NetBSD/sys/dev/pci/if_sip.c

3398 lines
89 KiB
C

/* $NetBSD: if_sip.c,v 1.69 2002/08/26 22:52:02 thorpej Exp $ */
/*-
* Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 Network Computer, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Network Computer, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Silicon Integrated Systems SiS 900,
* SiS 7016 10/100, National Semiconductor DP83815 10/100, and
* National Semiconductor DP83820 10/100/1000 PCI Ethernet
* controllers.
*
* Originally written to support the SiS 900 by Jason R. Thorpe for
* Network Computer, Inc.
*
* TODO:
*
* - Reduce the Rx interrupt load.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.69 2002/08/26 22:52:02 thorpej Exp $");
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#ifdef DP83820
#include <dev/mii/mii_bitbang.h>
#endif /* DP83820 */
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_sipreg.h>
#ifdef DP83820 /* DP83820 Gigabit Ethernet */
#define SIP_DECL(x) __CONCAT(gsip_,x)
#else /* SiS900 and DP83815 */
#define SIP_DECL(x) __CONCAT(sip_,x)
#endif
#define SIP_STR(x) __STRING(SIP_DECL(x))
/*
* Transmit descriptor list size. This is arbitrary, but allocate
* enough descriptors for 128 pending transmissions, and 8 segments
* per packet. This MUST work out to a power of 2.
*/
#define SIP_NTXSEGS 16
#define SIP_NTXSEGS_ALLOC 8
#define SIP_TXQUEUELEN 256
#define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
#define SIP_NTXDESC_MASK (SIP_NTXDESC - 1)
#define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK)
#if defined(DP83020)
#define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO
#else
#define TX_DMAMAP_SIZE MCLBYTES
#endif
/*
* Receive descriptor list size. We have one Rx buffer per incoming
* packet, so this logic is a little simpler.
*
* Actually, on the DP83820, we allow the packet to consume more than
* one buffer, in order to support jumbo Ethernet frames. In that
* case, a packet may consume up to 5 buffers (assuming a 2048 byte
* mbuf cluster). 256 receive buffers is only 51 maximum size packets,
* so we'd better be quick about handling receive interrupts.
*/
#if defined(DP83820)
#define SIP_NRXDESC 256
#else
#define SIP_NRXDESC 128
#endif /* DP83820 */
#define SIP_NRXDESC_MASK (SIP_NRXDESC - 1)
#define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK)
/*
* Control structures are DMA'd to the SiS900 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct sip_control_data {
/*
* The transmit descriptors.
*/
struct sip_desc scd_txdescs[SIP_NTXDESC];
/*
* The receive descriptors.
*/
struct sip_desc scd_rxdescs[SIP_NRXDESC];
};
#define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
#define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
#define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
/*
* Software state for transmit jobs.
*/
struct sip_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
SIMPLEQ_ENTRY(sip_txsoft) txs_q;
};
SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
/*
* Software state for receive jobs.
*/
struct sip_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
/*
* Software state per device.
*/
struct sip_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
void *sc_sdhook; /* shutdown hook */
const struct sip_product *sc_model; /* which model are we? */
int sc_rev; /* chip revision */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
struct callout sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
/*
* Control data structures.
*/
struct sip_control_data *sc_control_data;
#define sc_txdescs sc_control_data->scd_txdescs
#define sc_rxdescs sc_control_data->scd_rxdescs
#ifdef SIP_EVENT_COUNTERS
/*
* Event counters.
*/
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
#ifdef DP83820
struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
#endif /* DP83820 */
#endif /* SIP_EVENT_COUNTERS */
u_int32_t sc_txcfg; /* prototype TXCFG register */
u_int32_t sc_rxcfg; /* prototype RXCFG register */
u_int32_t sc_imr; /* prototype IMR register */
u_int32_t sc_rfcr; /* prototype RFCR register */
u_int32_t sc_cfg; /* prototype CFG register */
#ifdef DP83820
u_int32_t sc_gpior; /* prototype GPIOR register */
#endif /* DP83820 */
u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
int sc_flags; /* misc. flags; see below */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txwin; /* Tx descriptors since last intr */
struct sip_txsq sc_txfreeq; /* free Tx descsofts */
struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
int sc_rxptr; /* next ready Rx descriptor/descsoft */
#if defined(DP83820)
int sc_rxdiscard;
int sc_rxlen;
struct mbuf *sc_rxhead;
struct mbuf *sc_rxtail;
struct mbuf **sc_rxtailp;
#endif /* DP83820 */
#if NRND > 0
rndsource_element_t rnd_source; /* random source */
#endif
};
/* sc_flags */
#define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */
#ifdef DP83820
#define SIP_RXCHAIN_RESET(sc) \
do { \
(sc)->sc_rxtailp = &(sc)->sc_rxhead; \
*(sc)->sc_rxtailp = NULL; \
(sc)->sc_rxlen = 0; \
} while (/*CONSTCOND*/0)
#define SIP_RXCHAIN_LINK(sc, m) \
do { \
*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
(sc)->sc_rxtailp = &(m)->m_next; \
} while (/*CONSTCOND*/0)
#endif /* DP83820 */
#ifdef SIP_EVENT_COUNTERS
#define SIP_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define SIP_EVCNT_INCR(ev) /* nothing */
#endif
#define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
#define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
#define SIP_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > SIP_NTXDESC) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \
(SIP_NTXDESC - __x), (ops)); \
__n -= (SIP_NTXDESC - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \
} while (0)
#define SIP_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
#ifdef DP83820
#define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0;
#define SIP_RXBUF_LEN (MCLBYTES - 4)
#else
#define SIP_INIT_RXDESC_EXTSTS /* nothing */
#define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */
#endif
#define SIP_INIT_RXDESC(sc, x) \
do { \
struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \
\
__sipd->sipd_link = \
htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
__sipd->sipd_bufptr = \
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
__sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \
(SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \
SIP_INIT_RXDESC_EXTSTS \
SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (0)
#define SIP_CHIP_VERS(sc, v, p, r) \
((sc)->sc_model->sip_vendor == (v) && \
(sc)->sc_model->sip_product == (p) && \
(sc)->sc_rev == (r))
#define SIP_CHIP_MODEL(sc, v, p) \
((sc)->sc_model->sip_vendor == (v) && \
(sc)->sc_model->sip_product == (p))
#if !defined(DP83820)
#define SIP_SIS900_REV(sc, rev) \
SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
#endif
#define SIP_TIMEOUT 1000
void SIP_DECL(start)(struct ifnet *);
void SIP_DECL(watchdog)(struct ifnet *);
int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
int SIP_DECL(init)(struct ifnet *);
void SIP_DECL(stop)(struct ifnet *, int);
void SIP_DECL(shutdown)(void *);
void SIP_DECL(reset)(struct sip_softc *);
void SIP_DECL(rxdrain)(struct sip_softc *);
int SIP_DECL(add_rxbuf)(struct sip_softc *, int);
void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
void SIP_DECL(tick)(void *);
#if !defined(DP83820)
void SIP_DECL(sis900_set_filter)(struct sip_softc *);
#endif /* ! DP83820 */
void SIP_DECL(dp83815_set_filter)(struct sip_softc *);
#if defined(DP83820)
void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
#else
void SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
#endif /* DP83820 */
int SIP_DECL(intr)(void *);
void SIP_DECL(txintr)(struct sip_softc *);
void SIP_DECL(rxintr)(struct sip_softc *);
#if defined(DP83820)
int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
void SIP_DECL(dp83820_mii_statchg)(struct device *);
#else
int SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
void SIP_DECL(sis900_mii_statchg)(struct device *);
int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
void SIP_DECL(dp83815_mii_statchg)(struct device *);
#endif /* DP83820 */
int SIP_DECL(mediachange)(struct ifnet *);
void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
int SIP_DECL(match)(struct device *, struct cfdata *, void *);
void SIP_DECL(attach)(struct device *, struct device *, void *);
int SIP_DECL(copy_small) = 0;
struct cfattach SIP_DECL(ca) = {
sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
};
/*
* Descriptions of the variants of the SiS900.
