NetBSD/sys/dev/usb/if_axen.c
thorpej 7a9a30c5e7 Define and implement a locking protocol for the ifmedia / mii layers:
- MP-safe drivers provide a mutex to ifmedia that is used to serialize
  access to media-related structures / hardware regsiters.  Converted
  drivers use the new ifmedia_init_with_lock() function for this.  The
  new name is provided to ease the transition.
- Un-converted drivers continue to call ifmedia_init(), which will supply
  a compatibility lock to be used instead.  Several media-related entry
  points must be aware of this compatibility lock, and are able to acquire
  it recursively a limited number of times, if needed.  This is a SPIN
  mutex with priority IPL_NET.
- This same lock is used to serialize access to PHY registers and other
  MII-related data structures.

The PHY drivers are modified to acquire and release the lock, as needed,
and assert the lock is held as a diagnostic aid.

The "usbnet" framework has had an overhaul of its internal locking
protocols to fit in with the media / mii changes, and the drivers adapted.

USB wifi drivers have been changed to provide their own adaptive mutex
to the ifmedia later via a new ieee80211_media_init_with_lock() function.
This is required because the USB drivers need an adaptive mutex.

Besised "usbnet", a few other drivers are converted: vmx, wm, ixgbe / ixv.

mcx also now calls ifmedia_init_with_lock() because it needs to also use
an adaptive mutex.  The mcx driver still needs to be fully converted to
NET_MPSAFE.
2020-03-15 23:04:50 +00:00

970 lines
25 KiB
C

/* $NetBSD: if_axen.c,v 1.73 2020/03/15 23:04:50 thorpej Exp $ */
/* $OpenBSD: if_axen.c,v 1.3 2013/10/21 10:10:22 yuo Exp $ */
/*
* Copyright (c) 2013 Yojiro UO <yuo@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* ASIX Electronics AX88178a USB 2.0 ethernet and AX88179 USB 3.0 Ethernet
* driver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_axen.c,v 1.73 2020/03/15 23:04:50 thorpej Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <netinet/in.h> /* XXX for netinet/ip.h */
#include <netinet/ip.h> /* XXX for IP_MAXPACKET */
#include <dev/usb/usbnet.h>
#include <dev/usb/if_axenreg.h>
#ifdef AXEN_DEBUG
#define DPRINTF(x) do { if (axendebug) printf x; } while (/*CONSTCOND*/0)
#define DPRINTFN(n, x) do { if (axendebug >= (n)) printf x; } while (/*CONSTCOND*/0)
int axendebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
struct axen_type {
struct usb_devno axen_devno;
uint16_t axen_flags;
#define AX178A 0x0001 /* AX88178a */
#define AX179 0x0002 /* AX88179 */
};
/*
* Various supported device vendors/products.
*/
static const struct axen_type axen_devs[] = {
#if 0 /* not tested */
{ { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88178A}, AX178A },
#endif
{ { USB_VENDOR_ASIX, USB_PRODUCT_ASIX_AX88179}, AX179 },
{ { USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DUB1312}, AX179 }
};
#define axen_lookup(v, p) ((const struct axen_type *)usb_lookup(axen_devs, v, p))
static int axen_match(device_t, cfdata_t, void *);
static void axen_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(axen, sizeof(struct usbnet),
axen_match, axen_attach, usbnet_detach, usbnet_activate);
static int axen_cmd(struct usbnet *, int, int, int, void *);
static void axen_reset(struct usbnet *);
static int axen_get_eaddr(struct usbnet *, void *);
static void axen_ax88179_init(struct usbnet *);
