/* enable DC filter */
run_bbp_write(sc, 103, 0xc0);
/* improve power consumption */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG1, 0);
run_write(sc, RT2860_TX_SW_CFG2, 0x2c);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
}
/* initialize RF registers from ROM for >=RT3071*/
if (sc->mac_ver >= 0x3071) {
for (i = 0; i < 10; i++) {
if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
continue;
run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
}
}
}
static void
run_rt3593_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
if (sc->mac_rev >= 0x0211) {
/* Enable DC filter. */
run_bbp_write(sc, 103, 0xc0);
}
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
run_rt3070_rf_read(sc, 50, &rf);
run_rt3070_rf_write(sc, 50, rf & ~RT3593_TX_LO2);
run_rt3070_rf_read(sc, 51, &rf);
rf = (rf & ~(RT3593_TX_LO1 | 0x0c)) |
((sc->txmixgain_2ghz & 0x07) << 2);
run_rt3070_rf_write(sc, 51, rf);
run_rt3070_rf_read(sc, 38, &rf);
run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1);
run_rt3070_rf_read(sc, 39, &rf);
run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2);
run_rt3070_rf_read(sc, 1, &rf);
run_rt3070_rf_write(sc, 1, rf & ~(RT3070_RF_BLOCK | RT3070_PLL_PD));
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
/* Apply maximum likelihood detection for 2 stream case. */
run_bbp_read(sc, 105, &bbp);
if (sc->nrxchains > 1)
run_bbp_write(sc, 105, bbp | RT5390_MLD);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
run_bbp_write(sc, 92, 0x02);
run_bbp_write(sc, 82, 0x82);
run_bbp_write(sc, 106, 0x05);
run_bbp_write(sc, 104, 0x92);
run_bbp_write(sc, 88, 0x90);
run_bbp_write(sc, 148, 0xc8);
run_bbp_write(sc, 47, 0x48);
run_bbp_write(sc, 120, 0x50);
run_bbp_write(sc, 163, 0x9d);
/* SNR mapping. */
run_bbp_write(sc, 142, 0x06);
run_bbp_write(sc, 143, 0xa0);
run_bbp_write(sc, 142, 0x07);
run_bbp_write(sc, 143, 0xa1);
run_bbp_write(sc, 142, 0x08);
run_bbp_write(sc, 143, 0xa2);
run_bbp_write(sc, 31, 0x08);
run_bbp_write(sc, 68, 0x0b);
run_bbp_write(sc, 105, 0x04);
}
static void
run_rt5390_rf_setup(struct run_softc *sc)
{
uint8_t bbp, rf;
if (sc->mac_rev >= 0x0211) {
/* Enable DC filter. */
run_bbp_write(sc, 103, 0xc0);
if (sc->mac_ver != 0x5592) {
/* Improve power consumption. */
run_bbp_read(sc, 31, &bbp);
run_bbp_write(sc, 31, bbp & ~0x03);
}
}
run_bbp_read(sc, 138, &bbp);
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
run_bbp_write(sc, 138, bbp);
run_rt3070_rf_read(sc, 38, &rf);
run_rt3070_rf_write(sc, 38, rf & ~RT5390_RX_LO1);
run_rt3070_rf_read(sc, 39, &rf);
run_rt3070_rf_write(sc, 39, rf & ~RT5390_RX_LO2);
/* Avoid data lost and CRC error. */
run_bbp_read(sc, 4, &bbp);
run_bbp_write(sc, 4, bbp | RT5390_MAC_IF_CTRL);
run_rt3070_rf_read(sc, 30, &rf);
rf = (rf & ~0x18) | 0x10;
run_rt3070_rf_write(sc, 30, rf);
if (sc->mac_ver != 0x5592) {
run_write(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
run_write(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
run_write(sc, RT2860_TX_SW_CFG2, 0);
}
}
static int
run_txrx_enable(struct run_softc *sc)
{
uint32_t tmp;
int error, ntries;
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
for (ntries = 0; ntries < 200; ntries++) {
if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
return error;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
usbd_delay_ms(sc->sc_udev, 50);
}
if (ntries == 200)
return ETIMEDOUT;
usbd_delay_ms(sc->sc_udev, 50);
tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* enable Rx bulk aggregation (set timeout and limit) */
tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
run_write(sc, RT2860_USB_DMA_CFG, tmp);
/* set Rx filter */
tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
RT2860_DROP_CFACK | RT2860_DROP_CFEND;
if (sc->sc_ic.ic_opmode == IEEE80211_M_STA)
tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
}
run_write(sc, RT2860_RX_FILTR_CFG, tmp);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
return 0;
}
static int
run_adjust_freq_offset(struct run_softc *sc)
{
uint8_t rf, tmp;
run_rt3070_rf_read(sc, 17, &rf);
tmp = rf;
rf = (rf & ~0x7f) | (sc->freq & 0x7f);
rf = MIN(rf, 0x5f);
if (tmp != rf)
run_mcu_cmd(sc, 0x74, (tmp << 8 ) | rf);
return 0;