*/
struct sip_variant {
int (*sipv_mii_readreg)(struct device *, int, int);
void (*sipv_mii_writereg)(struct device *, int, int, int);
void (*sipv_mii_statchg)(struct device *);
void (*sipv_set_filter)(struct sip_softc *);
void (*sipv_read_macaddr)(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
};
#if defined(DP83820)
u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
SIP_DECL(dp83820_mii_bitbang_read),
SIP_DECL(dp83820_mii_bitbang_write),
{
EROMAR_MDIO, /* MII_BIT_MDO */
EROMAR_MDIO, /* MII_BIT_MDI */
EROMAR_MDC, /* MII_BIT_MDC */
EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
#endif /* DP83820 */
#if defined(DP83820)
const struct sip_variant SIP_DECL(variant_dp83820) = {
SIP_DECL(dp83820_mii_readreg),
SIP_DECL(dp83820_mii_writereg),
SIP_DECL(dp83820_mii_statchg),
SIP_DECL(dp83815_set_filter),
SIP_DECL(dp83820_read_macaddr),
};
#else
const struct sip_variant SIP_DECL(variant_sis900) = {
SIP_DECL(sis900_mii_readreg),
SIP_DECL(sis900_mii_writereg),
SIP_DECL(sis900_mii_statchg),
SIP_DECL(sis900_set_filter),
SIP_DECL(sis900_read_macaddr),
};
const struct sip_variant SIP_DECL(variant_dp83815) = {
SIP_DECL(dp83815_mii_readreg),
SIP_DECL(dp83815_mii_writereg),
SIP_DECL(dp83815_mii_statchg),
SIP_DECL(dp83815_set_filter),
SIP_DECL(dp83815_read_macaddr),
};
#endif /* DP83820 */
/*
* Devices supported by this driver.
*/
const struct sip_product {
pci_vendor_id_t sip_vendor;
pci_product_id_t sip_product;
const char *sip_name;
const struct sip_variant *sip_variant;
} SIP_DECL(products)[] = {
#if defined(DP83820)
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
"NatSemi DP83820 Gigabit Ethernet",
&SIP_DECL(variant_dp83820) },
#else
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
"SiS 900 10/100 Ethernet",
&SIP_DECL(variant_sis900) },
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
"SiS 7016 10/100 Ethernet",
&SIP_DECL(variant_sis900) },
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
"NatSemi DP83815 10/100 Ethernet",
&SIP_DECL(variant_dp83815) },
#endif /* DP83820 */
{ 0, 0,
NULL,
NULL },
};
static const struct sip_product *
SIP_DECL(lookup)(const struct pci_attach_args *pa)
{
const struct sip_product *sip;
for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
PCI_PRODUCT(pa->pa_id) == sip->sip_product)
return (sip);
}
return (NULL);
}
#ifdef DP83820
/*
* I really hate stupid hardware vendors. There's a bit in the EEPROM
* which indicates if the card can do 64-bit data transfers. Unfortunately,
* several vendors of 32-bit cards fail to clear this bit in the EEPROM,
* which means we try to use 64-bit data transfers on those cards if we
* happen to be plugged into a 32-bit slot.
*
* What we do is use this table of cards known to be 64-bit cards. If
* you have a 64-bit card who's subsystem ID is not listed in this table,
* send the output of "pcictl dump ..." of the device to me so that your
* card will use the 64-bit data path when plugged into a 64-bit slot.
*
* -- Jason R. Thorpe <thorpej@netbsd.org>
* June 30, 2002
*/
static int
SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
{
static const struct {
pci_vendor_id_t c64_vendor;
pci_product_id_t c64_product;
} card64[] = {
/* Asante GigaNIX */
{ 0x128a, 0x0002 },
/* Accton EN1407-T, Planex GN-1000TE */
{ 0x1113, 0x1407 },
/* Netgear GA-621 */
{ 0x1385, 0x621a },
{ 0, 0}
};
pcireg_t subsys;
int i;
subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
for (i = 0; card64[i].c64_vendor != 0; i++) {
if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
PCI_PRODUCT(subsys) == card64[i].c64_product)
return (1);
}
return (0);
}
#endif /* DP83820 */
int
SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (SIP_DECL(lookup)(pa) != NULL)
return (1);
return (0);
}
void
SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
{
struct sip_softc *sc = (struct sip_softc *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
int ioh_valid, memh_valid;
int i, rseg, error;
const struct sip_product *sip;
pcireg_t pmode;
u_int8_t enaddr[ETHER_ADDR_LEN];
int pmreg;
#ifdef DP83820
pcireg_t memtype;
u_int32_t reg;
#endif /* DP83820 */
callout_init(&sc->sc_tick_ch);
sip = SIP_DECL(lookup)(pa);
if (sip == NULL) {
printf("\n");
panic(SIP_STR(attach) ": impossible");
}
sc->sc_rev = PCI_REVISION(pa->pa_class);
printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
sc->sc_model = sip;
/*
* XXX Work-around broken PXE firmware on some boards.
*
* The DP83815 shares an address decoder with the MEM BAR
* and the ROM BAR. Make sure the ROM BAR is disabled,
* so that memory mapped access works.
*/
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
~PCI_MAPREG_ROM_ENABLE);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
#ifdef DP83820
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
memtype, 0, &memt, &memh, NULL, NULL) == 0);
break;
default:
memh_valid = 0;
}
#else
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, NULL) == 0);
#endif /* DP83820 */
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_dmat = pa->pa_dmat;
/*
* Make sure bus mastering is enabled. Also make sure
* Write/Invalidate is enabled if we're allowed to use it.