static void axen_uno_stop(struct ifnet *, int);
static int axen_uno_ioctl(struct ifnet *, u_long, void *);
static int axen_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
static int axen_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
static void axen_uno_mii_statchg(struct ifnet *);
static void axen_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
uint32_t);
static unsigned axen_uno_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static int axen_uno_init(struct ifnet *);
static const struct usbnet_ops axen_ops = {
.uno_stop = axen_uno_stop,
.uno_ioctl = axen_uno_ioctl,
.uno_read_reg = axen_uno_mii_read_reg,
.uno_write_reg = axen_uno_mii_write_reg,
.uno_statchg = axen_uno_mii_statchg,
.uno_tx_prepare = axen_uno_tx_prepare,
.uno_rx_loop = axen_uno_rx_loop,
.uno_init = axen_uno_init,
};
static int
axen_cmd(struct usbnet *un, int cmd, int index, int val, void *buf)
{
usb_device_request_t req;
usbd_status err;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return 0;
if (AXEN_CMD_DIR(cmd))
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = AXEN_CMD_CMD(cmd);
USETW(req.wValue, val);
USETW(req.wIndex, index);
USETW(req.wLength, AXEN_CMD_LEN(cmd));
err = usbd_do_request(un->un_udev, &req, buf);
DPRINTFN(5, ("axen_cmd: cmd 0x%04x val 0x%04x len %d\n",
cmd, val, AXEN_CMD_LEN(cmd)));
if (err) {
DPRINTF(("%s: cmd: %d, error: %d\n", __func__, cmd, err));
return -1;
}
return 0;
}
static int
axen_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
uint16_t data;
if (un->un_phyno != phy)
return EINVAL;
usbd_status err = axen_cmd(un, AXEN_CMD_MII_READ_REG, reg, phy, &data);
if (err)
return EIO;
*val = le16toh(data);
if (reg == MII_BMSR)
*val &= ~BMSR_EXTCAP;
return 0;
}
static int
axen_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
{
uint16_t uval = htole16(val);
if (un->un_phyno != phy)
return EINVAL;
usbd_status err = axen_cmd(un, AXEN_CMD_MII_WRITE_REG, reg, phy, &uval);
if (err)
return EIO;
return 0;
}
static void
axen_uno_mii_statchg(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct mii_data * const mii = usbnet_mii(un);
int err;
uint16_t val;
uint16_t wval;
if (usbnet_isdying(un))
return;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
usbnet_set_link(un, true);
break;
case IFM_1000_T:
usbnet_set_link(un, true);
break;
default:
break;
}
}
/* Lost link, do nothing. */
if (!usbnet_havelink(un))
return;
val = 0;
if ((mii->mii_media_active & IFM_FDX) != 0)
val |= AXEN_MEDIUM_FDX;
val |= AXEN_MEDIUM_RXFLOW_CTRL_EN | AXEN_MEDIUM_TXFLOW_CTRL_EN |
AXEN_MEDIUM_RECV_EN;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
val |= AXEN_MEDIUM_GIGA | AXEN_MEDIUM_EN_125MHZ;
break;
case IFM_100_TX:
val |= AXEN_MEDIUM_PS;
break;
case IFM_10_T:
/* doesn't need to be handled */
break;
}
DPRINTF(("%s: val=%#x\n", __func__, val));
wval = htole16(val);
err = axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MEDIUM_STATUS, &wval);
if (err)
aprint_error_dev(un->un_dev, "media change failed\n");
}
static void
axen_setiff_locked(struct usbnet *un)
{
struct ifnet * const ifp = usbnet_ifp(un);
struct ethercom *ec = usbnet_ec(un);
struct ether_multi *enm;
struct ether_multistep step;
uint32_t h = 0;
uint16_t rxmode;
uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint16_t wval;
if (usbnet_isdying(un))
return;
usbnet_isowned_core(un);
rxmode = 0;
