NetBSD/sys/dev/ic/rtl8169.c

2225 lines
58 KiB
C

/* $NetBSD: rtl8169.c,v 1.167 2020/09/21 06:57:00 msaitoh Exp $ */
/*
* Copyright (c) 1997, 1998-2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.167 2020/09/21 06:57:00 msaitoh Exp $");
/* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
/*
* RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* This driver is designed to support RealTek's next generation of
* 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
* six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
* RTL8110S, the RTL8168 and the RTL8111.
*
* The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
* with the older 8139 family, however it also supports a special
* C+ mode of operation that provides several new performance enhancing
* features. These include:
*
* o Descriptor based DMA mechanism. Each descriptor represents
* a single packet fragment. Data buffers may be aligned on
* any byte boundary.
*
* o 64-bit DMA
*
* o TCP/IP checksum offload for both RX and TX
*
* o High and normal priority transmit DMA rings
*
* o VLAN tag insertion and extraction
*
* o TCP large send (segmentation offload)
*
* Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
* programming API is fairly straightforward. The RX filtering, EEPROM
* access and PHY access is the same as it is on the older 8139 series
* chips.
*
* The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
* same programming API and feature set as the 8139C+ with the following
* differences and additions:
*
* o 1000Mbps mode
*
* o Jumbo frames
*
* o GMII and TBI ports/registers for interfacing with copper
* or fiber PHYs
*
* o RX and TX DMA rings can have up to 1024 descriptors
* (the 8139C+ allows a maximum of 64)
*
* o Slight differences in register layout from the 8139C+
*
* The TX start and timer interrupt registers are at different locations
* on the 8169 than they are on the 8139C+. Also, the status word in the
* RX descriptor has a slightly different bit layout. The 8169 does not
* have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
* copper gigE PHY.
*
* The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
* (the 'S' stands for 'single-chip'). These devices have the same
* programming API as the older 8169, but also have some vendor-specific
* registers for the on-board PHY. The 8110S is a LAN-on-motherboard
* part designed to be pin-compatible with the RealTek 8100 10/100 chip.
*
* This driver takes advantage of the RX and TX checksum offload and
* VLAN tag insertion/extraction features. It also implements TX
* interrupt moderation using the timer interrupt registers, which
* significantly reduces TX interrupt load. There is also support
* for jumbo frames, however the 8169/8169S/8110S can not transmit
* jumbo frames larger than 7.5K, so the max MTU possible with this
* driver is 7500 bytes.
*/
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_vlanvar.h>
#include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
#include <netinet/in.h> /* XXX for IP_MAXPACKET */
#include <netinet/ip.h> /* XXX for IP_MAXPACKET */
#include <net/bpf.h>
#include <sys/rndsource.h>
#include <sys/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ic/rtl81x9reg.h>
#include <dev/ic/rtl81x9var.h>
#include <dev/ic/rtl8169var.h>
static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
static int re_rx_list_init(struct rtk_softc *);
static int re_tx_list_init(struct rtk_softc *);
static void re_rxeof(struct rtk_softc *);
static void re_txeof(struct rtk_softc *);
static void re_tick(void *);
static void re_start(struct ifnet *);
static int re_ioctl(struct ifnet *, u_long, void *);
static int re_init(struct ifnet *);
static void re_stop(struct ifnet *, int);
static void re_watchdog(struct ifnet *);
static int re_enable(struct rtk_softc *);
static void re_disable(struct rtk_softc *);
static int re_gmii_readreg(device_t, int, int, uint16_t *);