*/
pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
pmreg | PCI_COMMAND_MASTER_ENABLE);
/* Get it out of power save mode if needed. */
if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
if (pmode == 3) {
/*
* The card has lost all configuration data in
* this state, so punt.
*/
printf("%s: unable to wake up from power state D3\n",
sc->sc_dev.dv_xname);
return;
}
if (pmode != 0) {
printf("%s: waking up from power state D%d\n",
sc->sc_dev.dv_xname, pmode);
pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
}
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
if (sc->sc_ih == NULL) {
printf("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct sip_control_data), 1,
sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct sip_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
SIP_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < SIP_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Reset the chip to a known state.
*/
SIP_DECL(reset)(sc);
/*
* Read the Ethernet address from the EEPROM. This might
* also fetch other stuff from the EEPROM and stash it
* in the softc.
*/
sc->sc_cfg = 0;
#if !defined(DP83820)
if (SIP_SIS900_REV(sc,SIS_REV_635) ||
SIP_SIS900_REV(sc,SIS_REV_900B))
sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
#endif
(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
/*
* Initialize the configuration register: aggressive PCI
* bus request algorithm, default backoff, default OW timer,
* default parity error detection.
*
* NOTE: "Big endian mode" is useless on the SiS900 and
* friends -- it affects packet data, not descriptors.
*/
#ifdef DP83820
/*
* Cause the chip to load configuration data from the EEPROM.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
for (i = 0; i < 10000; i++) {
delay(10);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
PTSCR_EELOAD_EN) == 0)
break;
}
if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
PTSCR_EELOAD_EN) {
printf("%s: timeout loading configuration from EEPROM\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
if (reg & CFG_PCI64_DET) {
printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
/*
* Check to see if this card is 64-bit. If so, enable 64-bit
* data transfers.
*
* We can't use the DATA64_EN bit in the EEPROM, because
* vendors of 32-bit cards fail to clear that bit in many
* cases (yet the card still detects that it's in a 64-bit
* slot; go figure).
*/
if (SIP_DECL(check_64bit)(pa)) {
sc->sc_cfg |= CFG_DATA64_EN;
printf(", using 64-bit data transfers");
}
printf("\n");
}
/*
* XXX Need some PCI flags indicating support for
* XXX 64-bit addressing.
*/
#if 0
if (reg & CFG_M64ADDR)
sc->sc_cfg |= CFG_M64ADDR;
if (reg & CFG_T64ADDR)
sc->sc_cfg |= CFG_T64ADDR;
#endif
if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
const char *sep = "";
printf("%s: using ", sc->sc_dev.dv_xname);
if (reg & CFG_EXT_125) {
sc->sc_cfg |= CFG_EXT_125;
printf("%s125MHz clock", sep);
sep = ", ";
}
if (reg & CFG_TBI_EN) {
sc->sc_cfg |= CFG_TBI_EN;
printf("%sten-bit interface", sep);
sep = ", ";
}
printf("\n");
}
if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
(reg & CFG_MRM_DIS) != 0)
sc->sc_cfg |= CFG_MRM_DIS;
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
(reg & CFG_MWI_DIS) != 0)
sc->sc_cfg |= CFG_MWI_DIS;
/*
* Use the extended descriptor format on the DP83820. This
* gives us an interface to VLAN tagging and IPv4/TCP/UDP
* checksumming.
*/
sc->sc_cfg |= CFG_EXTSTS_EN;
#endif /* DP83820 */
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
SIP_DECL(mediastatus));
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = SIP_DECL(ioctl);
ifp->if_start = SIP_DECL(start);
ifp->if_watchdog = SIP_DECL(watchdog);
ifp->if_init = SIP_DECL(init);
ifp->if_stop = SIP_DECL(stop);
IFQ_SET_READY(&ifp->if_snd);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
#ifdef DP83820
/*
* And the DP83820 can do VLAN tagging in hardware, and
* support the jumbo Ethernet MTU.
*/
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
/*
* The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
* in hardware.
*/
ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
IFCAP_CSUM_UDPv4;
#endif /* DP83820 */
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
/*
* The number of bytes that must be available in
* the Tx FIFO before the bus master can DMA more
* data into the FIFO.
*/
sc->sc_tx_fill_thresh = 64 / 32;
/*
* Start at a drain threshold of 512 bytes. We will
* increase it if a DMA underrun occurs.
*
* XXX The minimum value of this variable should be
* tuned. We may be able to improve performance
* by starting with a lower value. That, however,
* may trash the first few outgoing packets if the
* PCI bus is saturated.
*/
sc->sc_tx_drain_thresh = 1504 / 32;
/*
* Initialize the Rx FIFO drain threshold.
*
* This is in units of 8 bytes.
*
* We should never set this value lower than 2; 14 bytes are
* required to filter the packet.
*/
sc->sc_rx_drain_thresh = 128 / 8;
#ifdef SIP_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txsstall");
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txdstall");
evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txforceintr");
evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txdintr");
evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txiintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "hiberr");
#ifdef DP83820
evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxipsum");
evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxudpsum");
evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txipsum");
evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txudpsum");
#endif /* DP83820 */
#endif /* SIP_EVENT_COUNTERS */
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < SIP_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct sip_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* sip_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
void
SIP_DECL(shutdown)(void *arg)
{
struct sip_softc *sc = arg;
SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
}
/*
* sip_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
SIP_DECL(start)(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct sip_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx, seg;
int ofree = sc->sc_txfree;
#if 0
int firsttx = sc->sc_txnext;
#endif
#ifdef DP83820
u_int32_t extsts;
#endif
/*
* If we've been told to pause, don't transmit any more packets.
*/
if (sc->sc_flags & SIPF_PAUSED)
ifp->if_flags |= IFF_OACTIVE;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Get a work queue entry. */
if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
break;
}
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
#ifndef DP83820
m = NULL;
#endif
dmamap = txs->txs_dmamap;
#ifdef DP83820
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of segments, or we
* were short on resources. For the too-many-segments
* case, we simply report an error and drop the packet,
* since we can't sanely copy a jumbo packet to a single
* buffer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
printf("%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
sc->sc_dev.dv_xname);
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
/*
* Short on resources, just stop for now.
*/
break;
}
#else /* DP83820 */
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources. In this case, we'll copy
* and try again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
break;
}
}
#endif /* DP83820 */
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, to
* prevent wrap-around.