/* Enable receiver, set RX mode */
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_MAC_RXCTL, &wval);
rxmode = le16toh(wval);
rxmode &= ~(AXEN_RXCTL_ACPT_ALL_MCAST | AXEN_RXCTL_PROMISC |
AXEN_RXCTL_ACPT_MCAST);
if (ifp->if_flags & IFF_PROMISC) {
DPRINTF(("%s: promisc\n", device_xname(un->un_dev)));
rxmode |= AXEN_RXCTL_PROMISC;
allmulti:
ETHER_LOCK(ec);
ec->ec_flags |= ETHER_F_ALLMULTI;
ETHER_UNLOCK(ec);
rxmode |= AXEN_RXCTL_ACPT_ALL_MCAST
/* | AXEN_RXCTL_ACPT_PHY_MCAST */;
} else {
/* now program new ones */
DPRINTF(("%s: initializing hash table\n",
device_xname(un->un_dev)));
ETHER_LOCK(ec);
ec->ec_flags &= ~ETHER_F_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
DPRINTF(("%s: allmulti\n",
device_xname(un->un_dev)));
memset(hashtbl, 0, sizeof(hashtbl));
ETHER_UNLOCK(ec);
goto allmulti;
}
h = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN) >> 26;
hashtbl[h / 8] |= 1 << (h % 8);
DPRINTF(("%s: %s added\n",
device_xname(un->un_dev),
ether_sprintf(enm->enm_addrlo)));
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
rxmode |= AXEN_RXCTL_ACPT_MCAST;
}
axen_cmd(un, AXEN_CMD_MAC_WRITE_FILTER, 8, AXEN_FILTER_MULTI, hashtbl);
wval = htole16(rxmode);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MAC_RXCTL, &wval);
}
static void
axen_reset(struct usbnet *un)
{
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return;
/* XXX What to reset? */
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
static int
axen_get_eaddr(struct usbnet *un, void *addr)
{
#if 1
return axen_cmd(un, AXEN_CMD_MAC_READ_ETHER, 6, AXEN_CMD_MAC_NODE_ID,
addr);
#else
int i, retry;
uint8_t eeprom[20];
uint16_t csum;
uint16_t buf;
for (i = 0; i < 6; i++) {
/* set eeprom address */
buf = htole16(i);
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_MAC_EEPROM_ADDR, &buf);
/* set eeprom command */
buf = htole16(AXEN_EEPROM_READ);
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_MAC_EEPROM_CMD, &buf);
/* check the value is ready */
retry = 3;
do {
buf = htole16(AXEN_EEPROM_READ);
usbd_delay_ms(un->un_udev, 10);
axen_cmd(un, AXEN_CMD_MAC_READ, 1, AXEN_MAC_EEPROM_CMD,
&buf);
retry--;
if (retry < 0)
return EINVAL;
} while ((le16toh(buf) & 0xff) & AXEN_EEPROM_BUSY);
/* read data */
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_EEPROM_READ,
&eeprom[i * 2]);
/* sanity check */
if ((i == 0) && (eeprom[0] == 0xff))
return EINVAL;
}
/* check checksum */
csum = eeprom[6] + eeprom[7] + eeprom[8] + eeprom[9];
csum = (csum >> 8) + (csum & 0xff) + eeprom[10];
if (csum != 0xff) {
printf("eeprom checksum mismatch(0x%02x)\n", csum);
return EINVAL;
}
memcpy(addr, eeprom, ETHER_ADDR_LEN);
return 0;
#endif
}
static void
axen_ax88179_init(struct usbnet *un)
{
struct axen_qctrl qctrl;
uint16_t ctl, temp;
uint16_t wval;
uint8_t val;
usbnet_lock_core(un);
usbnet_busy(un);
/* XXX: ? */
axen_cmd(un, AXEN_CMD_MAC_READ, 1, AXEN_UNK_05, &val);
DPRINTFN(5, ("AXEN_CMD_MAC_READ(0x05): 0x%02x\n", val));
/* check AX88179 version, UA1 / UA2 */
axen_cmd(un, AXEN_CMD_MAC_READ, 1, AXEN_GENERAL_STATUS, &val);
/* UA1 */
if (!(val & AXEN_GENERAL_STATUS_MASK)) {
DPRINTF(("AX88179 ver. UA1\n"));
} else {
DPRINTF(("AX88179 ver. UA2\n"));
}
/* power up ethernet PHY */
wval = htole16(0);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_PHYPWR_RSTCTL, &wval);
wval = htole16(AXEN_PHYPWR_RSTCTL_IPRL);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_PHYPWR_RSTCTL, &wval);
