NetBSD/sys/dev/isa/ym.c
isaki c509fb12bb Remove rounding by 4 bytes on round_blocksize().
For drivers which supports only 16bit * 2channels sampling,
rounding by 4 bytes no longer meaningful.
2020-02-29 05:51:10 +00:00

1445 lines
37 KiB
C

/* $NetBSD: ym.c,v 1.47 2020/02/29 05:51:11 isaki Exp $ */
/*-
* Copyright (c) 1999-2002, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by ITOH Yasufumi.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1998 Constantine Sapuntzakis. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Original code from OpenBSD.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ym.c,v 1.47 2020/02/29 05:51:11 isaki Exp $");
#include "mpu_ym.h"
#include "opt_ym.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/bus.h>
#include <sys/audioio.h>
#include <dev/audio/audio_if.h>
#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>
#include <dev/ic/ad1848reg.h>
#include <dev/isa/ad1848var.h>
#include <dev/ic/opl3sa3reg.h>
#include <dev/isa/wssreg.h>
#if NMPU_YM > 0
#include <dev/ic/mpuvar.h>
#endif
#include <dev/isa/ymvar.h>
#include <dev/isa/sbreg.h>
/* Power management mode. */
#ifndef YM_POWER_MODE
#define YM_POWER_MODE YM_POWER_POWERSAVE
#endif
/* Time in second before power down the chip. */
#ifndef YM_POWER_OFF_SEC
#define YM_POWER_OFF_SEC 5
#endif
/* Default mixer settings. */
#ifndef YM_VOL_MASTER
#define YM_VOL_MASTER 208
#endif
#ifndef YM_VOL_DAC
#define YM_VOL_DAC 224
#endif
#ifndef YM_VOL_OPL3
#define YM_VOL_OPL3 184
#endif
/*
* Default position of the equalizer.
*/
#ifndef YM_DEFAULT_TREBLE
#define YM_DEFAULT_TREBLE YM_EQ_FLAT_OFFSET
#endif
#ifndef YM_DEFAULT_BASS
#define YM_DEFAULT_BASS YM_EQ_FLAT_OFFSET
#endif
#ifdef __i386__ /* XXX */
# include "joy.h"
#else
# define NJOY 0
#endif
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (ymdebug) printf x
int ymdebug = 0;
#else
#define DPRINTF(x)
#endif
#define DVNAME(softc) (device_xname((softc)->sc_ad1848.sc_ad1848.sc_dev))
int ym_getdev(void *, struct audio_device *);
int ym_mixer_set_port(void *, mixer_ctrl_t *);
int ym_mixer_get_port(void *, mixer_ctrl_t *);
int ym_query_devinfo(void *, mixer_devinfo_t *);
int ym_intr(void *);
#ifndef AUDIO_NO_POWER_CTL
static void ym_save_codec_regs(struct ym_softc *);
static void ym_restore_codec_regs(struct ym_softc *);
int ym_codec_power_ctl(void *, int);
static void ym_chip_powerdown(struct ym_softc *);
static void ym_chip_powerup(struct ym_softc *, int);
static void ym_powerdown_blocks(struct ym_softc *);
static void ym_powerdown_callout(void *);
void ym_power_ctl(struct ym_softc *, int, int);
#endif
static void ym_init(struct ym_softc *);
static void ym_mute(struct ym_softc *, int, int);
static void ym_set_master_gain(struct ym_softc *, struct ad1848_volume*);
static void ym_hvol_to_master_gain(struct ym_softc *);
static void ym_set_mic_gain(struct ym_softc *, int);
static void ym_set_3d(struct ym_softc *, mixer_ctrl_t *,
struct ad1848_volume *, int);
static bool ym_suspend(device_t, const pmf_qual_t *);
static bool ym_resume(device_t, const pmf_qual_t *);
const struct audio_hw_if ym_hw_if = {
.open = ad1848_isa_open,
.close = ad1848_isa_close,
.query_format = ad1848_query_format,
.set_format = ad1848_set_format,
.commit_settings = ad1848_commit_settings,
.halt_output = ad1848_isa_halt_output,
.halt_input = ad1848_isa_halt_input,
.getdev = ym_getdev,
.set_port = ym_mixer_set_port,
.get_port = ym_mixer_get_port,
.query_devinfo = ym_query_devinfo,
.allocm = ad1848_isa_malloc,
.freem = ad1848_isa_free,
.round_buffersize = ad1848_isa_round_buffersize,
.get_props = ad1848_isa_get_props,
.trigger_output = ad1848_isa_trigger_output,
.trigger_input = ad1848_isa_trigger_input,
.get_locks = ad1848_get_locks,
};
static inline int ym_read(struct ym_softc *, int);
static inline void ym_write(struct ym_softc *, int, int);
void
ym_attach(struct ym_softc *sc)
{
static struct ad1848_volume vol_master = {YM_VOL_MASTER, YM_VOL_MASTER};
static struct ad1848_volume vol_dac = {YM_VOL_DAC, YM_VOL_DAC};
static struct ad1848_volume vol_opl3 = {YM_VOL_OPL3, YM_VOL_OPL3};
struct ad1848_softc *ac;
mixer_ctrl_t mctl;
struct audio_attach_args arg;
ac = &sc->sc_ad1848.sc_ad1848;
callout_init(&sc->sc_powerdown_ch, CALLOUT_MPSAFE);
cv_init(&sc->sc_cv, "ym");
ad1848_init_locks(ac, IPL_AUDIO);
/* Mute the output to reduce noise during initialization. */
ym_mute(sc, SA3_VOL_L, 1);
ym_mute(sc, SA3_VOL_R, 1);
sc->sc_version = ym_read(sc, SA3_MISC) & SA3_MISC_VER;
ac->chip_name = YM_IS_SA3(sc) ? "OPL3-SA3" : "OPL3-SA2";
sc->sc_ad1848.sc_ih = isa_intr_establish(sc->sc_ic, sc->ym_irq,
IST_EDGE, IPL_AUDIO, ym_intr, sc);
#ifndef AUDIO_NO_POWER_CTL
sc->sc_ad1848.powerctl = ym_codec_power_ctl;
sc->sc_ad1848.powerarg = sc;
#endif
ad1848_isa_attach(&sc->sc_ad1848);
printf("\n");
ac->parent = sc;
/* Establish chip in well known mode */
ym_set_master_gain(sc, &vol_master);
ym_set_mic_gain(sc, 0);
sc->master_mute = 0;
/* Override ad1848 settings. */
ad1848_set_channel_gain(ac, AD1848_DAC_CHANNEL, &vol_dac);
ad1848_set_channel_gain(ac, AD1848_AUX2_CHANNEL, &vol_opl3);
/*
* Mute all external sources. If you change this, you must
* also change the initial value of sc->sc_external_sources
* (currently 0 --- no external source is active).