*/
if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are not more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX is it worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
#ifndef DP83820
if (m != NULL)
m_freem(m);
#endif
SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
#ifndef DP83820
if (m != NULL) {
m_freem(m0);
m0 = m;
}
#endif
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = SIP_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
sc->sc_txdescs[nexttx].sipd_bufptr =
htole32(dmamap->dm_segs[seg].ds_addr);
sc->sc_txdescs[nexttx].sipd_cmdsts =
htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
#ifdef DP83820
sc->sc_txdescs[nexttx].sipd_extsts = 0;
#endif /* DP83820 */
lasttx = nexttx;
}
/* Clear the MORE bit on the last segment. */
sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
/*
* If we're in the interrupt delay window, delay the
* interrupt.
*/
if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
sc->sc_txdescs[lasttx].sipd_cmdsts |=
htole32(CMDSTS_INTR);
sc->sc_txwin = 0;
}
#ifdef DP83820
/*
* If VLANs are enabled and the packet has a VLAN tag, set
* up the descriptor to encapsulate the packet for us.
*
* This apparently has to be on the last descriptor of
* the packet.
*/
if (sc->sc_ethercom.ec_nvlans != 0 &&
(m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
sc->sc_txdescs[lasttx].sipd_extsts |=
htole32(EXTSTS_VPKT |
htons(*mtod(m, int *) & EXTSTS_VTCI));
}
/*
* If the upper-layer has requested IPv4/TCPv4/UDPv4
* checksumming, set up the descriptor to do this work
* for us.
*
* This apparently has to be on the first descriptor of
* the packet.
*
* Byte-swap constants so the compiler can optimize.
*/
extsts = 0;
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
extsts |= htole32(EXTSTS_IPPKT);
}
if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
extsts |= htole32(EXTSTS_TCPPKT);
} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
extsts |= htole32(EXTSTS_UDPPKT);
}
sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
#endif /* DP83820 */
/* Sync the descriptors we're using. */
SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet is set up. Give the first descrptor
* to the chip now.
*/
sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
htole32(CMDSTS_OWN);
SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/*
* Start the transmit process. Note, the manual says
* that if there are no pending transmissions in the
* chip's internal queue (indicated by TXE being clear),
* then the driver software must set the TXDP to the
* first descriptor to be transmitted. However, if we
* do this, it causes serious performance degredation on
* the DP83820 under load, not setting TXDP doesn't seem
* to adversely affect the SiS 900 or DP83815.
*
* Well, I guess it wouldn't be the first time a manual
* has lied -- and they could be speaking of the NULL-
* terminated descriptor list case, rather than OWN-
* terminated rings.
*/
#if 0
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
CR_TXE) == 0) {
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
SIP_CDTXADDR(sc, firsttx));
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
}
#else
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
#endif
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* sip_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
SIP_DECL(watchdog)(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
/*
* The chip seems to ignore the CMDSTS_INTR bit sometimes!
* If we get a timeout, try and sweep up transmit descriptors.
* If we manage to sweep them all up, ignore the lack of
* interrupt.
*/
SIP_DECL(txintr)(sc);
if (sc->sc_txfree != SIP_NTXDESC) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
/* Reset the interface. */
(void) SIP_DECL(init)(ifp);
} else if (ifp->if_flags & IFF_DEBUG)
printf("%s: recovered from device timeout\n",
sc->sc_dev.dv_xname);
/* Try to get more packets going. */
SIP_DECL(start)(ifp);
}
/*
* sip_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct sip_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
error = 0;
}
break;
}
/* Try to get more packets going. */
SIP_DECL(start)(ifp);
splx(s);
return (error);
}
/*
* sip_intr:
*
* Interrupt service routine.
*/
int
SIP_DECL(intr)(void *arg)
{
struct sip_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int32_t isr;
int handled = 0;
for (;;) {
/* Reading clears interrupt. */
isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
if ((isr & sc->sc_imr) == 0)
break;
#if NRND > 0
if (RND_ENABLED(&sc->rnd_source))
rnd_add_uint32(&sc->rnd_source, isr);
#endif
handled = 1;
if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
/* Grab any new packets. */
SIP_DECL(rxintr)(sc);
if (isr & ISR_RXORN) {
printf("%s: receive FIFO overrun\n",
sc->sc_dev.dv_xname);
/* XXX adjust rx_drain_thresh? */
}
if (isr & ISR_RXIDLE) {
printf("%s: receive ring overrun\n",
sc->sc_dev.dv_xname);
/* Get the receive process going again. */
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_CR, CR_RXE);
}
}
if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
#ifdef SIP_EVENT_COUNTERS
if (isr & ISR_TXDESC)
SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
else if (isr & ISR_TXIDLE)
SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
#endif
/* Sweep up transmit descriptors. */
SIP_DECL(txintr)(sc);
if (isr & ISR_TXURN) {
u_int32_t thresh;
printf("%s: transmit FIFO underrun",
sc->sc_dev.dv_xname);
thresh = sc->sc_tx_drain_thresh + 1;
if (thresh <= TXCFG_DRTH &&
(thresh * 32) <= (SIP_TXFIFO_SIZE -
(sc->sc_tx_fill_thresh * 32))) {
printf("; increasing Tx drain "
"threshold to %u bytes\n",
thresh * 32);
sc->sc_tx_drain_thresh = thresh;
(void) SIP_DECL(init)(ifp);
} else {
(void) SIP_DECL(init)(ifp);
printf("\n");
}
}
}
#if !defined(DP83820)
if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
if (isr & ISR_PAUSE_ST) {
sc->sc_flags |= SIPF_PAUSED;
ifp->if_flags |= IFF_OACTIVE;
}
if (isr & ISR_PAUSE_END) {
sc->sc_flags &= ~SIPF_PAUSED;
ifp->if_flags &= ~IFF_OACTIVE;
}
}
#endif /* ! DP83820 */
if (isr & ISR_HIBERR) {
int want_init = 0;
SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
#define PRINTERR(bit, str) \
do { \
if ((isr & (bit)) != 0) { \
if ((ifp->if_flags & IFF_DEBUG) != 0) \
printf("%s: %s\n", \
sc->sc_dev.dv_xname, str); \
want_init = 1; \
} \
} while (/*CONSTCOND*/0)
PRINTERR(ISR_DPERR, "parity error");
PRINTERR(ISR_SSERR, "system error");
PRINTERR(ISR_RMABT, "master abort");
PRINTERR(ISR_RTABT, "target abort");
PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
/*
* Ignore:
* Tx reset complete
* Rx reset complete
*/
if (want_init)
(void) SIP_DECL(init)(ifp);
#undef PRINTERR
}
}
/* Try to get more packets going. */
SIP_DECL(start)(ifp);
return (handled);
}
/*
* sip_txintr:
*
* Helper; handle transmit interrupts.
*/
void
SIP_DECL(txintr)(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_txsoft *txs;
u_int32_t cmdsts;
if ((sc->sc_flags & SIPF_PAUSED) == 0)
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
if (cmdsts & CMDSTS_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
/*
* Check for errors and collisions.