static int re_gmii_writereg(device_t, int, int, uint16_t);
static int re_miibus_readreg(device_t, int, int, uint16_t *);
static int re_miibus_writereg(device_t, int, int, uint16_t);
static void re_miibus_statchg(struct ifnet *);
static void re_reset(struct rtk_softc *);
static const struct re_revision {
uint32_t re_chipid;
const char *re_name;
} re_revisions[] = {
{ RTK_HWREV_8100, "RTL8100" },
{ RTK_HWREV_8100E, "RTL8100E" },
{ RTK_HWREV_8100E_SPIN2, "RTL8100E 2" },
{ RTK_HWREV_8101, "RTL8101" },
{ RTK_HWREV_8101E, "RTL8101E" },
{ RTK_HWREV_8102E, "RTL8102E" },
{ RTK_HWREV_8106E, "RTL8106E" },
{ RTK_HWREV_8401E, "RTL8401E" },
{ RTK_HWREV_8402, "RTL8402" },
{ RTK_HWREV_8411, "RTL8411" },
{ RTK_HWREV_8411B, "RTL8411B" },
{ RTK_HWREV_8102EL, "RTL8102EL" },
{ RTK_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
{ RTK_HWREV_8103E, "RTL8103E" },
{ RTK_HWREV_8110S, "RTL8110S" },
{ RTK_HWREV_8139CPLUS, "RTL8139C+" },
{ RTK_HWREV_8168B_SPIN1, "RTL8168 1" },
{ RTK_HWREV_8168B_SPIN2, "RTL8168 2" },
{ RTK_HWREV_8168B_SPIN3, "RTL8168 3" },
{ RTK_HWREV_8168C, "RTL8168C/8111C" },
{ RTK_HWREV_8168C_SPIN2, "RTL8168C/8111C" },
{ RTK_HWREV_8168CP, "RTL8168CP/8111CP" },
{ RTK_HWREV_8168F, "RTL8168F/8111F" },
{ RTK_HWREV_8168G, "RTL8168G/8111G" },
{ RTK_HWREV_8168GU, "RTL8168GU/8111GU" },
{ RTK_HWREV_8168H, "RTL8168H/8111H" },
{ RTK_HWREV_8105E, "RTL8105E" },
{ RTK_HWREV_8105E_SPIN1, "RTL8105E" },
{ RTK_HWREV_8168D, "RTL8168D/8111D" },
{ RTK_HWREV_8168DP, "RTL8168DP/8111DP" },
{ RTK_HWREV_8168E, "RTL8168E/8111E" },
{ RTK_HWREV_8168E_VL, "RTL8168E/8111E-VL" },
{ RTK_HWREV_8168EP, "RTL8168EP/8111EP" },
{ RTK_HWREV_8168FP, "RTL8168FP/8117" },
{ RTK_HWREV_8169, "RTL8169" },
{ RTK_HWREV_8169_8110SB, "RTL8169/8110SB" },
{ RTK_HWREV_8169_8110SBL, "RTL8169SBL" },
{ RTK_HWREV_8169_8110SC, "RTL8169/8110SCd" },
{ RTK_HWREV_8169_8110SCE, "RTL8169/8110SCe" },
{ RTK_HWREV_8169S, "RTL8169S" },
{ 0, NULL }
};
static inline void
re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
{
d->re_bufaddr_lo = htole32(RE_ADDR_LO(addr));
d->re_bufaddr_hi = htole32(RE_ADDR_HI(addr));
}
static int
re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct rtk_softc *sc = device_private(dev);
uint32_t data;
int i;
if (phy != 7)
return -1;
/* Let the rgephy driver read the GMEDIASTAT register */
if (reg == RTK_GMEDIASTAT) {
*val = CSR_READ_1(sc, RTK_GMEDIASTAT);
return 0;
}
CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
DELAY(1000);
for (i = 0; i < RTK_TIMEOUT; i++) {
data = CSR_READ_4(sc, RTK_PHYAR);
if (data & RTK_PHYAR_BUSY)
break;
DELAY(100);
}
if (i == RTK_TIMEOUT) {
printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
*val = data & RTK_PHYAR_PHYDATA;
return 0;
}
static int
re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct rtk_softc *sc = device_private(dev);
uint32_t data;
int i;
CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
(val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
DELAY(1000);
for (i = 0; i < RTK_TIMEOUT; i++) {
data = CSR_READ_4(sc, RTK_PHYAR);
if (!(data & RTK_PHYAR_BUSY))
break;
DELAY(100);
}
if (i == RTK_TIMEOUT) {
printf("%s: PHY write reg %x <- %hx failed\n",
device_xname(sc->sc_dev), reg, val);
return ETIMEDOUT;
}
return 0;
}
static int
re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct rtk_softc *sc = device_private(dev);
uint16_t re8139_reg = 0;
int s, rv = 0;
s = splnet();
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
rv = re_gmii_readreg(dev, phy, reg, val);
splx(s);
return rv;
}
/* Pretend the internal PHY is only at address 0 */
if (phy) {
splx(s);
return -1;
}
switch (reg) {
case MII_BMCR:
re8139_reg = RTK_BMCR;
break;
case MII_BMSR:
re8139_reg = RTK_BMSR;
break;
case MII_ANAR:
re8139_reg = RTK_ANAR;
break;
case MII_ANER:
re8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
re8139_reg = RTK_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
*val = 0;
splx(s);
return 0;
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RTK_MEDIASTAT:
*val = CSR_READ_1(sc, RTK_MEDIASTAT);
splx(s);
return 0;
default:
printf("%s: bad phy register\n", device_xname(sc->sc_dev));
splx(s);
return -1;
}
*val = CSR_READ_2(sc, re8139_reg);
if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
/* 8139C+ has different bit layout. */
*val &= ~(BMCR_LOOP | BMCR_ISO);
}
splx(s);
return 0;
}
static int
re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct rtk_softc *sc = device_private(dev);
uint16_t re8139_reg = 0;
int s, rv;
s = splnet();
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
rv = re_gmii_writereg(dev, phy, reg, val);
splx(s);
return rv;
}
/* Pretend the internal PHY is only at address 0 */
if (phy) {
splx(s);
return -1;
}
switch (reg) {
case MII_BMCR:
re8139_reg = RTK_BMCR;
if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
/* 8139C+ has different bit layout. */
val &= ~(BMCR_LOOP | BMCR_ISO);
}
break;
case MII_BMSR:
re8139_reg = RTK_BMSR;
break;
case MII_ANAR:
re8139_reg = RTK_ANAR;
break;
case MII_ANER:
re8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
re8139_reg = RTK_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
splx(s);
return 0;
break;
default:
printf("%s: bad phy register\n", device_xname(sc->sc_dev));
splx(s);
return -1;
}
CSR_WRITE_2(sc, re8139_reg, val);
splx(s);
return 0;
}
static void
re_miibus_statchg(struct ifnet *ifp)
{
return;
}
static void
re_reset(struct rtk_softc *sc)
{
int i;
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
for (i = 0; i < RTK_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
break;
}
if (i == RTK_TIMEOUT)
printf("%s: reset never completed!\n",
device_xname(sc->sc_dev));
/*
* NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
* but also says "Rtl8169s sigle chip detected".
*/
if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
CSR_WRITE_1(sc, RTK_LDPS, 1);
}
/*
* The following routine is designed to test for a defect on some
* 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
* lines connected to the bus, however for a 32-bit only card, they
* should be pulled high. The result of this defect is that the
* NIC will not work right if you plug it into a 64-bit slot: DMA
* operations will be done with 64-bit transfers, which will fail
* because the 64-bit data lines aren't connected.
*
* There's no way to work around this (short of talking a soldering
* iron to the board), however we can detect it. The method we use
* here is to put the NIC into digital loopback mode, set the receiver
* to promiscuous mode, and then try to send a frame. We then compare
* the frame data we sent to what was received. If the data matches,
* then the NIC is working correctly, otherwise we know the user has
* a defective NIC which has been mistakenly plugged into a 64-bit PCI
* slot. In the latter case, there's no way the NIC can work correctly,
* so we print out a message on the console and abort the device attach.
*/
int
re_diag(struct rtk_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
struct mbuf *m0;
struct ether_header *eh;
struct re_rxsoft *rxs;
struct re_desc *cur_rx;
bus_dmamap_t dmamap;
uint16_t status;
uint32_t rxstat;
int total_len, i, s, error = 0;
static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
/* Allocate a single mbuf */
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return ENOBUFS;
/*
* Initialize the NIC in test mode. This sets the chip up
* so that it can send and receive frames, but performs the
* following special functions:
* - Puts receiver in promiscuous mode
* - Enables digital loopback mode
* - Leaves interrupts turned off
*/
ifp->if_flags |= IFF_PROMISC;
sc->re_testmode = 1;
re_init(ifp);
re_stop(ifp, 0);
DELAY(100000);
re_init(ifp);
/* Put some data in the mbuf */
eh = mtod(m0, struct ether_header *);
memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
eh->ether_type = htons(ETHERTYPE_IP);
m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
/*
* Queue the packet, start transmission.