*/
sc->mic_mute = 1;
ym_mute(sc, SA3_MIC_VOL, sc->mic_mute);
ad1848_mute_channel(ac, AD1848_AUX1_CHANNEL, MUTE_ALL); /* CD */
ad1848_mute_channel(ac, AD1848_LINE_CHANNEL, MUTE_ALL); /* line */
ac->mute[AD1848_AUX1_CHANNEL] = MUTE_ALL;
ac->mute[AD1848_LINE_CHANNEL] = MUTE_ALL;
/* speaker is muted by default */
/* We use only one IRQ (IRQ-A). */
ym_write(sc, SA3_IRQ_CONF, SA3_IRQ_CONF_MPU_A | SA3_IRQ_CONF_WSS_A);
ym_write(sc, SA3_HVOL_INTR_CNF, SA3_HVOL_INTR_CNF_A);
/* audio at ym attachment */
sc->sc_audiodev = audio_attach_mi(&ym_hw_if, ac, ac->sc_dev);
/* opl at ym attachment */
if (sc->sc_opl_ioh) {
arg.type = AUDIODEV_TYPE_OPL;
arg.hwif = 0;
arg.hdl = 0;
(void)config_found(ac->sc_dev, &arg, audioprint);
}
#if NMPU_YM > 0
/* mpu at ym attachment */
if (sc->sc_mpu_ioh) {
arg.type = AUDIODEV_TYPE_MPU;
arg.hwif = 0;
arg.hdl = 0;
sc->sc_mpudev = config_found(ac->sc_dev, &arg, audioprint);
}
#endif
/* This must be AFTER the attachment of sub-devices. */
mutex_spin_enter(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
ym_init(sc);
#ifndef AUDIO_NO_POWER_CTL
/*
* Initialize power control.
*/
sc->sc_pow_mode = YM_POWER_MODE;
sc->sc_pow_timeout = YM_POWER_OFF_SEC;
sc->sc_on_blocks = sc->sc_turning_off =
YM_POWER_CODEC_P | YM_POWER_CODEC_R |
YM_POWER_OPL3 | YM_POWER_MPU401 | YM_POWER_3D |
YM_POWER_CODEC_DA | YM_POWER_CODEC_AD | YM_POWER_OPL3_DA;
#if NJOY > 0
sc->sc_on_blocks |= YM_POWER_JOYSTICK; /* prevents chip powerdown */
#endif
ym_powerdown_blocks(sc);
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
if (!pmf_device_register(ac->sc_dev, ym_suspend, ym_resume)) {
aprint_error_dev(ac->sc_dev,
"cannot set power mgmt handler\n");
}
#endif
/* Set tone control to the default position. */
mctl.un.value.num_channels = 1;
mctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = YM_DEFAULT_TREBLE;
mctl.dev = YM_MASTER_TREBLE;
ym_mixer_set_port(sc, &mctl);
mctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = YM_DEFAULT_BASS;
mctl.dev = YM_MASTER_BASS;
ym_mixer_set_port(sc, &mctl);
/* Unmute the output now if the chip is on. */
#ifndef AUDIO_NO_POWER_CTL
if (sc->sc_on_blocks & YM_POWER_ACTIVE)
#endif
{
ym_mute(sc, SA3_VOL_L, sc->master_mute);
ym_mute(sc, SA3_VOL_R, sc->master_mute);
}
}
static inline int
ym_read(struct ym_softc *sc, int reg)
{
bus_space_write_1(sc->sc_iot, sc->sc_controlioh,
SA3_CTL_INDEX, (reg & 0xff));
return bus_space_read_1(sc->sc_iot, sc->sc_controlioh, SA3_CTL_DATA);
}
static inline void
ym_write(struct ym_softc *sc, int reg, int data)
{
bus_space_write_1(sc->sc_iot, sc->sc_controlioh,
SA3_CTL_INDEX, (reg & 0xff));
bus_space_write_1(sc->sc_iot, sc->sc_controlioh,
SA3_CTL_DATA, (data & 0xff));
}
static void
ym_init(struct ym_softc *sc)
{
uint8_t dpd, apd;
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
/* Mute SoundBlaster output if possible. */
if (sc->sc_sb_ioh) {
bus_space_write_1(sc->sc_iot, sc->sc_sb_ioh, SBP_MIXER_ADDR,
SBP_MASTER_VOL);
bus_space_write_1(sc->sc_iot, sc->sc_sb_ioh, SBP_MIXER_DATA,
0x00);
}
if (!YM_IS_SA3(sc)) {
/* OPL3-SA2 */
ym_write(sc, SA3_PWR_MNG, SA2_PWR_MNG_CLKO |
(sc->sc_opl_ioh == 0 ? SA2_PWR_MNG_FMPS : 0));
return;
}
/* OPL3-SA3 */
/* Figure out which part can be power down. */
dpd = SA3_DPWRDWN_SB /* we never use SB */
#if NMPU_YM > 0
| (sc->sc_mpu_ioh ? 0 : SA3_DPWRDWN_MPU)
#else
| SA3_DPWRDWN_MPU
#endif
#if NJOY == 0
| SA3_DPWRDWN_JOY
#endif
| SA3_DPWRDWN_PNP /* ISA Plug and Play is done */
/*
* The master clock is for external wavetable synthesizer
* OPL4-ML (YMF704) or OPL4-ML2 (YMF721),
* and is currently unused.