*/
if (cmdsts &
(CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
ifp->if_oerrors++;
if (cmdsts & CMDSTS_Tx_EC)
ifp->if_collisions += 16;
if (ifp->if_flags & IFF_DEBUG) {
if (cmdsts & CMDSTS_Tx_ED)
printf("%s: excessive deferral\n",
sc->sc_dev.dv_xname);
if (cmdsts & CMDSTS_Tx_EC)
printf("%s: excessive collisions\n",
sc->sc_dev.dv_xname);
}
} else {
/* Packet was transmitted successfully. */
ifp->if_opackets++;
ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
}
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL) {
ifp->if_timer = 0;
sc->sc_txwin = 0;
}
}
#if defined(DP83820)
/*
* sip_rxintr:
*
* Helper; handle receive interrupts.
*/
void
SIP_DECL(rxintr)(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_rxsoft *rxs;
struct mbuf *m, *tailm;
u_int32_t cmdsts, extsts;
int i, len;
for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
/*
* NOTE: OWN is set if owned by _consumer_. We're the
* consumer of the receive ring, so if the bit is clear,
* we have processed all of the packets.
*/
if ((cmdsts & CMDSTS_OWN) == 0) {
/*
* We have processed all of the receive buffers.
*/
break;
}
if (__predict_false(sc->sc_rxdiscard)) {
SIP_INIT_RXDESC(sc, i);
if ((cmdsts & CMDSTS_MORE) == 0) {
/* Reset our state. */
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = rxs->rxs_mbuf;
/*
* Add a new receive buffer to the ring.
*/
if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
SIP_INIT_RXDESC(sc, i);
if (cmdsts & CMDSTS_MORE)
sc->sc_rxdiscard = 1;
if (sc->sc_rxhead != NULL)
m_freem(sc->sc_rxhead);
SIP_RXCHAIN_RESET(sc);
continue;
}
SIP_RXCHAIN_LINK(sc, m);
/*
* If this is not the end of the packet, keep
* looking.
*/
if (cmdsts & CMDSTS_MORE) {
sc->sc_rxlen += m->m_len;
continue;
}
/*
* Okay, we have the entire packet now...
*/
*sc->sc_rxtailp = NULL;
m = sc->sc_rxhead;
tailm = sc->sc_rxtail;
SIP_RXCHAIN_RESET(sc);
/*
* If an error occurred, update stats and drop the packet.
*/
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
ifp->if_ierrors++;
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
(cmdsts & CMDSTS_Rx_RXO) == 0) {
/* Receive overrun handled elsewhere. */
printf("%s: receive descriptor error\n",
sc->sc_dev.dv_xname);
}
#define PRINTERR(bit, str) \
if ((ifp->if_flags & IFF_DEBUG) != 0 && \
(cmdsts & (bit)) != 0) \
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
#undef PRINTERR
m_freem(m);
continue;
}
/*
* No errors.
*
* Note, the DP83820 includes the CRC with
* every packet.
*/
len = CMDSTS_SIZE(cmdsts);
tailm->m_len = len - sc->sc_rxlen;
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*/
if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
struct mbuf *nm;
MGETHDR(nm, M_DONTWAIT, MT_DATA);
if (nm == NULL) {
ifp->if_ierrors++;
m_freem(m);
continue;
}
nm->m_data += 2;
nm->m_pkthdr.len = nm->m_len = len;
m_copydata(m, 0, len, mtod(nm, caddr_t));
m_freem(m);
m = nm;
}
#ifndef __NO_STRICT_ALIGNMENT
else {
/*
* The DP83820's receive buffers must be 4-byte
* aligned. But this means that the data after
* the Ethernet header is misaligned. To compensate,
* we have artificially shortened the buffer size
* in the descriptor, and we do an overlapping copy
* of the data two bytes further in (in the first
* buffer of the chain only).
*/
memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
m->m_len);
m->m_data += 2;
}
#endif /* ! __NO_STRICT_ALIGNMENT */
/*
* If VLANs are enabled, VLAN packets have been unwrapped
* for us. Associate the tag with the packet.
*/
if (sc->sc_ethercom.ec_nvlans != 0 &&
(extsts & EXTSTS_VPKT) != 0) {
struct mbuf *vtag;
vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
if (vtag == NULL) {
ifp->if_ierrors++;
printf("%s: unable to allocate VLAN tag\n",
sc->sc_dev.dv_xname);
m_freem(m);
continue;
}
*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
vtag->m_len = sizeof(int);
}
/*
* Set the incoming checksum information for the
* packet.
*/
if ((extsts & EXTSTS_IPPKT) != 0) {
SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (extsts & EXTSTS_Rx_IPERR)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (extsts & EXTSTS_TCPPKT) {
SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (extsts & EXTSTS_Rx_TCPERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (extsts & EXTSTS_UDPPKT) {
SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (extsts & EXTSTS_Rx_UDPERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
ifp->if_ipackets++;
m->m_flags |= M_HASFCS;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass if up the stack if it's for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
#else /* ! DP83820 */
/*
* sip_rxintr:
*
* Helper; handle receive interrupts.
*/
void
SIP_DECL(rxintr)(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_rxsoft *rxs;
struct mbuf *m;
u_int32_t cmdsts;
int i, len;
for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
/*
* NOTE: OWN is set if owned by _consumer_. We're the
* consumer of the receive ring, so if the bit is clear,
* we have processed all of the packets.
*/
if ((cmdsts & CMDSTS_OWN) == 0) {
/*
* We have processed all of the receive buffers.
*/
break;
}
/*
* If any collisions were seen on the wire, count one.
*/
if (cmdsts & CMDSTS_Rx_COL)
ifp->if_collisions++;
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
*/
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
ifp->if_ierrors++;
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
(cmdsts & CMDSTS_Rx_RXO) == 0) {
/* Receive overrun handled elsewhere. */
printf("%s: receive descriptor error\n",
sc->sc_dev.dv_xname);
}
#define PRINTERR(bit, str) \
if ((ifp->if_flags & IFF_DEBUG) != 0 && \
(cmdsts & (bit)) != 0) \
printf("%s: %s\n", sc->sc_dev.dv_xname, str)
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
#undef PRINTERR
SIP_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note, the SiS 900
* includes the CRC with every packet.
*/
len = CMDSTS_SIZE(cmdsts);
#ifdef __NO_STRICT_ALIGNMENT
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
memcpy(mtod(m, caddr_t),
mtod(rxs->rxs_mbuf, caddr_t), len);
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = rxs->rxs_mbuf;
if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
#else
/*
* The SiS 900's receive buffers must be 4-byte aligned.