}
static int
run_init(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint8_t bbp1, bbp3;
int i, error, qid, ridx, ntries;
usbd_status status;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_ASIC_VER_ID, &tmp)) != 0)
goto fail;
if (tmp != 0 && tmp != 0xffffffff)
break;
usbd_delay_ms(sc->sc_udev, 10);
}
if (ntries == 100) {
error = ETIMEDOUT;
goto fail;
}
if ((sc->sc_flags & RUN_FWLOADED) == 0 &&
(error = run_load_microcode(sc)) != 0) {
device_printf(sc->sc_dev,
"could not load 8051 microcode\n");
goto fail;
}
if (ifp->if_flags & IFF_RUNNING)
run_stop(ifp, 0);
/* init host command ring */
sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
/* init Tx rings (4 EDCAs) */
for (qid = 0; qid < 4; qid++) {
if ((error = run_alloc_tx_ring(sc, qid)) != 0)
goto fail;
}
/* init Rx ring */
if ((error = run_alloc_rx_ring(sc)) != 0)
goto fail;
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
run_set_macaddr(sc, ic->ic_myaddr);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
goto fail;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
usbd_delay_ms(sc->sc_udev, 10);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for DMA engine\n");
error = ETIMEDOUT;
goto fail;
}
tmp &= 0xff0;
tmp |= RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* turn off PME_OEN to solve high-current issue */
run_read(sc, RT2860_SYS_CTRL, &tmp);
run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_USB_DMA_CFG, 0);
if ((error = run_reset(sc)) != 0) {
device_printf(sc->sc_dev, "could not reset chipset\n");
goto fail;
}
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
/* init Tx power for all Tx rates (from EEPROM) */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
}
for (i = 0; i < (int)__arraycount(rt2870_def_mac); i++)
run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
if (sc->mac_ver >= 0x5390) {
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT | 4);
if (sc->mac_ver >= 0x5392) {
run_write(sc, RT2860_MAX_LEN_CFG, 0x00002fff);
if (sc->mac_ver == 0x5592) {
run_write(sc, RT2860_HT_FBK_CFG1, 0xedcba980);
run_write(sc, RT2860_TXOP_HLDR_ET, 0x00000082);
} else {
run_write(sc, RT2860_HT_FBK_CFG1, 0xedcb4980);
run_write(sc, RT2860_LG_FBK_CFG0, 0xedcba322);
}
}
} else if (sc->mac_ver >= 0x3593) {
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT | 2);
} else if (sc->mac_ver >= 0x3070) {
/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT);
}
/* wait while MAC is busy */
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_MAC_STATUS_REG, &tmp)) != 0)
goto fail;
if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
break;
DELAY(1000);
}
if (ntries == 100) {
error = ETIMEDOUT;
goto fail;
}
/* clear Host to MCU mailbox */
run_write(sc, RT2860_H2M_BBPAGENT, 0);
run_write(sc, RT2860_H2M_MAILBOX, 0);
usbd_delay_ms(sc->sc_udev, 10);
if ((error = run_bbp_init(sc)) != 0) {
device_printf(sc->sc_dev, "could not initialize BBP\n");
goto fail;
}
/* abort TSF synchronization */
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN);
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
/* clear RX WCID search table */
run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear Pair-wise key table */
run_set_region_4(sc, RT2860_PKEY(0), 0, 2048);
/* clear IV/EIV table */
run_set_region_4(sc, RT2860_IVEIV(0), 0, 512);
/* clear WCID attribute table */
run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
/* clear shared key table */
run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
/* clear shared key mode */
run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
/* clear RX WCID search table */
run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear WCID attribute table */
run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
run_read(sc, RT2860_US_CYC_CNT, &tmp);
tmp = (tmp & ~0xff) | 0x1e;
run_write(sc, RT2860_US_CYC_CNT, tmp);
if (sc->mac_rev != 0x0101)
run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
/* write vendor-specific BBP values (from EEPROM) */
if (sc->mac_ver < 0x3593) {
for (i = 0; i < 10; i++) {
if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
continue;
run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
}
}