*/
| SA3_DPWRDWN_MCLKO;
apd = SA3_APWRDWN_SBDAC; /* we never use SB */
/* Power down OPL3 if not attached. */
if (sc->sc_opl_ioh == 0) {
dpd |= SA3_DPWRDWN_FM;
apd |= SA3_APWRDWN_FMDAC;
}
/* CODEC is always attached. */
/* Power down unused digital parts. */
ym_write(sc, SA3_DPWRDWN, dpd);
/* Power down unused analog parts. */
ym_write(sc, SA3_APWRDWN, apd);
}
int
ym_getdev(void *addr, struct audio_device *retp)
{
struct ym_softc *sc;
struct ad1848_softc *ac;
sc = addr;
ac = &sc->sc_ad1848.sc_ad1848;
strlcpy(retp->name, ac->chip_name, sizeof(retp->name));
snprintf(retp->version, sizeof(retp->version), "%d", sc->sc_version);
strlcpy(retp->config, "ym", sizeof(retp->config));
return 0;
}
static ad1848_devmap_t mappings[] = {
{ YM_DAC_LVL, AD1848_KIND_LVL, AD1848_DAC_CHANNEL },
{ YM_MIDI_LVL, AD1848_KIND_LVL, AD1848_AUX2_CHANNEL },
{ YM_CD_LVL, AD1848_KIND_LVL, AD1848_AUX1_CHANNEL },
{ YM_LINE_LVL, AD1848_KIND_LVL, AD1848_LINE_CHANNEL },
{ YM_SPEAKER_LVL, AD1848_KIND_LVL, AD1848_MONO_CHANNEL },
{ YM_MONITOR_LVL, AD1848_KIND_LVL, AD1848_MONITOR_CHANNEL },
{ YM_DAC_MUTE, AD1848_KIND_MUTE, AD1848_DAC_CHANNEL },
{ YM_MIDI_MUTE, AD1848_KIND_MUTE, AD1848_AUX2_CHANNEL },
{ YM_CD_MUTE, AD1848_KIND_MUTE, AD1848_AUX1_CHANNEL },
{ YM_LINE_MUTE, AD1848_KIND_MUTE, AD1848_LINE_CHANNEL },
{ YM_SPEAKER_MUTE, AD1848_KIND_MUTE, AD1848_MONO_CHANNEL },
{ YM_MONITOR_MUTE, AD1848_KIND_MUTE, AD1848_MONITOR_CHANNEL },
{ YM_REC_LVL, AD1848_KIND_RECORDGAIN, -1 },
{ YM_RECORD_SOURCE, AD1848_KIND_RECORDSOURCE, -1}
};
#define NUMMAP (sizeof(mappings) / sizeof(mappings[0]))
static void
ym_mute(struct ym_softc *sc, int left_reg, int mute)
{
uint8_t reg;
reg = ym_read(sc, left_reg);
if (mute)
ym_write(sc, left_reg, reg | 0x80);
else
ym_write(sc, left_reg, reg & ~0x80);
}
static void
ym_set_master_gain(struct ym_softc *sc, struct ad1848_volume *vol)
{
u_int atten;
sc->master_gain = *vol;
atten = ((AUDIO_MAX_GAIN - vol->left) * (SA3_VOL_MV + 1)) /
(AUDIO_MAX_GAIN + 1);
ym_write(sc, SA3_VOL_L, (ym_read(sc, SA3_VOL_L) & ~SA3_VOL_MV) | atten);
atten = ((AUDIO_MAX_GAIN - vol->right) * (SA3_VOL_MV + 1)) /
(AUDIO_MAX_GAIN + 1);
ym_write(sc, SA3_VOL_R, (ym_read(sc, SA3_VOL_R) & ~SA3_VOL_MV) | atten);
}
/*
* Read current setting of master volume from hardware
* and update the software value if changed.
* [SA3] This function clears hardware volume interrupt.
*/
static void
ym_hvol_to_master_gain(struct ym_softc *sc)
{
u_int prevval, val;
int changed;
changed = 0;
val = SA3_VOL_MV & ~ym_read(sc, SA3_VOL_L);
prevval = (sc->master_gain.left * (SA3_VOL_MV + 1)) /
(AUDIO_MAX_GAIN + 1);
if (val != prevval) {
sc->master_gain.left =
val * ((AUDIO_MAX_GAIN + 1) / (SA3_VOL_MV + 1));
changed = 1;
}
val = SA3_VOL_MV & ~ym_read(sc, SA3_VOL_R);
prevval = (sc->master_gain.right * (SA3_VOL_MV + 1)) /
(AUDIO_MAX_GAIN + 1);
if (val != prevval) {
sc->master_gain.right =
val * ((AUDIO_MAX_GAIN + 1) / (SA3_VOL_MV + 1));
changed = 1;
}
#if 0 /* XXX NOT YET */
/* Notify the change to async processes. */
if (changed && sc->sc_audiodev)
mixer_signal(sc->sc_audiodev);
#else
__USE(changed);
#endif
}
static void
ym_set_mic_gain(struct ym_softc *sc, int vol)
{
u_int atten;
sc->mic_gain = vol;
atten = ((AUDIO_MAX_GAIN - vol) * (SA3_MIC_MCV + 1)) /
(AUDIO_MAX_GAIN + 1);
ym_write(sc, SA3_MIC_VOL,
(ym_read(sc, SA3_MIC_VOL) & ~SA3_MIC_MCV) | atten);
}
static void
ym_set_3d(struct ym_softc *sc, mixer_ctrl_t *cp,
struct ad1848_volume *val, int reg)
{
uint8_t l, r, e;
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
ad1848_to_vol(cp, val);
l = val->left;
r = val->right;
if (reg != SA3_3D_WIDE) {
/* flat on center */
l = YM_EQ_EXPAND_VALUE(l);
r = YM_EQ_EXPAND_VALUE(r);
}
e = (l * (SA3_3D_BITS + 1) + (SA3_3D_BITS + 1) / 2) /
(AUDIO_MAX_GAIN + 1) << SA3_3D_LSHIFT |
(r * (SA3_3D_BITS + 1) + (SA3_3D_BITS + 1) / 2) /