* But this means that the data after the Ethernet header
* is misaligned. We must allocate a new buffer and
* copy the data, shifted forward 2 bytes.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
dropit:
ifp->if_ierrors++;
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
if (len > (MHLEN - 2)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto dropit;
}
}
m->m_data += 2;
/*
* Note that we use clusters for incoming frames, so the
* buffer is virtually contiguous.
*/
memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
/* Allow the receive descriptor to continue using its mbuf. */
SIP_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */
ifp->if_ipackets++;
m->m_flags |= M_HASFCS;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass if up the stack if it's for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
#endif /* DP83820 */
/*
* sip_tick:
*
* One second timer, used to tick the MII.
*/
void
SIP_DECL(tick)(void *arg)
{
struct sip_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
}
/*
* sip_reset:
*
* Perform a soft reset on the SiS 900.
*/
void
SIP_DECL(reset)(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
int i;
bus_space_write_4(st, sh, SIP_IER, 0);
bus_space_write_4(st, sh, SIP_IMR, 0);
bus_space_write_4(st, sh, SIP_RFCR, 0);
bus_space_write_4(st, sh, SIP_CR, CR_RST);
for (i = 0; i < SIP_TIMEOUT; i++) {
if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
break;
delay(2);
}
if (i == SIP_TIMEOUT)
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
delay(1000);
#ifdef DP83820
/*
* Set the general purpose I/O bits. Do it here in case we
* need to have GPIO set up to talk to the media interface.
*/
bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
delay(1000);
#endif /* DP83820 */
}
/*
* sip_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
int
SIP_DECL(init)(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct sip_txsoft *txs;
struct sip_rxsoft *rxs;
struct sip_desc *sipd;
u_int32_t reg;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
SIP_DECL(stop)(ifp, 0);
/*
* Reset the chip to a known state.
*/
SIP_DECL(reset)(sc);
#if !defined(DP83820)
if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
/*
* DP83815 manual, page 78:
* 4.4 Recommended Registers Configuration
* For optimum performance of the DP83815, version noted
* as DP83815CVNG (SRR = 203h), the listed register
* modifications must be followed in sequence...
*
* It's not clear if this should be 302h or 203h because that
* chip name is listed as SRR 302h in the description of the
* SRR register. However, my revision 302h DP83815 on the
* Netgear FA311 purchased in 02/2001 needs these settings
* to avoid tons of errors in AcceptPerfectMatch (non-
* IFF_PROMISC) mode. I do not know if other revisions need
* this set or not. [briggs -- 09 March 2001]
*
* Note that only the low-order 12 bits of 0xe4 are documented
* and that this sets reserved bits in that register.
*/
reg = bus_space_read_4(st, sh, SIP_NS_SRR);
if (reg == 0x302) {
bus_space_write_4(st, sh, 0x00cc, 0x0001);
bus_space_write_4(st, sh, 0x00e4, 0x189C);
bus_space_write_4(st, sh, 0x00fc, 0x0000);
bus_space_write_4(st, sh, 0x00f4, 0x5040);
bus_space_write_4(st, sh, 0x00f8, 0x008c);
}
}
#endif /* ! DP83820 */
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < SIP_NTXDESC; i++) {
sipd = &sc->sc_txdescs[i];
memset(sipd, 0, sizeof(struct sip_desc));
sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
}
SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = SIP_NTXDESC;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < SIP_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < SIP_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
SIP_DECL(rxdrain)(sc);
goto out;
}
} else
SIP_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
#ifdef DP83820
sc->sc_rxdiscard = 0;
SIP_RXCHAIN_RESET(sc);
#endif /* DP83820 */
/*
* Set the configuration register; it's already initialized
* in sip_attach().
*/
bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
/*
* Initialize the prototype TXCFG register.
*/
#if defined(DP83820)
sc->sc_txcfg = TXCFG_MXDMA_512;
sc->sc_rxcfg = RXCFG_MXDMA_512;
#else
if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) &&
(bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
sc->sc_txcfg = TXCFG_MXDMA_64;
sc->sc_rxcfg = RXCFG_MXDMA_64;
} else {
sc->sc_txcfg = TXCFG_MXDMA_512;
sc->sc_rxcfg = RXCFG_MXDMA_512;
}
#endif /* DP83820 */
sc->sc_txcfg |= TXCFG_ATP |
(sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
sc->sc_tx_drain_thresh;
bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
/*
* Initialize the receive drain threshold if we have never
* done so.
*/
if (sc->sc_rx_drain_thresh == 0) {
/*
* XXX This value should be tuned. This is set to the
* maximum of 248 bytes, and we may be able to improve
* performance by decreasing it (although we should never
* set this value lower than 2; 14 bytes are required to
* filter the packet).
*/
sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
}
/*
* Initialize the prototype RXCFG register.
*/
sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
#ifdef DP83820
/*
* Initialize the VLAN/IP receive control register.
* We enable checksum computation on all incoming
* packets, and do not reject packets w/ bad checksums.
*/
reg = 0;
if (ifp->if_capenable &
(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
reg |= VRCR_IPEN;
if (sc->sc_ethercom.ec_nvlans != 0)
reg |= VRCR_VTDEN|VRCR_VTREN;
bus_space_write_4(st, sh, SIP_VRCR, reg);
/*
* Initialize the VLAN/IP transmit control register.
* We enable outgoing checksum computation on a
* per-packet basis.
*/
reg = 0;
if (ifp->if_capenable &
(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
reg |= VTCR_PPCHK;
if (sc->sc_ethercom.ec_nvlans != 0)
reg |= VTCR_VPPTI;
bus_space_write_4(st, sh, SIP_VTCR, reg);
/*
* If we're using VLANs, initialize the VLAN data register.
* To understand why we bswap the VLAN Ethertype, see section
* 4.2.36 of the DP83820 manual.
*/
if (sc->sc_ethercom.ec_nvlans != 0)
bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
#endif /* DP83820 */
/*
* Give the transmit and receive rings to the chip.
*/
bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
/*
* Initialize the interrupt mask.
*/
sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
/* Set up the receive filter. */
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
/*
* Set the current media. Do this after initializing the prototype
* IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
* control.
*/
mii_mediachg(&sc->sc_mii);
/*
* Enable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, IER_IE);
/*
* Start the transmit and receive processes.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
/*
* Start the one second MII clock.
*/
callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* sip_drain:
*
* Drain the receive queue.