*/
CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
s = splnet();
IF_ENQUEUE(&ifp->if_snd, m0);
re_start(ifp);
splx(s);
m0 = NULL;
/* Wait for it to propagate through the chip */
DELAY(100000);
for (i = 0; i < RTK_TIMEOUT; i++) {
status = CSR_READ_2(sc, RTK_ISR);
if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
(RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
break;
DELAY(10);
}
if (i == RTK_TIMEOUT) {
aprint_error_dev(sc->sc_dev,
"diagnostic failed, failed to receive packet "
"in loopback mode\n");
error = EIO;
goto done;
}
/*
* The packet should have been dumped into the first
* entry in the RX DMA ring. Grab it from there.
*/
rxs = &sc->re_ldata.re_rxsoft[0];
dmamap = rxs->rxs_dmamap;
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, dmamap);
m0 = rxs->rxs_mbuf;
rxs->rxs_mbuf = NULL;
eh = mtod(m0, struct ether_header *);
RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cur_rx = &sc->re_ldata.re_rx_list[0];
rxstat = le32toh(cur_rx->re_cmdstat);
total_len = rxstat & sc->re_rxlenmask;
if (total_len != ETHER_MIN_LEN) {
aprint_error_dev(sc->sc_dev,
"diagnostic failed, received short packet\n");
error = EIO;
goto done;
}
/* Test that the received packet data matches what we sent. */
if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
ntohs(eh->ether_type) != ETHERTYPE_IP) {
aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
"expected TX data: %s/%s/0x%x\n"
"received RX data: %s/%s/0x%x\n"
"You may have a defective 32-bit NIC plugged "
"into a 64-bit PCI slot.\n"
"Please re-install the NIC in a 32-bit slot "
"for proper operation.\n"
"Read the re(4) man page for more details.\n" ,
ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
ether_sprintf(eh->ether_dhost),
ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
error = EIO;
}
done:
/* Turn interface off, release resources */
sc->re_testmode = 0;
ifp->if_flags &= ~IFF_PROMISC;
re_stop(ifp, 0);
if (m0 != NULL)
m_freem(m0);
return error;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
re_attach(struct rtk_softc *sc)
{
uint8_t eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
struct mii_data *mii = &sc->mii;
int error = 0, i;
const struct re_revision *rr;
const char *re_name = NULL;
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
sc->sc_hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
for (rr = re_revisions; rr->re_name != NULL; rr++) {
if (rr->re_chipid == sc->sc_hwrev)
re_name = rr->re_name;
}
if (re_name == NULL)
aprint_normal_dev(sc->sc_dev,
"unknown ASIC (0x%04x)\n", sc->sc_hwrev >> 16);
else
aprint_normal_dev(sc->sc_dev,
"%s (0x%04x)\n", re_name, sc->sc_hwrev >> 16);
switch (sc->sc_hwrev) {
case RTK_HWREV_8169:
sc->sc_quirk |= RTKQ_8169NONS;
break;
case RTK_HWREV_8169S:
case RTK_HWREV_8110S:
case RTK_HWREV_8169_8110SB:
case RTK_HWREV_8169_8110SBL:
case RTK_HWREV_8169_8110SC:
sc->sc_quirk |= RTKQ_MACLDPS;
break;
case RTK_HWREV_8168B_SPIN1:
case RTK_HWREV_8168B_SPIN2:
case RTK_HWREV_8168B_SPIN3:
sc->sc_quirk |= RTKQ_MACSTAT;
break;
case RTK_HWREV_8168C:
case RTK_HWREV_8168C_SPIN2:
case RTK_HWREV_8168CP:
case RTK_HWREV_8168D:
case RTK_HWREV_8168DP:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP;
/*
* From FreeBSD driver:
*
* These (8168/8111) controllers support jumbo frame
* but it seems that enabling it requires touching
* additional magic registers. Depending on MAC
* revisions some controllers need to disable
* checksum offload. So disable jumbo frame until
* I have better idea what it really requires to
* make it support.