(AUDIO_MAX_GAIN + 1) << SA3_3D_RSHIFT;
#ifndef AUDIO_NO_POWER_CTL
/* turn wide stereo on if necessary */
if (e)
ym_power_ctl(sc, YM_POWER_3D, 1);
#endif
ym_write(sc, reg, e);
#ifndef AUDIO_NO_POWER_CTL
/* turn wide stereo off if necessary */
if (YM_EQ_OFF(&sc->sc_treble) && YM_EQ_OFF(&sc->sc_bass) &&
YM_WIDE_OFF(&sc->sc_wide))
ym_power_ctl(sc, YM_POWER_3D, 0);
#endif
}
int
ym_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct ad1848_softc *ac;
struct ym_softc *sc;
struct ad1848_volume vol;
int error;
uint8_t extsources;
ac = addr;
sc = ac->parent;
error = 0;
DPRINTF(("%s: ym_mixer_set_port: dev 0x%x, type 0x%x, 0x%x (%d; %d, %d)\n",
DVNAME(sc), cp->dev, cp->type, cp->un.ord,
cp->un.value.num_channels, cp->un.value.level[0],
cp->un.value.level[1]));
/* SA2 doesn't have equalizer */
if (!YM_IS_SA3(sc) && YM_MIXER_SA3_ONLY(cp->dev))
return ENXIO;
mutex_spin_enter(&ac->sc_intr_lock);
#ifndef AUDIO_NO_POWER_CTL
/* Power-up chip */
ym_power_ctl(sc, YM_POWER_CODEC_CTL, 1);
#endif
switch (cp->dev) {
case YM_OUTPUT_LVL:
ad1848_to_vol(cp, &vol);
ym_set_master_gain(sc, &vol);
goto out;
case YM_OUTPUT_MUTE:
sc->master_mute = (cp->un.ord != 0);
ym_mute(sc, SA3_VOL_L, sc->master_mute);
ym_mute(sc, SA3_VOL_R, sc->master_mute);
goto out;
case YM_MIC_LVL:
if (cp->un.value.num_channels != 1)
error = EINVAL;
else
ym_set_mic_gain(sc,
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
goto out;
case YM_MASTER_EQMODE:
sc->sc_eqmode = cp->un.ord & SA3_SYS_CTL_YMODE;
ym_write(sc, SA3_SYS_CTL, (ym_read(sc, SA3_SYS_CTL) &
~SA3_SYS_CTL_YMODE) | sc->sc_eqmode);
goto out;
case YM_MASTER_TREBLE:
ym_set_3d(sc, cp, &sc->sc_treble, SA3_3D_TREBLE);
goto out;
case YM_MASTER_BASS:
ym_set_3d(sc, cp, &sc->sc_bass, SA3_3D_BASS);
goto out;
case YM_MASTER_WIDE:
ym_set_3d(sc, cp, &sc->sc_wide, SA3_3D_WIDE);
goto out;
#ifndef AUDIO_NO_POWER_CTL
case YM_PWR_MODE:
if ((unsigned) cp->un.ord > YM_POWER_NOSAVE)
error = EINVAL;
else
sc->sc_pow_mode = cp->un.ord;
goto out;
case YM_PWR_TIMEOUT:
if (cp->un.value.num_channels != 1)
error = EINVAL;
else
sc->sc_pow_timeout =
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
goto out;
/*
* Needs power-up to hear external sources.
*/
case YM_CD_MUTE:
case YM_LINE_MUTE:
case YM_SPEAKER_MUTE:
case YM_MIC_MUTE:
extsources = YM_MIXER_TO_XS(cp->dev);
if (cp->un.ord) {
if ((sc->sc_external_sources &= ~extsources) == 0) {
/*
* All the external sources are muted
* --- no need to keep the chip on.
*/
ym_power_ctl(sc, YM_POWER_EXT_SRC, 0);
DPRINTF(("%s: ym_mixer_set_port: off for ext\n",
DVNAME(sc)));
}
} else {
/* mute off - power-up the chip */
sc->sc_external_sources |= extsources;
ym_power_ctl(sc, YM_POWER_EXT_SRC, 1);
DPRINTF(("%s: ym_mixer_set_port: on for ext\n",
DVNAME(sc)));
}
break; /* fall to ad1848_mixer_set_port() */
/*
* Power on/off the playback part for monitoring.
*/
case YM_MONITOR_MUTE:
if ((ac->open_mode & (FREAD | FWRITE)) == FREAD)
ym_power_ctl(sc, YM_POWER_CODEC_P | YM_POWER_CODEC_DA,
cp->un.ord == 0);
break; /* fall to ad1848_mixer_set_port() */
#endif
}
error = ad1848_mixer_set_port(ac, mappings, NUMMAP, cp);
if (error != ENXIO)
goto out;
error = 0;
switch (cp->dev) {
case YM_MIC_MUTE:
sc->mic_mute = (cp->un.ord != 0);
ym_mute(sc, SA3_MIC_VOL, sc->mic_mute);
break;
default:
error = ENXIO;
break;
}
out:
#ifndef AUDIO_NO_POWER_CTL
/* Power-down chip */
ym_power_ctl(sc, YM_POWER_CODEC_CTL, 0);
#endif
mutex_spin_exit(&ac->sc_intr_lock);
return error;
}
int
ym_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct ad1848_softc *ac;
struct ym_softc *sc;
int error;
ac = addr;
sc = ac->parent;
/* SA2 doesn't have equalizer */
if (!YM_IS_SA3(sc) && YM_MIXER_SA3_ONLY(cp->dev))
return ENXIO;
switch (cp->dev) {
case YM_OUTPUT_LVL:
if (!YM_IS_SA3(sc)) {
/*
* SA2 doesn't have hardware volume interrupt.