*/
void
SIP_DECL(rxdrain)(struct sip_softc *sc)
{
struct sip_rxsoft *rxs;
int i;
for (i = 0; i < SIP_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* sip_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
void
SIP_DECL(stop)(struct ifnet *ifp, int disable)
{
struct sip_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct sip_txsoft *txs;
u_int32_t cmdsts = 0; /* DEBUG */
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
/*
* Disable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, 0);
/*
* Stop receiver and transmitter.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
SIMPLEQ_NEXT(txs, txs_q) == NULL &&
(le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
CMDSTS_INTR) == 0)
printf("%s: sip_stop: last descriptor does not "
"have INTR bit set\n", sc->sc_dev.dv_xname);
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
#ifdef DIAGNOSTIC
if (txs->txs_mbuf == NULL) {
printf("%s: dirty txsoft with no mbuf chain\n",
sc->sc_dev.dv_xname);
panic("sip_stop");
}
#endif
cmdsts |= /* DEBUG */
le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (disable)
SIP_DECL(rxdrain)(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
(cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
printf("%s: sip_stop: no INTR bits set in dirty tx "
"descriptors\n", sc->sc_dev.dv_xname);
}
/*
* sip_read_eeprom:
*
* Read data from the serial EEPROM.
*/
void
SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
u_int16_t *data)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
u_int16_t reg;
int i, x;
for (i = 0; i < wordcnt; i++) {
/* Send CHIP SELECT. */
reg = EROMAR_EECS;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
/* Shift in the READ opcode. */
for (x = 3; x > 0; x--) {
if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift in address. */
for (x = 6; x > 0; x--) {
if ((word + i) & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift out data. */
reg = EROMAR_EECS;
data[i] = 0;
for (x = 16; x > 0; x--) {
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
data[i] |= (1 << (x - 1));
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Clear CHIP SELECT. */
bus_space_write_4(st, sh, SIP_EROMAR, 0);
delay(4);
}
}
/*
* sip_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
{
struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
#if defined(DP83820)
m->m_len = SIP_RXBUF_LEN;
#endif /* DP83820 */
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("sip_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
SIP_INIT_RXDESC(sc, idx);
return (0);
}
#if !defined(DP83820)
/*
* sip_sis900_set_filter:
*
* Set up the receive filter.
*/
void
SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
u_int8_t *cp;
struct ether_multistep step;
u_int32_t crc, mchash[16];
/*
* Initialize the prototype RFCR.
*/
sc->sc_rfcr = RFCR_RFEN;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rfcr |= RFCR_AAB;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rfcr |= RFCR_AAP;
goto allmulti;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high-order
* 6 bits as an index into the 128 bit multicast hash table (only
* the lower 16 bits of each 32 bit multicast hash register are
* valid). The high order bits select the register, while the
* rest of the bits select the bit within the register.
*/
memset(mchash, 0, sizeof(mchash));
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
if (SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) {
/* Just want the 8 most significant bits. */
crc >>= 24;
} else {
/* Just want the 7 most significant bits. */
crc >>= 25;
}
/* Set the corresponding bit in the hash table. */
mchash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rfcr |= RFCR_AAM;
setit:
#define FILTER_EMIT(addr, data) \
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
delay(1); \
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
delay(1)
/*
* Disable receive filter, and program the node address.
*/
cp = LLADDR(ifp->if_sadl);
FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
if (SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) {
FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
}
}
#undef FILTER_EMIT
/*
* Re-enable the receiver filter.
*/
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
}
#endif /* ! DP83820 */
/*
* sip_dp83815_set_filter:
*
* Set up the receive filter.
*/
void
SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
u_int8_t *cp;
struct ether_multistep step;
u_int32_t crc, hash, slot, bit;
#ifdef DP83820
#define MCHASH_NWORDS 128
#else
#define MCHASH_NWORDS 32
#endif /* DP83820 */
u_int16_t mchash[MCHASH_NWORDS];
int i;
/*
* Initialize the prototype RFCR.
* Enable the receive filter, and accept on
* Perfect (destination address) Match
* If IFF_BROADCAST, also accept all broadcast packets.
* If IFF_PROMISC, accept all unicast packets (and later, set
* IFF_ALLMULTI and accept all multicast, too).
*/
sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rfcr |= RFCR_AAB;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rfcr |= RFCR_AAP;
goto allmulti;
}
#ifdef DP83820
/*
* Set up the DP83820 multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high-order
* 11 bits as an index into the 2048 bit multicast hash table. The
* high-order 7 bits select the slot, while the low-order 4 bits
* select the bit within the slot. Note that only the low 16-bits
* of each filter word are used, and there are 128 filter words.
*/
#else
/*
* Set up the DP83815 multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high-order
* 9 bits as an index into the 512 bit multicast hash table. The
* high-order 5 bits select the slot, while the low-order 4 bits
* select the bit within the slot. Note that only the low 16-bits
* of each filter word are used, and there are 32 filter words.
*/
#endif /* DP83820 */
memset(mchash, 0, sizeof(mchash));
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
if (enm == NULL)
goto setit;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
#ifdef DP83820
/* Just want the 11 most significant bits. */
hash = crc >> 21;
#else
/* Just want the 9 most significant bits. */
hash = crc >> 23;
#endif /* DP83820 */
slot = hash >> 4;
bit = hash & 0xf;
/* Set the corresponding bit in the hash table. */
mchash[slot] |= 1 << bit;
ETHER_NEXT_MULTI(step, enm);
}
sc->sc_rfcr |= RFCR_MHEN;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rfcr |= RFCR_AAM;
setit:
#define FILTER_EMIT(addr, data) \
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
delay(1); \
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
delay(1)
/*
* Disable receive filter, and program the node address.
*/
cp = LLADDR(ifp->if_sadl);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
for (i = 0; i < MCHASH_NWORDS; i++) {
FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
mchash[i]);
}
}
#undef FILTER_EMIT
#undef MCHASH_NWORDS
/*
* Re-enable the receiver filter.
*/
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
}
#if defined(DP83820)
/*
* sip_dp83820_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII of the DP83820.
*/
int
SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
{
struct sip_softc *sc = (void *) self;
if (sc->sc_cfg & CFG_TBI_EN) {
bus_addr_t tbireg;
int rv;
if (phy != 0)
return (0);
switch (reg) {
case MII_BMCR: tbireg = SIP_TBICR; break;
case MII_BMSR: tbireg = SIP_TBISR; break;
case MII_ANAR: tbireg = SIP_TANAR; break;
case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
case MII_ANER: tbireg = SIP_TANER; break;
case MII_EXTSR:
/*
* Don't even bother reading the TESR register.
* The manual documents that the device has
* 1000baseX full/half capability, but the
* register itself seems read back 0 on some
* boards. Just hard-code the result.
*/
return (EXTSR_1000XFDX|EXTSR_1000XHDX);
default:
return (0);
}
rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
if (tbireg == SIP_TBISR) {
/* LINK and ACOMP are switched! */
int val = rv;
rv = 0;
if (val & TBISR_MR_LINK_STATUS)
rv |= BMSR_LINK;
if (val & TBISR_MR_AN_COMPLETE)
rv |= BMSR_ACOMP;
/*
* The manual claims this register reads back 0
* on hard and soft reset. But we want to let
* the gentbi driver know that we support auto-
* negotiation, so hard-code this bit in the
* result.