usbd_delay_ms(un->un_udev, 200);
/* set clock mode */
val = AXEN_PHYCLK_ACS | AXEN_PHYCLK_BCS;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_PHYCLK, &val);
usbd_delay_ms(un->un_udev, 100);
/* set monitor mode (disable) */
val = AXEN_MONITOR_NONE;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_MONITOR_MODE, &val);
/* enable auto detach */
axen_cmd(un, AXEN_CMD_EEPROM_READ, 2, AXEN_EEPROM_STAT, &wval);
temp = le16toh(wval);
DPRINTFN(2,("EEPROM0x43 = 0x%04x\n", temp));
if (!(temp == 0xffff) && !(temp & 0x0100)) {
/* Enable auto detach bit */
val = 0;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_PHYCLK, &val);
val = AXEN_PHYCLK_ULR;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_PHYCLK, &val);
usbd_delay_ms(un->un_udev, 100);
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_PHYPWR_RSTCTL, &wval);
ctl = le16toh(wval);
ctl |= AXEN_PHYPWR_RSTCTL_AUTODETACH;
wval = htole16(ctl);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_PHYPWR_RSTCTL, &wval);
usbd_delay_ms(un->un_udev, 200);
aprint_error_dev(un->un_dev, "enable auto detach (0x%04x)\n",
ctl);
}
/* bulkin queue setting */
axen_cmd(un, AXEN_CMD_MAC_READ, 1, AXEN_USB_UPLINK, &val);
switch (val) {
case AXEN_USB_FS:
DPRINTF(("uplink: USB1.1\n"));
qctrl.ctrl = 0x07;
qctrl.timer_low = 0xcc;
qctrl.timer_high = 0x4c;
qctrl.bufsize = AXEN_BUFSZ_LS - 1;
qctrl.ifg = 0x08;
break;
case AXEN_USB_HS:
DPRINTF(("uplink: USB2.0\n"));
qctrl.ctrl = 0x07;
qctrl.timer_low = 0x02;
qctrl.timer_high = 0xa0;
qctrl.bufsize = AXEN_BUFSZ_HS - 1;
qctrl.ifg = 0xff;
break;
case AXEN_USB_SS:
DPRINTF(("uplink: USB3.0\n"));
qctrl.ctrl = 0x07;
qctrl.timer_low = 0x4f;
qctrl.timer_high = 0x00;
qctrl.bufsize = AXEN_BUFSZ_SS - 1;
qctrl.ifg = 0xff;
break;
default:
aprint_error_dev(un->un_dev, "unknown uplink bus:0x%02x\n",
val);
usbnet_unbusy(un);
usbnet_unlock_core(un);
return;
}
axen_cmd(un, AXEN_CMD_MAC_SET_RXSR, 5, AXEN_RX_BULKIN_QCTRL, &qctrl);
/*
* set buffer high/low watermark to pause/resume.
* write 2byte will set high/log simultaneous with AXEN_PAUSE_HIGH.
* XXX: what is the best value? OSX driver uses 0x3c-0x4c as LOW-HIGH
* watermark parameters.
*/
val = 0x34;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_PAUSE_LOW_WATERMARK, &val);
val = 0x52;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_PAUSE_HIGH_WATERMARK, &val);
/* Set RX/TX configuration. */
/* Set RX control register */
ctl = AXEN_RXCTL_IPE | AXEN_RXCTL_DROPCRCERR | AXEN_RXCTL_AUTOB;
wval = htole16(ctl);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MAC_RXCTL, &wval);
/* set monitor mode (enable) */
val = AXEN_MONITOR_PMETYPE | AXEN_MONITOR_PMEPOL | AXEN_MONITOR_RWMP;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_MONITOR_MODE, &val);
axen_cmd(un, AXEN_CMD_MAC_READ, 1, AXEN_MONITOR_MODE, &val);
DPRINTF(("axen: Monitor mode = 0x%02x\n", val));
/* set medium type */
ctl = AXEN_MEDIUM_GIGA | AXEN_MEDIUM_FDX | AXEN_MEDIUM_EN_125MHZ |
AXEN_MEDIUM_RXFLOW_CTRL_EN | AXEN_MEDIUM_TXFLOW_CTRL_EN |
AXEN_MEDIUM_RECV_EN;
wval = htole16(ctl);
DPRINTF(("axen: set to medium mode: 0x%04x\n", ctl));
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MEDIUM_STATUS, &wval);
usbd_delay_ms(un->un_udev, 100);
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_MEDIUM_STATUS, &wval);
DPRINTF(("axen: current medium mode: 0x%04x\n", le16toh(wval)));