* Read current value and update every time.
*/
mutex_spin_enter(&ac->sc_intr_lock);
#ifndef AUDIO_NO_POWER_CTL
/* Power-up chip */
ym_power_ctl(sc, YM_POWER_CODEC_CTL, 1);
#endif
ym_hvol_to_master_gain(sc);
#ifndef AUDIO_NO_POWER_CTL
/* Power-down chip */
ym_power_ctl(sc, YM_POWER_CODEC_CTL, 0);
#endif
mutex_spin_exit(&ac->sc_intr_lock);
}
ad1848_from_vol(cp, &sc->master_gain);
return 0;
case YM_OUTPUT_MUTE:
cp->un.ord = sc->master_mute;
return 0;
case YM_MIC_LVL:
if (cp->un.value.num_channels != 1)
return EINVAL;
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->mic_gain;
return 0;
case YM_MASTER_EQMODE:
cp->un.ord = sc->sc_eqmode;
return 0;
case YM_MASTER_TREBLE:
ad1848_from_vol(cp, &sc->sc_treble);
return 0;
case YM_MASTER_BASS:
ad1848_from_vol(cp, &sc->sc_bass);
return 0;
case YM_MASTER_WIDE:
ad1848_from_vol(cp, &sc->sc_wide);
return 0;
#ifndef AUDIO_NO_POWER_CTL
case YM_PWR_MODE:
cp->un.ord = sc->sc_pow_mode;
return 0;
case YM_PWR_TIMEOUT:
if (cp->un.value.num_channels != 1)
return EINVAL;
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_pow_timeout;
return 0;
#endif
}
error = ad1848_mixer_get_port(ac, mappings, NUMMAP, cp);
if (error != ENXIO)
return error;
error = 0;
switch (cp->dev) {
case YM_MIC_MUTE:
cp->un.ord = sc->mic_mute;
break;
default:
error = ENXIO;
break;
}
return error;
}
static const char *mixer_classes[] = {
AudioCinputs, AudioCrecord, AudioCoutputs, AudioCmonitor,
#ifndef AUDIO_NO_POWER_CTL
AudioCpower,
#endif
AudioCequalization
};
int
ym_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
static const char *mixer_port_names[] = {
AudioNdac, AudioNmidi, AudioNcd, AudioNline, AudioNspeaker,
AudioNmicrophone, AudioNmonitor
};
struct ad1848_softc *ac;
struct ym_softc *sc;
ac = addr;
sc = ac->parent;
/* SA2 doesn't have equalizer */
if (!YM_IS_SA3(sc) && YM_MIXER_SA3_ONLY(dip->index))
return ENXIO;
dip->next = dip->prev = AUDIO_MIXER_LAST;
switch(dip->index) {
case YM_INPUT_CLASS:
case YM_OUTPUT_CLASS:
case YM_MONITOR_CLASS:
case YM_RECORD_CLASS:
#ifndef AUDIO_NO_POWER_CTL
case YM_PWR_CLASS:
#endif
case YM_EQ_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = dip->index;
strcpy(dip->label.name,
mixer_classes[dip->index - YM_INPUT_CLASS]);
break;
case YM_DAC_LVL:
case YM_MIDI_LVL:
case YM_CD_LVL:
case YM_LINE_LVL:
case YM_SPEAKER_LVL:
case YM_MIC_LVL:
case YM_MONITOR_LVL:
dip->type = AUDIO_MIXER_VALUE;
if (dip->index == YM_MONITOR_LVL)
dip->mixer_class = YM_MONITOR_CLASS;
else
dip->mixer_class = YM_INPUT_CLASS;
dip->next = dip->index + 7;
strcpy(dip->label.name,
mixer_port_names[dip->index - YM_DAC_LVL]);
if (dip->index == YM_SPEAKER_LVL ||
dip->index == YM_MIC_LVL)
dip->un.v.num_channels = 1;
else
dip->un.v.num_channels = 2;
if (dip->index == YM_SPEAKER_LVL)
dip->un.v.delta = 1 << (8 - 4 /* valid bits */);
else if (dip->index == YM_DAC_LVL ||
dip->index == YM_MONITOR_LVL)
dip->un.v.delta = 1 << (8 - 6 /* valid bits */);
else
dip->un.v.delta = 1 << (8 - 5 /* valid bits */);
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case YM_DAC_MUTE:
case YM_MIDI_MUTE:
case YM_CD_MUTE:
case YM_LINE_MUTE:
case YM_SPEAKER_MUTE:
case YM_MIC_MUTE:
case YM_MONITOR_MUTE:
if (dip->index == YM_MONITOR_MUTE)
dip->mixer_class = YM_MONITOR_CLASS;
else
dip->mixer_class = YM_INPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = dip->index - 7;
mute:
strcpy(dip->label.name, AudioNmute);
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
break;
case YM_OUTPUT_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_OUTPUT_CLASS;
dip->next = YM_OUTPUT_MUTE;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 2;
dip->un.v.delta = (AUDIO_MAX_GAIN + 1) / (SA3_VOL_MV + 1);
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case YM_OUTPUT_MUTE:
dip->mixer_class = YM_OUTPUT_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = YM_OUTPUT_LVL;
goto mute;
case YM_REC_LVL: /* record level */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_RECORD_CLASS;
dip->next = YM_RECORD_SOURCE;
strcpy(dip->label.name, AudioNrecord);
dip->un.v.num_channels = 2;
dip->un.v.delta = 1 << (8 - 4 /* valid bits */);
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case YM_RECORD_SOURCE:
dip->mixer_class = YM_RECORD_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = YM_REC_LVL;
strcpy(dip->label.name, AudioNsource);
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
dip->un.e.member[0].ord = MIC_IN_PORT;
strcpy(dip->un.e.member[1].label.name, AudioNline);