* RTL8168C/CP : supports up to 6KB jumbo frame.
* RTL8111C/CP : supports up to 9KB jumbo frame.
*/
sc->sc_quirk |= RTKQ_NOJUMBO;
break;
case RTK_HWREV_8168E:
case RTK_HWREV_8168H_SPIN1:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
RTKQ_NOJUMBO;
break;
case RTK_HWREV_8168H:
case RTK_HWREV_8168FP:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
RTKQ_NOJUMBO | RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
break;
case RTK_HWREV_8168E_VL:
case RTK_HWREV_8168F:
case RTK_HWREV_8411:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
break;
case RTK_HWREV_8168EP:
case RTK_HWREV_8168G:
case RTK_HWREV_8168G_SPIN1:
case RTK_HWREV_8168G_SPIN2:
case RTK_HWREV_8411B:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
RTKQ_RXDV_GATED;
break;
case RTK_HWREV_8100E:
case RTK_HWREV_8100E_SPIN2:
case RTK_HWREV_8101E:
sc->sc_quirk |= RTKQ_NOJUMBO;
break;
case RTK_HWREV_8102E:
case RTK_HWREV_8102EL:
case RTK_HWREV_8102EL_SPIN1:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
break;
case RTK_HWREV_8103E:
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
RTKQ_MACSTAT | RTKQ_CMDSTOP;
break;
case RTK_HWREV_8401E:
case RTK_HWREV_8105E:
case RTK_HWREV_8105E_SPIN1: /* XXX */
case RTK_HWREV_8106E:
sc->sc_quirk |= RTKQ_PHYWAKE_PM |
RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
RTKQ_CMDSTOP;
break;
case RTK_HWREV_8402:
sc->sc_quirk |= RTKQ_PHYWAKE_PM |
RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */
break;
default:
aprint_normal_dev(sc->sc_dev, "Use default quirks\n");
/* assume the latest features */
sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
sc->sc_quirk |= RTKQ_NOJUMBO;
}
/* Set RX length mask */
sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
} else {
sc->sc_quirk |= RTKQ_NOJUMBO;
/* Set RX length mask */
sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
}
/* Reset the adapter. */
re_reset(sc);
/*
* RTL81x9 chips automatically read EEPROM to init MAC address,
* and some NAS override its MAC address per own configuration,
* so no need to explicitely read EEPROM and set ID registers.
*/
#ifdef RE_USE_EECMD
if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
/*
* Get station address from ID registers.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
} else {
uint16_t val;
int addr_len;
/*
* Get station address from the EEPROM.
*/
if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
addr_len = RTK_EEADDR_LEN1;
else
addr_len = RTK_EEADDR_LEN0;
/*
* Get station address from the EEPROM.
*/
for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
eaddr[(i * 2) + 0] = val & 0xff;
eaddr[(i * 2) + 1] = val >> 8;
}
}
#else
/*
* Get station address from ID registers.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
#endif
/* Take PHY out of power down mode. */
if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(eaddr));
if (sc->re_ldata.re_tx_desc_cnt >
PAGE_SIZE / sizeof(struct re_desc)) {
sc->re_ldata.re_tx_desc_cnt =
PAGE_SIZE / sizeof(struct re_desc);
}
aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
sc->re_ldata.re_tx_desc_cnt);
KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
/* Allocate DMA'able memory for the TX ring */
if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
&sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't allocate tx listseg, error = %d\n", error);
goto fail_0;
}
/* Load the map for the TX ring. */
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
(void **)&sc->re_ldata.re_tx_list,
BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't map tx list, error = %d\n", error);
goto fail_1;
}
memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
RE_TX_LIST_SZ(sc), 0, 0,
&sc->re_ldata.re_tx_list_map)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't create tx list map, error = %d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat,
sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't load tx list, error = %d\n", error);
goto fail_3;
}
/* Create DMA maps for TX buffers */
for (i = 0; i < RE_TX_QLEN; i++) {
error = bus_dmamap_create(sc->sc_dmat,
round_page(IP_MAXPACKET),
RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't create DMA map for TX\n");
goto fail_4;
}
}
/* Allocate DMA'able memory for the RX ring */
/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
if ((error = bus_dmamem_alloc(sc->sc_dmat,
RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
&sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't allocate rx listseg, error = %d\n", error);
goto fail_4;
}
/* Load the map for the RX ring. */
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
(void **)&sc->re_ldata.re_rx_list,
BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't map rx list, error = %d\n", error);
goto fail_5;
}
memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
if ((error = bus_dmamap_create(sc->sc_dmat,
RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
&sc->re_ldata.re_rx_list_map)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't create rx list map, error = %d\n", error);
goto fail_6;
}
if ((error = bus_dmamap_load(sc->sc_dmat,
sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't load rx list, error = %d\n", error);
goto fail_7;
}
/* Create DMA maps for RX buffers */
for (i = 0; i < RE_RX_DESC_CNT; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't create DMA map for RX\n");
goto fail_8;
}
}
/*
* Record interface as attached. From here, we should not fail.