#if 0 /* XXX: TBD.... */
#define GMII_LED_ACTIVE 0x1a
#define GMII_PHY_PAGE_SEL 0x1e
#define GMII_PHY_PAGE_SEL 0x1f
#define GMII_PAGE_EXT 0x0007
usbnet_mii_writereg(un->un_dev, un->un_phyno, GMII_PHY_PAGE_SEL,
GMII_PAGE_EXT);
usbnet_mii_writereg(un->un_dev, un->un_phyno, GMII_PHY_PAGE,
0x002c);
#endif
#if 1 /* XXX: phy hack ? */
usbnet_mii_writereg(un->un_dev, un->un_phyno, 0x1F, 0x0005);
usbnet_mii_writereg(un->un_dev, un->un_phyno, 0x0C, 0x0000);
usbnet_mii_readreg(un->un_dev, un->un_phyno, 0x0001, &wval);
usbnet_mii_writereg(un->un_dev, un->un_phyno, 0x01, wval | 0x0080);
usbnet_mii_writereg(un->un_dev, un->un_phyno, 0x1F, 0x0000);
#endif
usbnet_unbusy(un);
usbnet_unlock_core(un);
}
static void
axen_setoe_locked(struct usbnet *un)
{
struct ifnet * const ifp = usbnet_ifp(un);
uint64_t enabled = ifp->if_capenable;
uint8_t val;
usbnet_isowned_core(un);
val = AXEN_RXCOE_OFF;
if (enabled & IFCAP_CSUM_IPv4_Rx)
val |= AXEN_RXCOE_IPv4;
if (enabled & IFCAP_CSUM_TCPv4_Rx)
val |= AXEN_RXCOE_TCPv4;
if (enabled & IFCAP_CSUM_UDPv4_Rx)
val |= AXEN_RXCOE_UDPv4;
if (enabled & IFCAP_CSUM_TCPv6_Rx)
val |= AXEN_RXCOE_TCPv6;
if (enabled & IFCAP_CSUM_UDPv6_Rx)
val |= AXEN_RXCOE_UDPv6;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_RX_COE, &val);
val = AXEN_TXCOE_OFF;
if (enabled & IFCAP_CSUM_IPv4_Tx)
val |= AXEN_TXCOE_IPv4;
if (enabled & IFCAP_CSUM_TCPv4_Tx)
val |= AXEN_TXCOE_TCPv4;
if (enabled & IFCAP_CSUM_UDPv4_Tx)
val |= AXEN_TXCOE_UDPv4;
if (enabled & IFCAP_CSUM_TCPv6_Tx)
val |= AXEN_TXCOE_TCPv6;
if (enabled & IFCAP_CSUM_UDPv6_Tx)
val |= AXEN_TXCOE_UDPv6;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_TX_COE, &val);
}
static int
axen_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock_core(un);
usbnet_busy(un);
switch (cmd) {
case SIOCSIFFLAGS:
case SIOCSETHERCAP:
case SIOCADDMULTI:
case SIOCDELMULTI:
axen_setiff_locked(un);
break;
case SIOCSIFCAP:
axen_setoe_locked(un);
break;
default:
break;
}
usbnet_unbusy(un);
usbnet_unlock_core(un);
return 0;
}
static int
axen_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return axen_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
axen_attach(device_t parent, device_t self, void *aux)
{
USBNET_MII_DECL_DEFAULT(unm);
struct usbnet * const un = device_private(self);
struct usb_attach_arg *uaa = aux;
struct usbd_device *dev = uaa->uaa_device;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
uint16_t axen_flags;
int i;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
un->un_dev = self;
un->un_udev = dev;
un->un_sc = un;
un->un_ops = &axen_ops;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = AXEN_RX_LIST_CNT;
un->un_tx_list_cnt = AXEN_TX_LIST_CNT;
err = usbd_set_config_no(dev, AXEN_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
axen_flags = axen_lookup(uaa->uaa_vendor, uaa->uaa_product)->axen_flags;
err = usbd_device2interface_handle(dev, AXEN_IFACE_IDX, &un->un_iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
/* decide on what our bufsize will be */
switch (dev->ud_speed) {
case USB_SPEED_SUPER:
un->un_rx_bufsz = AXEN_BUFSZ_SS * 1024;
break;
case USB_SPEED_HIGH:
un->un_rx_bufsz = AXEN_BUFSZ_HS * 1024;
break;
default:
un->un_rx_bufsz = AXEN_BUFSZ_LS * 1024;
break;
}
un->un_tx_bufsz = IP_MAXPACKET + ETHER_HDR_LEN + ETHER_CRC_LEN +
ETHER_VLAN_ENCAP_LEN + sizeof(struct axen_sframe_hdr);
/* Find endpoints. */
