NetBSD/sys/dev/acpi/acpi_srat.c
2009-12-04 10:42:39 +00:00

514 lines
12 KiB
C

/* $NetBSD: acpi_srat.c,v 1.2 2009/12/04 10:42:39 njoly Exp $ */
/*
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christoph Egger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_srat.c,v 1.2 2009/12/04 10:42:39 njoly Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <dev/acpi/acpica.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_srat.h>
static ACPI_TABLE_SRAT *srat;
struct acpisrat_node {
acpisrat_nodeid_t nodeid;
uint32_t ncpus; /* Number of cpus in this node */
struct acpisrat_cpu **cpu; /* Array of cpus */
uint32_t nmems; /* Number of memory ranges in this node */
struct acpisrat_mem **mem; /* Array of memory ranges */
};
static uint32_t nnodes; /* Number of NUMA nodes */
static struct acpisrat_node *node_array; /* Array of NUMA nodes */
static uint32_t ncpus; /* Number of CPUs */
static struct acpisrat_cpu *cpu_array; /* Array of cpus */
static uint32_t nmems; /* Number of Memory ranges */
static struct acpisrat_mem *mem_array;
struct cpulist {
struct acpisrat_cpu cpu;
TAILQ_ENTRY(cpulist) entry;
};
static TAILQ_HEAD(, cpulist) cpulisthead;
#define CPU_INIT TAILQ_INIT(&cpulisthead);
#define CPU_FOREACH(cpu) TAILQ_FOREACH(cpu, &cpulisthead, entry)
#define CPU_ADD(cpu) TAILQ_INSERT_TAIL(&cpulisthead, cpu, entry)
#define CPU_REM(cpu) TAILQ_REMOVE(&cpulisthead, cpu, entry)
#define CPU_FIRST TAILQ_FIRST(&cpulisthead)
struct memlist {
struct acpisrat_mem mem;
TAILQ_ENTRY(memlist) entry;
};
static TAILQ_HEAD(, memlist) memlisthead;
#define MEM_INIT TAILQ_INIT(&memlisthead)
#define MEM_FOREACH(mem) TAILQ_FOREACH(mem, &memlisthead, entry)
#define MEM_ADD(mem) TAILQ_INSERT_TAIL(&memlisthead, mem, entry)
#define MEM_ADD_BEFORE(mem, b) TAILQ_INSERT_BEFORE(b, mem, entry)
#define MEM_REM(mem) TAILQ_REMOVE(&memlisthead, mem, entry)
#define MEM_FIRST TAILQ_FIRST(&memlisthead)
static struct cpulist *
cpu_alloc(void)
{
return kmem_zalloc(sizeof(struct cpulist), KM_NOSLEEP);
}
static void
cpu_free(struct cpulist *c)
{
kmem_free(c, sizeof(struct cpulist));
}
#if 0
static struct cpulist *
cpu_get(acpisrat_nodeid_t nodeid)
{
struct cpulist *tmp;
CPU_FOREACH(tmp) {
if (tmp->cpu.nodeid == nodeid)
return tmp;
}
return NULL;
}
#endif
static struct memlist *
mem_alloc(void)
{
return kmem_zalloc(sizeof(struct memlist), KM_NOSLEEP);
}
static void
mem_free(struct memlist *m)
{
kmem_free(m, sizeof(struct memlist));
}
static struct memlist *
mem_get(acpisrat_nodeid_t nodeid)
{
struct memlist *tmp;
MEM_FOREACH(tmp) {
if (tmp->mem.nodeid == nodeid)
return tmp;
}
return NULL;
}
bool
acpisrat_exist(void)
{
ACPI_TABLE_HEADER *table;
ACPI_STATUS rv;
rv = AcpiGetTable(ACPI_SIG_SRAT, 1, (ACPI_TABLE_HEADER **)&table);
if (ACPI_FAILURE(rv))
return false;
/* Check if header is valid */
if (table == NULL)
return false;
if (table->Length == 0xffffffff)
return false;
srat = (ACPI_TABLE_SRAT *)table;
return true;
}
static int
acpisrat_parse(void)
{
ACPI_SUBTABLE_HEADER *subtable;
ACPI_SRAT_CPU_AFFINITY *srat_cpu;
ACPI_SRAT_MEM_AFFINITY *srat_mem;
ACPI_SRAT_X2APIC_CPU_AFFINITY *srat_x2apic;
acpisrat_nodeid_t nodeid;
struct cpulist *cpuentry = NULL;
struct memlist *mementry;
uint32_t srat_pos;
bool ignore_cpu_affinity = false;