dip->un.e.member[1].ord = LINE_IN_PORT;
strcpy(dip->un.e.member[2].label.name, AudioNdac);
dip->un.e.member[2].ord = DAC_IN_PORT;
strcpy(dip->un.e.member[3].label.name, AudioNcd);
dip->un.e.member[3].ord = AUX1_IN_PORT;
break;
case YM_MASTER_EQMODE:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = YM_EQ_CLASS;
strcpy(dip->label.name, AudioNmode);
strcpy(dip->un.v.units.name, AudioNmode);
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNdesktop);
dip->un.e.member[0].ord = SA3_SYS_CTL_YMODE0;
strcpy(dip->un.e.member[1].label.name, AudioNlaptop);
dip->un.e.member[1].ord = SA3_SYS_CTL_YMODE1;
strcpy(dip->un.e.member[2].label.name, AudioNsubnote);
dip->un.e.member[2].ord = SA3_SYS_CTL_YMODE2;
strcpy(dip->un.e.member[3].label.name, AudioNhifi);
dip->un.e.member[3].ord = SA3_SYS_CTL_YMODE3;
break;
case YM_MASTER_TREBLE:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_EQ_CLASS;
strcpy(dip->label.name, AudioNtreble);
dip->un.v.num_channels = 2;
dip->un.v.delta = (AUDIO_MAX_GAIN + 1) / (SA3_3D_BITS + 1)
>> YM_EQ_REDUCE_BIT;
strcpy(dip->un.v.units.name, AudioNtreble);
break;
case YM_MASTER_BASS:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_EQ_CLASS;
strcpy(dip->label.name, AudioNbass);
dip->un.v.num_channels = 2;
dip->un.v.delta = (AUDIO_MAX_GAIN + 1) / (SA3_3D_BITS + 1)
>> YM_EQ_REDUCE_BIT;
strcpy(dip->un.v.units.name, AudioNbass);
break;
case YM_MASTER_WIDE:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_EQ_CLASS;
strcpy(dip->label.name, AudioNsurround);
dip->un.v.num_channels = 2;
dip->un.v.delta = (AUDIO_MAX_GAIN + 1) / (SA3_3D_BITS + 1);
strcpy(dip->un.v.units.name, AudioNsurround);
break;
#ifndef AUDIO_NO_POWER_CTL
case YM_PWR_MODE:
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = YM_PWR_CLASS;
dip->next = YM_PWR_TIMEOUT;
strcpy(dip->label.name, AudioNsave);
dip->un.e.num_mem = 3;
strcpy(dip->un.e.member[0].label.name, AudioNpowerdown);
dip->un.e.member[0].ord = YM_POWER_POWERDOWN;
strcpy(dip->un.e.member[1].label.name, AudioNpowersave);
dip->un.e.member[1].ord = YM_POWER_POWERSAVE;
strcpy(dip->un.e.member[2].label.name, AudioNnosave);
dip->un.e.member[2].ord = YM_POWER_NOSAVE;
break;
case YM_PWR_TIMEOUT:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = YM_PWR_CLASS;
dip->prev = YM_PWR_MODE;
strcpy(dip->label.name, AudioNtimeout);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNtimeout);
break;
#endif /* not AUDIO_NO_POWER_CTL */
default:
return ENXIO;
/*NOTREACHED*/
}
return 0;
}
int
ym_intr(void *arg)
{
struct ym_softc *sc = arg;
#if NMPU_YM > 0
struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
#endif
u_int8_t ist;
int processed;
mutex_spin_enter(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
/* OPL3 timer is currently unused. */
if (((ist = ym_read(sc, SA3_IRQA_STAT)) &
~(SA3_IRQ_STAT_SB|SA3_IRQ_STAT_OPL3)) == 0) {
DPRINTF(("%s: ym_intr: spurious interrupt\n", DVNAME(sc)));
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
return 0;
}
/* Process pending interrupts. */
do {
processed = 0;
/*
* CODEC interrupts.
*/
if (ist & (SA3_IRQ_STAT_TI|SA3_IRQ_STAT_CI|SA3_IRQ_STAT_PI)) {
ad1848_isa_intr(&sc->sc_ad1848);
processed = 1;
}
#if NMPU_YM > 0
/*
* MPU401 interrupt.
*/
if (ist & SA3_IRQ_STAT_MPU) {
mpu_intr(sc_mpu);
processed = 1;
}
#endif
/*
* Hardware volume interrupt (SA3 only).
* Recalculate master volume from the hardware setting.
*/
if ((ist & SA3_IRQ_STAT_MV) && YM_IS_SA3(sc)) {
ym_hvol_to_master_gain(sc);
processed = 1;
}
} while (processed && (ist = ym_read(sc, SA3_IRQA_STAT)));
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
return 1;
}
#ifndef AUDIO_NO_POWER_CTL
static void
ym_save_codec_regs(struct ym_softc *sc)
{
struct ad1848_softc *ac;
int i;
DPRINTF(("%s: ym_save_codec_regs\n", DVNAME(sc)));
ac = &sc->sc_ad1848.sc_ad1848;
for (i = 0; i <= 0x1f; i++)
sc->sc_codec_scan[i] = ad_read(ac, i);
}
static void
ym_restore_codec_regs(struct ym_softc *sc)
{
struct ad1848_softc *ac;
int i, t;
DPRINTF(("%s: ym_restore_codec_regs\n", DVNAME(sc)));
ac = &sc->sc_ad1848.sc_ad1848;
for (i = 0; i <= 0x1f; i++) {
/*
* Wait til the chip becomes ready.
* This is required after suspend/resume.
*/
for (t = 0;
t < 100000 && ADREAD(ac, AD1848_IADDR) & SP_IN_INIT; t++)
;
#ifdef AUDIO_DEBUG
if (t)
DPRINTF(("%s: ym_restore_codec_regs: reg %d, t %d\n",
DVNAME(sc), i, t));
#endif
ad_write(ac, i, sc->sc_codec_scan[i]);
}
}
/*
* Save and restore the state on suspending / resumning.
*
* XXX This is not complete.