id = usbd_get_interface_descriptor(un->un_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (!ed) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
#if 0 /* not used yet */
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
#endif
}
}
/* Set these up now for axen_cmd(). */
usbnet_attach(un, "axendet");
un->un_phyno = AXEN_PHY_ID;
DPRINTF(("%s: phyno %d\n", device_xname(self), un->un_phyno));
/* Get station address. */
usbnet_lock_core(un);
usbnet_busy(un);
if (axen_get_eaddr(un, &un->un_eaddr)) {
usbnet_unbusy(un);
usbnet_unlock_core(un);
printf("EEPROM checksum error\n");
return;
}
usbnet_unbusy(un);
usbnet_unlock_core(un);
axen_ax88179_init(un);
/* An ASIX chip was detected. Inform the world. */
if (axen_flags & AX178A)
aprint_normal_dev(self, "AX88178a\n");
else if (axen_flags & AX179)
aprint_normal_dev(self, "AX88179\n");
else
aprint_normal_dev(self, "(unknown)\n");
struct ethercom *ec = usbnet_ec(un);
ec->ec_capabilities = ETHERCAP_VLAN_MTU;
/* Adapter does not support TSOv6 (They call it LSOv2). */
struct ifnet *ifp = usbnet_ifp(un);
ifp->if_capabilities |= IFCAP_TSOv4 |
IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_IPv4_Tx |
IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv4_Tx |
IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv4_Tx |
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_TCPv6_Tx |
IFCAP_CSUM_UDPv6_Rx | IFCAP_CSUM_UDPv6_Tx;
usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, &unm);
}
static int
axen_csum_flags_rx(struct ifnet *ifp, uint32_t pkt_hdr)
{
int enabled_flags = ifp->if_csum_flags_rx;
int csum_flags = 0;
int l3_type, l4_type;
if (enabled_flags == 0)
return 0;
l3_type = (pkt_hdr & AXEN_RXHDR_L3_TYPE_MASK) >>
AXEN_RXHDR_L3_TYPE_OFFSET;
if (l3_type == AXEN_RXHDR_L3_TYPE_IPV4)
csum_flags |= M_CSUM_IPv4;
l4_type = (pkt_hdr & AXEN_RXHDR_L4_TYPE_MASK) >>
AXEN_RXHDR_L4_TYPE_OFFSET;
switch (l4_type) {
case AXEN_RXHDR_L4_TYPE_TCP:
if (l3_type == AXEN_RXHDR_L3_TYPE_IPV4)
csum_flags |= M_CSUM_TCPv4;
else
csum_flags |= M_CSUM_TCPv6;
break;
case AXEN_RXHDR_L4_TYPE_UDP:
if (l3_type == AXEN_RXHDR_L3_TYPE_IPV4)
csum_flags |= M_CSUM_UDPv4;
else
csum_flags |= M_CSUM_UDPv6;
break;
default:
break;
}
csum_flags &= enabled_flags;
if ((csum_flags & M_CSUM_IPv4) && (pkt_hdr & AXEN_RXHDR_L3CSUM_ERR))
csum_flags |= M_CSUM_IPv4_BAD;
if ((csum_flags & ~M_CSUM_IPv4) && (pkt_hdr & AXEN_RXHDR_L4CSUM_ERR))
csum_flags |= M_CSUM_TCP_UDP_BAD;
return csum_flags;
}
static void
axen_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
uint32_t rx_hdr, pkt_hdr;
uint32_t *hdr_p;
uint16_t hdr_offset, pkt_count;
size_t pkt_len;
size_t temp;
if (total_len < sizeof(pkt_hdr)) {
aprint_error_dev(un->un_dev, "rxeof: too short transfer\n");
if_statinc(ifp, if_ierrors);
return;
}
/*
* buffer map
* [packet #0]...[packet #n][pkt hdr#0]..[pkt hdr#n][recv_hdr]
* each packet has 0xeeee as psuedo header..
*/
hdr_p = (uint32_t *)(buf + total_len - sizeof(uint32_t));
rx_hdr = le32toh(*hdr_p);
hdr_offset = (uint16_t)(rx_hdr >> 16);
pkt_count = (uint16_t)(rx_hdr & 0xffff);
/* sanity check */
if (hdr_offset > total_len) {
aprint_error_dev(un->un_dev,
"rxeof: invalid hdr offset (%u > %u)\n",
hdr_offset, total_len);
if_statinc(ifp, if_ierrors);
usbd_delay_ms(un->un_udev, 100);
return;
}
/* point first packet header */
hdr_p = (uint32_t *)(buf + hdr_offset);
/*
* ax88179 will pack multiple ip packet to a USB transaction.