/* select Main antenna for 1T1R devices */
if (sc->rf_rev == RT3070_RF_3020 || sc->rf_rev == RT5390_RF_5370)
run_set_rx_antenna(sc, 0);
/* send LEDs operating mode to microcontroller */
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
if (sc->mac_ver >= 0x5390)
run_rt5390_rf_init(sc);
else if (sc->mac_ver == 0x3593)
run_rt3593_rf_init(sc);
else if (sc->mac_ver >= 0x3070)
run_rt3070_rf_init(sc);
/* disable non-existing Rx chains */
run_bbp_read(sc, 3, &bbp3);
bbp3 &= ~(1 << 3 | 1 << 4);
if (sc->nrxchains == 2)
bbp3 |= 1 << 3;
else if (sc->nrxchains == 3)
bbp3 |= 1 << 4;
run_bbp_write(sc, 3, bbp3);
/* disable non-existing Tx chains */
run_bbp_read(sc, 1, &bbp1);
if (sc->ntxchains == 1)
bbp1 &= ~(1 << 3 | 1 << 4);
run_bbp_write(sc, 1, bbp1);
if (sc->mac_ver >= 0x5390)
run_rt5390_rf_setup(sc);
else if (sc->mac_ver == 0x3593)
run_rt3593_rf_setup(sc);
else if (sc->mac_ver >= 0x3070)
run_rt3070_rf_setup(sc);
/* select default channel */
run_set_chan(sc, ic->ic_curchan);
/* setup initial protection mode */
run_updateprot(sc);
/* turn radio LED on */
run_set_leds(sc, RT2860_LED_RADIO);
#ifdef RUN_HWCRYPTO
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
/* install WEP keys */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
(void)run_set_key(ic, &ic->ic_crypto.cs_nw_keys[i],
NULL);
}
#endif
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
struct run_rx_data *data = &sc->rxq.data[i];
usbd_setup_xfer(data->xfer, data, data->buf, RUN_MAX_RXSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, run_rxeof);
status = usbd_transfer(data->xfer);
if (status != USBD_NORMAL_COMPLETION &&
status != USBD_IN_PROGRESS) {
device_printf(sc->sc_dev, "queuing rx failed: %s\n",
usbd_errstr(status));
error = EIO;
goto fail;
}
}
if ((error = run_txrx_enable(sc)) != 0)
goto fail;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
if (error != 0)
fail: run_stop(ifp, 1);
return error;
}
static void
run_stop(struct ifnet *ifp, int disable)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int ntries, qid;
if (ifp->if_flags & IFF_RUNNING)
run_set_leds(sc, 0); /* turn all LEDs off */
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->scan_to);
callout_stop(&sc->calib_to);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* wait for all queued asynchronous commands to complete */
while (sc->cmdq.queued > 0)
tsleep(&sc->cmdq, 0, "cmdq", 0);
/* disable Tx/Rx */
run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
/* wait for pending Tx to complete */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0)
break;
if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0)
break;
}
DELAY(1000);
run_write(sc, RT2860_USB_DMA_CFG, 0);
/* reset adapter */
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
/* reset Tx and Rx rings */
sc->qfullmsk = 0;
for (qid = 0; qid < 4; qid++)
run_free_tx_ring(sc, qid);
run_free_rx_ring(sc);
}
#ifndef IEEE80211_STA_ONLY
static int
run_setup_beacon(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2860_txwi txwi;
struct mbuf *m;
uint16_t txwisize;
int ridx;
if ((m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo)) == NULL)
return ENOBUFS;
memset(&txwi, 0, sizeof(txwi));
txwi.wcid = 0xff;
txwi.len = htole16(m->m_pkthdr.len);
/* send beacons at the lowest available rate */
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
txwi.phy = htole16(rt2860_rates[ridx].mcs);
if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
txwi.phy |= htole16(RT2860_PHY_OFDM);
txwi.txop = RT2860_TX_TXOP_HT;
txwi.flags = RT2860_TX_TS;
txwisize = (sc->mac_ver == 0x5592) ?
sizeof(txwi) + sizeof(uint32_t) : sizeof(txwi);
run_write_region_1(sc, RT2860_BCN_BASE(0),
(uint8_t *)&txwi, txwisize);
run_write_region_1(sc, RT2860_BCN_BASE(0) + txwisize,
mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1);
m_freem(m);
return 0;
}
#endif
MODULE(MODULE_CLASS_DRIVER, if_run, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_run_modcmd(modcmd_t cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_run,
cfattach_ioconf_run, cfdata_ioconf_run);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_run,
cfattach_ioconf_run, cfdata_ioconf_run);
#endif
return error;
default:
return ENOTTY;
}
}