* Currently only the parameters, such as output gain, are restored.
* DMA state should also be restored. FIXME.
*/
static bool
ym_suspend(device_t self, const pmf_qual_t *qual)
{
struct ym_softc *sc = device_private(self);
DPRINTF(("%s: ym_power_hook: suspend\n", DVNAME(sc)));
mutex_spin_enter(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
/*
* suspending...
*/
callout_halt(&sc->sc_powerdown_ch,
&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
if (sc->sc_turning_off)
ym_powerdown_blocks(sc);
/*
* Save CODEC registers.
* Note that the registers read incorrect
* if the CODEC part is in power-down mode.
*/
if (sc->sc_on_blocks & YM_POWER_CODEC_DIGITAL)
ym_save_codec_regs(sc);
/*
* Save OPL3-SA3 control registers and power-down the chip.
* Note that the registers read incorrect
* if the chip is in global power-down mode.
*/
sc->sc_sa3_scan[SA3_PWR_MNG] = ym_read(sc, SA3_PWR_MNG);
if (sc->sc_on_blocks)
ym_chip_powerdown(sc);
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
return true;
}
static bool
ym_resume(device_t self, const pmf_qual_t *qual)
{
struct ym_softc *sc = device_private(self);
int i, xmax;
DPRINTF(("%s: ym_power_hook: resume\n", DVNAME(sc)));
mutex_spin_enter(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
/*
* resuming...
*/
ym_chip_powerup(sc, 1);
ym_init(sc); /* power-on CODEC */
/* Restore control registers. */
xmax = YM_IS_SA3(sc)? YM_SAVE_REG_MAX_SA3 : YM_SAVE_REG_MAX_SA2;
for (i = SA3_PWR_MNG + 1; i <= xmax; i++) {
if (i == SA3_SB_SCAN || i == SA3_SB_SCAN_DATA ||
i == SA3_DPWRDWN)
continue;
ym_write(sc, i, sc->sc_sa3_scan[i]);
}
/* Restore CODEC registers (including mixer). */
ym_restore_codec_regs(sc);
/* Restore global/digital power-down state. */
ym_write(sc, SA3_PWR_MNG, sc->sc_sa3_scan[SA3_PWR_MNG]);
if (YM_IS_SA3(sc))
ym_write(sc, SA3_DPWRDWN, sc->sc_sa3_scan[SA3_DPWRDWN]);
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
return true;
}
int
ym_codec_power_ctl(void *arg, int flags)
{
struct ym_softc *sc;
struct ad1848_softc *ac;
int parts;
sc = arg;
ac = &sc->sc_ad1848.sc_ad1848;
DPRINTF(("%s: ym_codec_power_ctl: flags = 0x%x\n", DVNAME(sc), flags));
KASSERT(mutex_owned(&ac->sc_intr_lock));
if (flags != 0) {
parts = 0;
if (flags & FREAD) {
parts |= YM_POWER_CODEC_R | YM_POWER_CODEC_AD;
if (ac->mute[AD1848_MONITOR_CHANNEL] == 0)
parts |= YM_POWER_CODEC_P | YM_POWER_CODEC_DA;
}
if (flags & FWRITE)
parts |= YM_POWER_CODEC_P | YM_POWER_CODEC_DA;
} else
parts = YM_POWER_CODEC_P | YM_POWER_CODEC_R |
YM_POWER_CODEC_DA | YM_POWER_CODEC_AD;
ym_power_ctl(sc, parts, flags);
return 0;
}
/*
* Enter Power Save mode or Global Power Down mode.
* Total dissipation becomes 5mA and 10uA (typ.) respective.
*/
static void
ym_chip_powerdown(struct ym_softc *sc)
{
int i, xmax;
DPRINTF(("%s: ym_chip_powerdown\n", DVNAME(sc)));
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
xmax = YM_IS_SA3(sc) ? YM_SAVE_REG_MAX_SA3 : YM_SAVE_REG_MAX_SA2;
/* Save control registers. */
for (i = SA3_PWR_MNG + 1; i <= xmax; i++) {
if (i == SA3_SB_SCAN || i == SA3_SB_SCAN_DATA)
continue;
sc->sc_sa3_scan[i] = ym_read(sc, i);
}
ym_write(sc, SA3_PWR_MNG,
(sc->sc_pow_mode == YM_POWER_POWERDOWN ?
SA3_PWR_MNG_PDN : SA3_PWR_MNG_PSV) | SA3_PWR_MNG_PDX);
}
/*
* Power up from Power Save / Global Power Down Mode.