* process all of packets in the buffer
*/
#if 1 /* XXX: paranoiac check. need to remove later */
#define AXEN_MAX_PACKED_PACKET 200
if (pkt_count > AXEN_MAX_PACKED_PACKET) {
DPRINTF(("%s: Too many packets (%d) in a transaction, discard.\n",
device_xname(un->un_dev), pkt_count));
return;
}
#endif
if (pkt_count)
rnd_add_uint32(usbnet_rndsrc(un), pkt_count);
do {
if ((buf[0] != 0xee) || (buf[1] != 0xee)) {
aprint_error_dev(un->un_dev,
"invalid buffer(pkt#%d), continue\n", pkt_count);
if_statadd(ifp, if_ierrors, pkt_count);
return;
}
pkt_hdr = le32toh(*hdr_p);
pkt_len = (pkt_hdr >> 16) & 0x1fff;
DPRINTFN(10,
("%s: rxeof: packet#%d, pkt_hdr 0x%08x, pkt_len %zu\n",
device_xname(un->un_dev), pkt_count, pkt_hdr, pkt_len));
if (pkt_hdr & (AXEN_RXHDR_CRC_ERR | AXEN_RXHDR_DROP_ERR)) {
if_statinc(ifp, if_ierrors);
/* move to next pkt header */
DPRINTF(("%s: %s err (pkt#%d)\n",
device_xname(un->un_dev),
(pkt_hdr & AXEN_RXHDR_CRC_ERR) ? "crc" : "drop",
pkt_count));
goto nextpkt;
}
usbnet_enqueue(un, buf + ETHER_ALIGN, pkt_len - 6,
axen_csum_flags_rx(ifp, pkt_hdr), 0, 0);
nextpkt:
/*
* prepare next packet
* as each packet will be aligned 8byte boundary,
* need to fix up the start point of the buffer.
*/
temp = ((pkt_len + 7) & 0xfff8);
buf = buf + temp;
hdr_p++;
pkt_count--;
} while (pkt_count > 0);
}
static unsigned
axen_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
struct axen_sframe_hdr hdr;
u_int length, boundary;
if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - sizeof(hdr))
return 0;
length = m->m_pkthdr.len + sizeof(hdr);
/* XXX Is this needed? wMaxPacketSize? */
switch (un->un_udev->ud_speed) {
case USB_SPEED_SUPER:
boundary = 4096;
break;
case USB_SPEED_HIGH:
boundary = 512;
break;
default:
boundary = 64;
break;
}
hdr.plen = htole32(m->m_pkthdr.len);
hdr.gso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) ?
m->m_pkthdr.segsz : 0;
if ((length % boundary) == 0) {
DPRINTF(("%s: boundary hit\n", device_xname(un->un_dev)));
hdr.gso |= 0x80008000; /* XXX enable padding */
}
hdr.gso = htole32(hdr.gso);
memcpy(c->unc_buf, &hdr, sizeof(hdr));
m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + sizeof(hdr));
return length;
}
static int
axen_init_locked(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
uint16_t rxmode;
uint16_t wval;
uint8_t bval;
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return EIO;
/* Cancel pending I/O */
usbnet_stop(un, ifp, 1);
/* Reset the ethernet interface. */
axen_reset(un);
/* XXX: ? */
bval = 0x01;
axen_cmd(un, AXEN_CMD_MAC_WRITE, 1, AXEN_UNK_28, &bval);
/* Configure offloading engine. */
axen_setoe_locked(un);
/* Program promiscuous mode and multicast filters. */
axen_setiff_locked(un);
/* Enable receiver, set RX mode */
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_MAC_RXCTL, &wval);
rxmode = le16toh(wval);
rxmode |= AXEN_RXCTL_START;
wval = htole16(rxmode);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MAC_RXCTL, &wval);
return usbnet_init_rx_tx(un);
}
static int
axen_uno_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock_core(un);
usbnet_busy(un);
int ret = axen_init_locked(ifp);
usbnet_unbusy(un);
usbnet_unlock_core(un);
return ret;
}
static void
axen_uno_stop(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
uint16_t rxmode, wval;
axen_reset(un);
/* Disable receiver, set RX mode */
axen_cmd(un, AXEN_CMD_MAC_READ2, 2, AXEN_MAC_RXCTL, &wval);
rxmode = le16toh(wval);
rxmode &= ~AXEN_RXCTL_START;
wval = htole16(rxmode);
axen_cmd(un, AXEN_CMD_MAC_WRITE2, 2, AXEN_MAC_RXCTL, &wval);
}
#ifdef _MODULE
#include "ioconf.c"
#endif
USBNET_MODULE(axen)