KASSERT(srat != NULL);
/* Content starts right after the header */
srat_pos = sizeof(ACPI_TABLE_SRAT);
while (srat_pos < srat->Header.Length) {
subtable = (ACPI_SUBTABLE_HEADER *)((char *)srat + srat_pos);
srat_pos += subtable->Length;
switch (subtable->Type) {
case ACPI_SRAT_TYPE_CPU_AFFINITY:
if (ignore_cpu_affinity)
continue;
srat_cpu = (ACPI_SRAT_CPU_AFFINITY *)subtable;
nodeid = (srat_cpu->ProximityDomainHi[2] << 24) |
(srat_cpu->ProximityDomainHi[1] << 16) |
(srat_cpu->ProximityDomainHi[0] << 8) |
(srat_cpu->ProximityDomainLo);
cpuentry = cpu_alloc();
if (cpuentry == NULL)
return ENOMEM;
CPU_ADD(cpuentry);
cpuentry->cpu.nodeid = nodeid;
cpuentry->cpu.apicid = srat_cpu->ApicId;
cpuentry->cpu.sapiceid = srat_cpu->LocalSapicEid;
cpuentry->cpu.flags = srat_cpu->Flags;
cpuentry->cpu.clockdomain = srat_cpu->ClockDomain;
break;
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
srat_mem = (ACPI_SRAT_MEM_AFFINITY *)subtable;
nodeid = srat_mem->ProximityDomain;
mementry = mem_alloc();
if (mementry == NULL)
return ENOMEM;
MEM_ADD(mementry);
mementry->mem.nodeid = nodeid;
mementry->mem.baseaddress = srat_mem->BaseAddress;
mementry->mem.length = srat_mem->Length;
mementry->mem.flags = srat_mem->Flags;
break;
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
srat_x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)subtable;
nodeid = srat_x2apic->ProximityDomain;
/* This table entry overrides
* ACPI_SRAT_TYPE_CPU_AFFINITY.
*/
if (!ignore_cpu_affinity) {
struct cpulist *citer;
while ((citer = CPU_FIRST) != NULL) {
CPU_REM(citer);
cpu_free(citer);
}
ignore_cpu_affinity = true;
}
cpuentry = cpu_alloc();
if (cpuentry == NULL)
return ENOMEM;
CPU_ADD(cpuentry);
cpuentry->cpu.nodeid = nodeid;
cpuentry->cpu.apicid = srat_x2apic->ApicId;
cpuentry->cpu.clockdomain = srat_x2apic->ClockDomain;
cpuentry->cpu.flags = srat_x2apic->Flags;
break;
case ACPI_SRAT_TYPE_RESERVED:
printf("ACPI SRAT subtable reserved, length: 0x%x\n",
subtable->Length);
break;
}
}
return 0;
}
static int
acpisrat_quirks(void)
{
struct cpulist *citer;
struct memlist *mem, *miter;
/* Some sanity checks. */
/* Deal with holes in the memory nodes.
* BIOS doesn't enlist memory nodes which
* don't have any memory modules plugged in.
* This behaviour has been observed on AMD machines.
*
* Do that by searching for CPUs in NUMA nodes
* which don't exist in the memory and then insert
* a zero memory range for the missing node.
*/
CPU_FOREACH(citer) {
mem = mem_get(citer->cpu.nodeid);
if (mem != NULL)
continue;
mem = mem_alloc();
if (mem == NULL)
return ENOMEM;
mem->mem.nodeid = citer->cpu.nodeid;
/* all other fields are already zero filled */
MEM_FOREACH(miter) {
if (miter->mem.nodeid < citer->cpu.nodeid)
continue;
MEM_ADD_BEFORE(mem, miter);
break;
}
}
return 0;
}
int
acpisrat_init(void)
{
if (!acpisrat_exist())
return EEXIST;
return acpisrat_refresh();
}
int
acpisrat_refresh(void)
{
int rc, i, j, k;
struct cpulist *citer;
struct memlist *miter;
uint32_t cnodes = 0, mnodes = 0;
CPU_INIT;
MEM_INIT;
rc = acpisrat_parse();
if (rc)
return rc;
rc = acpisrat_quirks();
if (rc)
return rc;
/* cleanup resources */
rc = acpisrat_exit();
if (rc)
return rc;
nnodes = 0;
ncpus = 0;
CPU_FOREACH(citer) {
cnodes = MAX(citer->cpu.nodeid, cnodes);