*/
sc->sc_flags |= RTK_ATTACHED;
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = re_ioctl;
sc->ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
ifp->if_start = re_start;
ifp->if_stop = re_stop;
/*
* IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
* so we have a workaround to handle the bug by padding
* such packets manually.
*/
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_TSOv4;
ifp->if_watchdog = re_watchdog;
ifp->if_init = re_init;
ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
ifp->if_capenable = ifp->if_capabilities;
IFQ_SET_READY(&ifp->if_snd);
callout_init(&sc->rtk_tick_ch, 0);
callout_setfunc(&sc->rtk_tick_ch, re_tick, sc);
/* Do MII setup */
mii->mii_ifp = ifp;
mii->mii_readreg = re_miibus_readreg;
mii->mii_writereg = re_miibus_writereg;
mii->mii_statchg = re_miibus_statchg;
sc->ethercom.ec_mii = mii;
ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
ether_mediastatus);
mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
/*
* Call MI attach routine.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, eaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
if (pmf_device_register(sc->sc_dev, NULL, NULL))
pmf_class_network_register(sc->sc_dev, ifp);
else
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
return;
fail_8:
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < RE_RX_DESC_CNT; i++)
if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->re_ldata.re_rxsoft[i].rxs_dmamap);
/* Free DMA'able memory for the RX ring. */
bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
fail_7:
bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
fail_6:
bus_dmamem_unmap(sc->sc_dmat,
(void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
fail_5:
bus_dmamem_free(sc->sc_dmat,
&sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
fail_4:
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < RE_TX_QLEN; i++)
if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->re_ldata.re_txq[i].txq_dmamap);
/* Free DMA'able memory for the TX ring. */
bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
fail_2:
bus_dmamem_unmap(sc->sc_dmat,
(void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
fail_1:
bus_dmamem_free(sc->sc_dmat,
&sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
fail_0:
return;
}
/*
* re_activate:
* Handle device activation/deactivation requests.
*/
int
re_activate(device_t self, enum devact act)
{
struct rtk_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->ethercom.ec_if);
return 0;
default:
return EOPNOTSUPP;
}
}
/*
* re_detach:
* Detach a rtk interface.
*/
int
re_detach(struct rtk_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
int i;
/*
* Succeed now if there isn't any work to do.
*/
if ((sc->sc_flags & RTK_ATTACHED) == 0)
return 0;
/* Unhook our tick handler. */
callout_stop(&sc->rtk_tick_ch);
/* Detach all PHYs. */
mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
/* Delete all remaining media. */
ifmedia_fini(&sc->mii.mii_media);
/* Destroy DMA maps for RX buffers. */
for (i = 0; i < RE_RX_DESC_CNT; i++)
if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->re_ldata.re_rxsoft[i].rxs_dmamap);
/* Free DMA'able memory for the RX ring. */
bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
bus_dmamem_unmap(sc->sc_dmat,
(void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
bus_dmamem_free(sc->sc_dmat,
&sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
/* Destroy DMA maps for TX buffers. */
for (i = 0; i < RE_TX_QLEN; i++)
if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->re_ldata.re_txq[i].txq_dmamap);
/* Free DMA'able memory for the TX ring. */
bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
bus_dmamem_unmap(sc->sc_dmat,
(void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
bus_dmamem_free(sc->sc_dmat,
&sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
pmf_device_deregister(sc->sc_dev);
/* we don't want to run again */
sc->sc_flags &= ~RTK_ATTACHED;
return 0;
}
/*
* re_enable:
* Enable the RTL81X9 chip.