*/
rv |= BMSR_ANEG | BMSR_EXTSTAT;
}
return (rv);
}
return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
phy, reg));
}
/*
* sip_dp83820_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII of the DP83820.
*/
void
SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
{
struct sip_softc *sc = (void *) self;
if (sc->sc_cfg & CFG_TBI_EN) {
bus_addr_t tbireg;
if (phy != 0)
return;
switch (reg) {
case MII_BMCR: tbireg = SIP_TBICR; break;
case MII_ANAR: tbireg = SIP_TANAR; break;
case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
default:
return;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
return;
}
mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
phy, reg, val);
}
/*
* sip_dp83815_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
SIP_DECL(dp83820_mii_statchg)(struct device *self)
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t cfg;
/*
* Update TXCFG for full-duplex operation.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* Update CFG for MII/GMII.
*/
if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
cfg = sc->sc_cfg | CFG_MODE_1000;
else
cfg = sc->sc_cfg;
/*
* XXX 802.3x flow control.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
}
/*
* sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
*
* Read the MII serial port for the MII bit-bang module.
*/
u_int32_t
SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
{
struct sip_softc *sc = (void *) self;
return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
}
/*
* sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
*
* Write the MII serial port for the MII bit-bang module.
*/
void
SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
{
struct sip_softc *sc = (void *) self;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
}
#else /* ! DP83820 */
/*
* sip_sis900_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
int
SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t enphy;
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
sc->sc_rev < SIS_REV_635 && phy != 0)
return (0);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
ENPHY_RWCMD | ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
}
/*
* sip_sis900_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII.
*/
void
SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t enphy;
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
sc->sc_rev < SIS_REV_635 && phy != 0)
return;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
(reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
}
/*
* sip_sis900_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
SIP_DECL(sis900_mii_statchg)(struct device *self)
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t flowctl;
/*
* Update TXCFG for full-duplex operation.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* Update IMR for use of 802.3x flow control.
*/
if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = FLOWCTL_FLOWEN;
} else {
sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = 0;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
}
/*
* sip_dp83815_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
int
SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
{
struct sip_softc *sc = (struct sip_softc *) self;
u_int32_t val;
/*
* The DP83815 only has an internal PHY. Only allow
* MII address 0.
*/
if (phy != 0)
return (0);
/*
* Apparently, after a reset, the DP83815 can take a while
* to respond. During this recovery period, the BMSR returns
* a value of 0. Catch this -- it's not supposed to happen
* (the BMSR has some hardcoded-to-1 bits), and wait for the
* PHY to come back to life.
*
* This works out because the BMSR is the first register
* read during the PHY probe process.
*/
do {
val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
} while (reg == MII_BMSR && val == 0);
return (val & 0xffff);
}
/*
* sip_dp83815_mii_writereg: [mii interface function]
*
* Write a PHY register to the MII.
*/
void
SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
{
struct sip_softc *sc = (struct sip_softc *) self;
/*
* The DP83815 only has an internal PHY. Only allow
* MII address 0.
*/
if (phy != 0)
return;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
}
/*
* sip_dp83815_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
SIP_DECL(dp83815_mii_statchg)(struct device *self)
{
struct sip_softc *sc = (struct sip_softc *) self;
/*
* Update TXCFG for full-duplex operation.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* XXX 802.3x flow control.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
}
#endif /* DP83820 */
#if defined(DP83820)
void
SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
u_int8_t cksum, *e, match;
int i;
/*
* EEPROM data format for the DP83820 can be found in
* the DP83820 manual, section 4.2.4.
*/
SIP_DECL(read_eeprom)(sc, 0,
sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
match = ~(match - 1);
cksum = 0x55;
e = (u_int8_t *) eeprom_data;
for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
cksum += *e++;
if (cksum != match)
printf("%s: Checksum (%x) mismatch (%x)",
sc->sc_dev.dv_xname, cksum, match);
enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
}
#else /* ! DP83820 */
void
SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t myea[ETHER_ADDR_LEN / 2];
switch (sc->sc_rev) {
case SIS_REV_630S:
case SIS_REV_630E:
case SIS_REV_630EA1:
case SIS_REV_630ET:
case SIS_REV_635:
/*
* The MAC address for the on-board Ethernet of
* the SiS 630 chipset is in the NVRAM. Kick
* the chip into re-loading it from NVRAM, and
* read the MAC address out of the filter registers.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE0);
myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE2);
myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE4);
myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
break;
default:
SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
sizeof(myea) / sizeof(myea[0]), myea);
}
enaddr[0] = myea[0] & 0xff;
enaddr[1] = myea[0] >> 8;
enaddr[2] = myea[1] & 0xff;
enaddr[3] = myea[1] >> 8;
enaddr[4] = myea[2] & 0xff;
enaddr[5] = myea[2] >> 8;
}
/* Table and macro to bit-reverse an octet. */
static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
#define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
void
SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
u_int8_t cksum, *e, match;
int i;
SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
sizeof(eeprom_data[0]), eeprom_data);
match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
match = ~(match - 1);
cksum = 0x55;
e = (u_int8_t *) eeprom_data;
for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
cksum += *e++;
}
if (cksum != match) {
printf("%s: Checksum (%x) mismatch (%x)",
sc->sc_dev.dv_xname, cksum, match);
}
/*
* Unrolled because it makes slightly more sense this way.
* The DP83815 stores the MAC address in bit 0 of word 6
* through bit 15 of word 8.
*/
ea = &eeprom_data[6];
enaddr[0] = ((*ea & 0x1) << 7);
ea++;
enaddr[0] |= ((*ea & 0xFE00) >> 9);
enaddr[1] = ((*ea & 0x1FE) >> 1);
enaddr[2] = ((*ea & 0x1) << 7);
ea++;
enaddr[2] |= ((*ea & 0xFE00) >> 9);
enaddr[3] = ((*ea & 0x1FE) >> 1);
enaddr[4] = ((*ea & 0x1) << 7);
ea++;
enaddr[4] |= ((*ea & 0xFE00) >> 9);
enaddr[5] = ((*ea & 0x1FE) >> 1);
/*
* In case that's not weird enough, we also need to reverse
* the bits in each byte. This all actually makes more sense
* if you think about the EEPROM storage as an array of bits
* being shifted into bytes, but that's not how we're looking
* at it here...
*/
for (i = 0; i < 6 ;i++)
enaddr[i] = bbr(enaddr[i]);
}
#endif /* DP83820 */
/*
* sip_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
void
SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sip_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* sip_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media.
*/
int
SIP_DECL(mediachange)(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}