ncpus++;
}
nmems = 0;
MEM_FOREACH(miter) {
mnodes = MAX(miter->mem.nodeid, mnodes);
nmems++;
}
nnodes = MAX(cnodes, mnodes) + 1;
node_array = kmem_zalloc(nnodes * sizeof(struct acpisrat_node),
KM_NOSLEEP);
if (node_array == NULL)
return ENOMEM;
cpu_array = kmem_zalloc(ncpus * sizeof(struct acpisrat_cpu),
KM_NOSLEEP);
if (cpu_array == NULL)
return ENOMEM;
mem_array = kmem_zalloc(nmems * sizeof(struct acpisrat_mem),
KM_NOSLEEP);
if (mem_array == NULL)
return ENOMEM;
i = 0;
CPU_FOREACH(citer) {
memcpy(&cpu_array[i], &citer->cpu, sizeof(struct acpisrat_cpu));
i++;
node_array[citer->cpu.nodeid].ncpus++;
}
i = 0;
MEM_FOREACH(miter) {
memcpy(&mem_array[i], &miter->mem, sizeof(struct acpisrat_mem));
i++;
node_array[miter->mem.nodeid].nmems++;
}
for (i = 0; i < nnodes; i++) {
node_array[i].nodeid = i;
node_array[i].cpu = kmem_zalloc(node_array[i].ncpus *
sizeof(struct acpisrat_cpu *), KM_NOSLEEP);
node_array[i].mem = kmem_zalloc(node_array[i].nmems *
sizeof(struct acpisrat_mem *), KM_NOSLEEP);
k = 0;
for (j = 0; j < ncpus; j++) {
if (cpu_array[j].nodeid != i)
continue;
node_array[i].cpu[k] = &cpu_array[j];
k++;
}
k = 0;
for (j = 0; j < nmems; j++) {
if (mem_array[j].nodeid != i)
continue;
node_array[i].mem[k] = &mem_array[j];
k++;
}
}
while ((citer = CPU_FIRST) != NULL) {
CPU_REM(citer);
cpu_free(citer);
}
while ((miter = MEM_FIRST) != NULL) {
MEM_REM(miter);
mem_free(miter);
}
return 0;
}
int
acpisrat_exit(void)
{
int i;
if (node_array) {
for (i = 0; i < nnodes; i++) {
if (node_array[i].cpu)
kmem_free(node_array[i].cpu,
node_array[i].ncpus * sizeof(struct acpisrat_cpu *));
if (node_array[i].mem)
kmem_free(node_array[i].mem,
node_array[i].nmems * sizeof(struct acpisrat_mem *));
}
kmem_free(node_array, nnodes * sizeof(struct acpisrat_node));
}
node_array = NULL;
if (cpu_array)
kmem_free(cpu_array, ncpus * sizeof(struct acpisrat_cpu));
cpu_array = NULL;
if (mem_array)
kmem_free(mem_array, nmems * sizeof(struct acpisrat_mem));
mem_array = NULL;
nnodes = 0;
ncpus = 0;
nmems = 0;
return 0;
}
void
acpisrat_dump(void)
{
uint32_t i, j, nn, nc, nm;
struct acpisrat_cpu c;
struct acpisrat_mem m;
nn = acpisrat_nodes();
aprint_debug("SRAT: %u NUMA nodes\n", nn);
for (i = 0; i < nn; i++) {
nc = acpisrat_node_cpus(i);
for (j = 0; j < nc; j++) {
acpisrat_cpu(i, j, &c);
aprint_debug("SRAT: node %u cpu %u "
"(apic %u, sapic %u, flags %u, clockdomain %u)\n",
c.nodeid, j, c.apicid, c.sapiceid, c.flags,
c.clockdomain);
}
nm = acpisrat_node_memoryranges(i);
for (j = 0; j < nm; j++) {
acpisrat_mem(i, j, &m);
aprint_debug("SRAT: node %u memory range %u (0x%"
PRIx64" - 0x%"PRIx64" flags %u)\n",
m.nodeid, j, m.baseaddress,
m.baseaddress + m.length, m.flags);
}
}
}
uint32_t
acpisrat_nodes(void)
{
return nnodes;
}
uint32_t
acpisrat_node_cpus(acpisrat_nodeid_t nodeid)
{
return node_array[nodeid].ncpus;
}
uint32_t
acpisrat_node_memoryranges(acpisrat_nodeid_t nodeid)
{
return node_array[nodeid].nmems;
}
void
acpisrat_cpu(acpisrat_nodeid_t nodeid, uint32_t cpunum,
struct acpisrat_cpu *c)
{
memcpy(c, node_array[nodeid].cpu[cpunum],
sizeof(struct acpisrat_cpu));
}
void
acpisrat_mem(acpisrat_nodeid_t nodeid, uint32_t memrange,
struct acpisrat_mem *mem)
{
memcpy(mem, node_array[nodeid].mem[memrange],
sizeof(struct acpisrat_mem));
}