*/
static int
re_enable(struct rtk_softc *sc)
{
if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
if ((*sc->sc_enable)(sc) != 0) {
printf("%s: device enable failed\n",
device_xname(sc->sc_dev));
return EIO;
}
sc->sc_flags |= RTK_ENABLED;
}
return 0;
}
/*
* re_disable:
* Disable the RTL81X9 chip.
*/
static void
re_disable(struct rtk_softc *sc)
{
if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
(*sc->sc_disable)(sc);
sc->sc_flags &= ~RTK_ENABLED;
}
}
static int
re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
{
struct mbuf *n = NULL;
bus_dmamap_t map;
struct re_desc *d;
struct re_rxsoft *rxs;
uint32_t cmdstat;
int error;
if (m == NULL) {
MGETHDR(n, M_DONTWAIT, MT_DATA);
if (n == NULL)
return ENOBUFS;
MCLAIM(n, &sc->ethercom.ec_rx_mowner);
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
return ENOBUFS;
}
m = n;
} else
m->m_data = m->m_ext.ext_buf;
/*
* Initialize mbuf length fields and fixup
* alignment so that the frame payload is
* longword aligned.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
m->m_data += RE_ETHER_ALIGN;
rxs = &sc->re_ldata.re_rxsoft[idx];
map = rxs->rxs_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error)
goto out;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREREAD);
d = &sc->re_ldata.re_rx_list[idx];
#ifdef DIAGNOSTIC
RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdstat = le32toh(d->re_cmdstat);
RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
if (cmdstat & RE_RDESC_STAT_OWN) {
panic("%s: tried to map busy RX descriptor",
device_xname(sc->sc_dev));
}
#endif
rxs->rxs_mbuf = m;
d->re_vlanctl = 0;
cmdstat = map->dm_segs[0].ds_len;
if (idx == (RE_RX_DESC_CNT - 1))
cmdstat |= RE_RDESC_CMD_EOR;
re_set_bufaddr(d, map->dm_segs[0].ds_addr);
d->re_cmdstat = htole32(cmdstat);
RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
cmdstat |= RE_RDESC_CMD_OWN;
d->re_cmdstat = htole32(cmdstat);
RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return 0;
out:
if (n != NULL)
m_freem(n);
return ENOMEM;
}
static int
re_tx_list_init(struct rtk_softc *sc)
{
int i;
memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
for (i = 0; i < RE_TX_QLEN; i++) {
sc->re_ldata.re_txq[i].txq_mbuf = NULL;
}
bus_dmamap_sync(sc->sc_dmat,
sc->re_ldata.re_tx_list_map, 0,
sc->re_ldata.re_tx_list_map->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->re_ldata.re_txq_prodidx = 0;
sc->re_ldata.re_txq_considx = 0;
sc->re_ldata.re_txq_free = RE_TX_QLEN;
sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
sc->re_ldata.re_tx_nextfree = 0;
return 0;
}
static int
re_rx_list_init(struct rtk_softc *sc)
{
int i;
memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
for (i = 0; i < RE_RX_DESC_CNT; i++) {
if (re_newbuf(sc, i, NULL) == ENOBUFS)
return ENOBUFS;
}
sc->re_ldata.re_rx_prodidx = 0;
sc->re_head = sc->re_tail = NULL;
return 0;
}
/*
* RX handler for C+ and 8169. For the gigE chips, we support
* the reception of jumbo frames that have been fragmented
* across multiple 2K mbuf cluster buffers.