*/
static void
ym_chip_powerup(struct ym_softc *sc, int nosleep)
{
uint8_t pw;
DPRINTF(("%s: ym_chip_powerup\n", DVNAME(sc)));
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
pw = ym_read(sc, SA3_PWR_MNG);
if ((pw & (SA3_PWR_MNG_PSV | SA3_PWR_MNG_PDN | SA3_PWR_MNG_PDX)) == 0)
return; /* already on */
pw &= ~SA3_PWR_MNG_PDX;
ym_write(sc, SA3_PWR_MNG, pw);
/* wait 100 ms */
if (nosleep)
delay(100000);
else
kpause("ym_pu1", false, hz / 10,
&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
pw &= ~(SA3_PWR_MNG_PSV | SA3_PWR_MNG_PDN);
ym_write(sc, SA3_PWR_MNG, pw);
/* wait 70 ms */
if (nosleep)
delay(70000);
else
kpause("ym_pu1", false, hz / 10,
&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
/* The chip is muted automatically --- unmute it now. */
ym_mute(sc, SA3_VOL_L, sc->master_mute);
ym_mute(sc, SA3_VOL_R, sc->master_mute);
}
/* callout handler for power-down */
static void
ym_powerdown_callout(void *arg)
{
struct ym_softc *sc;
sc = arg;
mutex_spin_enter(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
if ((sc->sc_in_power_ctl & YM_POWER_CTL_INUSE) == 0) {
ym_powerdown_blocks(sc);
}
mutex_spin_exit(&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
}
static void
ym_powerdown_blocks(struct ym_softc *sc)
{
uint16_t parts;
uint16_t on_blocks;
uint8_t sv;
on_blocks = sc->sc_on_blocks;
DPRINTF(("%s: ym_powerdown_blocks: turning_off 0x%x\n",
DVNAME(sc), sc->sc_turning_off));
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
on_blocks = sc->sc_on_blocks;
/* Be sure not to change the state of the chip. Save it first. */
sv = bus_space_read_1(sc->sc_iot, sc->sc_controlioh, SA3_CTL_INDEX);
parts = sc->sc_turning_off;
if (on_blocks & ~parts & YM_POWER_CODEC_CTL)
parts &= ~(YM_POWER_CODEC_P | YM_POWER_CODEC_R);
if (parts & YM_POWER_CODEC_CTL) {
if ((on_blocks & YM_POWER_CODEC_P) == 0)
parts |= YM_POWER_CODEC_P;
if ((on_blocks & YM_POWER_CODEC_R) == 0)
parts |= YM_POWER_CODEC_R;
}
parts &= ~YM_POWER_CODEC_PSEUDO;
/* If CODEC is being off, save the state. */
if ((sc->sc_on_blocks & YM_POWER_CODEC_DIGITAL) &&
(sc->sc_on_blocks & ~sc->sc_turning_off &
YM_POWER_CODEC_DIGITAL) == 0)
ym_save_codec_regs(sc);
if (YM_IS_SA3(sc)) {
/* OPL3-SA3 */
ym_write(sc, SA3_DPWRDWN,
ym_read(sc, SA3_DPWRDWN) | (u_int8_t) parts);
ym_write(sc, SA3_APWRDWN,
ym_read(sc, SA3_APWRDWN) | (parts >> 8));
} else {
/* OPL3-SA2 (only OPL3 can be off partially) */
if (parts & YM_POWER_OPL3)
ym_write(sc, SA3_PWR_MNG,
ym_read(sc, SA3_PWR_MNG) | SA2_PWR_MNG_FMPS);
}
if (((sc->sc_on_blocks &= ~sc->sc_turning_off) & YM_POWER_ACTIVE) == 0)
ym_chip_powerdown(sc);
sc->sc_turning_off = 0;
/* Restore the state of the chip. */
bus_space_write_1(sc->sc_iot, sc->sc_controlioh, SA3_CTL_INDEX, sv);
}
/*
* Power control entry point.
*/
void
ym_power_ctl(struct ym_softc *sc, int parts, int onoff)
{
int need_restore_codec;
KASSERT(mutex_owned(&sc->sc_ad1848.sc_ad1848.sc_intr_lock));
DPRINTF(("%s: ym_power_ctl: parts = 0x%x, %s\n",
DVNAME(sc), parts, onoff ? "on" : "off"));
/* This function may sleep --- needs locking. */
while (sc->sc_in_power_ctl & YM_POWER_CTL_INUSE) {
sc->sc_in_power_ctl |= YM_POWER_CTL_WANTED;
DPRINTF(("%s: ym_power_ctl: sleeping\n", DVNAME(sc)));
cv_wait(&sc->sc_cv, &sc->sc_ad1848.sc_ad1848.sc_intr_lock);
DPRINTF(("%s: ym_power_ctl: awaken\n", DVNAME(sc)));
}
sc->sc_in_power_ctl |= YM_POWER_CTL_INUSE;
/* If ON requested to parts which are scheduled to OFF, cancel it. */
if (onoff && sc->sc_turning_off && (sc->sc_turning_off &= ~parts) == 0)
callout_halt(&sc->sc_powerdown_ch,
&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
if (!onoff && sc->sc_turning_off)
parts &= ~sc->sc_turning_off;
/* Discard bits which are currently {on,off}. */
parts &= onoff ? ~sc->sc_on_blocks : sc->sc_on_blocks;
/* Cancel previous timeout if needed. */
if (parts != 0 && sc->sc_turning_off)
callout_halt(&sc->sc_powerdown_ch,
&sc->sc_ad1848.sc_ad1848.sc_intr_lock);
if (parts == 0)
goto unlock; /* no work to do */
if (onoff) {
/* Turning on is done immediately. */
/* If the chip is off, turn it on. */
if ((sc->sc_on_blocks & YM_POWER_ACTIVE) == 0)
ym_chip_powerup(sc, 0);
need_restore_codec = (parts & YM_POWER_CODEC_DIGITAL) &&
(sc->sc_on_blocks & YM_POWER_CODEC_DIGITAL) == 0;
sc->sc_on_blocks |= parts;
if (parts & YM_POWER_CODEC_CTL)
parts |= YM_POWER_CODEC_P | YM_POWER_CODEC_R;
if (YM_IS_SA3(sc)) {
/* OPL3-SA3 */
ym_write(sc, SA3_DPWRDWN,
ym_read(sc, SA3_DPWRDWN) & (u_int8_t)~parts);
ym_write(sc, SA3_APWRDWN,
ym_read(sc, SA3_APWRDWN) & ~(parts >> 8));
} else {
/* OPL3-SA2 (only OPL3 can be off partially) */
if (parts & YM_POWER_OPL3)
ym_write(sc, SA3_PWR_MNG,
ym_read(sc, SA3_PWR_MNG)
& ~SA2_PWR_MNG_FMPS);
}
if (need_restore_codec)
ym_restore_codec_regs(sc);
} else {
/* Turning off is delayed. */
sc->sc_turning_off |= parts;
}
/* Schedule turning off. */
if (sc->sc_pow_mode != YM_POWER_NOSAVE && sc->sc_turning_off)
callout_reset(&sc->sc_powerdown_ch, hz * sc->sc_pow_timeout,
ym_powerdown_callout, sc);
unlock:
if (sc->sc_in_power_ctl & YM_POWER_CTL_WANTED)
cv_broadcast(&sc->sc_cv);
sc->sc_in_power_ctl = 0;
}
#endif /* not AUDIO_NO_POWER_CTL */