*/
static void
re_rxeof(struct rtk_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
int i, total_len;
struct re_desc *cur_rx;
struct re_rxsoft *rxs;
uint32_t rxstat, rxvlan;
ifp = &sc->ethercom.ec_if;
for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
cur_rx = &sc->re_ldata.re_rx_list[i];
RE_RXDESCSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le32toh(cur_rx->re_cmdstat);
rxvlan = le32toh(cur_rx->re_vlanctl);
RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
break;
}
total_len = rxstat & sc->re_rxlenmask;
rxs = &sc->re_ldata.re_rxsoft[i];
m = rxs->rxs_mbuf;
/* Invalidate the RX mbuf and unload its map */
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
m->m_len = MCLBYTES - RE_ETHER_ALIGN;
if (sc->re_head == NULL)
sc->re_head = sc->re_tail = m;
else {
m_remove_pkthdr(m);
sc->re_tail->m_next = m;
sc->re_tail = m;
}
re_newbuf(sc, i, NULL);
continue;
}
/*
* NOTE: for the 8139C+, the frame length field
* is always 12 bits in size, but for the gigE chips,
* it is 13 bits (since the max RX frame length is 16K).
* Unfortunately, all 32 bits in the status word
* were already used, so to make room for the extra
* length bit, RealTek took out the 'frame alignment
* error' bit and shifted the other status bits
* over one slot. The OWN, EOR, FS and LS bits are
* still in the same places. We have already extracted
* the frame length and checked the OWN bit, so rather
* than using an alternate bit mapping, we shift the
* status bits one space to the right so we can evaluate
* them using the 8169 status as though it was in the
* same format as that of the 8139C+.
*/
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
rxstat >>= 1;
if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
#ifdef RE_DEBUG
printf("%s: RX error (rxstat = 0x%08x)",
device_xname(sc->sc_dev), rxstat);
if (rxstat & RE_RDESC_STAT_FRALIGN)
printf(", frame alignment error");
if (rxstat & RE_RDESC_STAT_BUFOFLOW)
printf(", out of buffer space");
if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
printf(", FIFO overrun");
if (rxstat & RE_RDESC_STAT_GIANT)
printf(", giant packet");
if (rxstat & RE_RDESC_STAT_RUNT)
printf(", runt packet");
if (rxstat & RE_RDESC_STAT_CRCERR)
printf(", CRC error");
printf("\n");
#endif
if_statinc(ifp, if_ierrors);
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->re_head != NULL) {
m_freem(sc->re_head);
sc->re_head = sc->re_tail = NULL;
}
re_newbuf(sc, i, m);
continue;
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
if_statinc(ifp, if_ierrors);
if (sc->re_head != NULL) {
m_freem(sc->re_head);
sc->re_head = sc->re_tail = NULL;
}
re_newbuf(sc, i, m);
continue;
}
if (sc->re_head != NULL) {
m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->re_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m_remove_pkthdr(m);
sc->re_tail->m_next = m;
}
m = sc->re_head;
sc->re_head = sc->re_tail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
m_set_rcvif(m, ifp);
/* Do RX checksumming */
if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
/* Check IP header checksum */
if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (rxstat & RE_RDESC_STAT_IPSUMBAD)
m->m_pkthdr.csum_flags |=
M_CSUM_IPv4_BAD;
/* Check TCP/UDP checksum */
if (RE_TCPPKT(rxstat)) {
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (RE_UDPPKT(rxstat)) {
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
/*
* XXX: 8139C+ thinks UDP csum
* 0xFFFF is bad, force software
* calculation.
*/
if (sc->sc_quirk & RTKQ_8139CPLUS)
m->m_pkthdr.csum_flags
&= ~M_CSUM_UDPv4;
else
m->m_pkthdr.csum_flags
|= M_CSUM_TCP_UDP_BAD;
}
}
}
} else {
/* Check IPv4 header checksum */
if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (rxstat & RE_RDESC_STAT_IPSUMBAD)
m->m_pkthdr.csum_flags |=
M_CSUM_IPv4_BAD;
/* Check TCPv4/UDPv4 checksum */
if (RE_TCPPKT(rxstat)) {
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (RE_UDPPKT(rxstat)) {
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
/* XXX Check TCPv6/UDPv6 checksum? */
}
if (rxvlan & RE_RDESC_VLANCTL_TAG) {
vlan_set_tag(m,
bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
}
if_percpuq_enqueue(ifp->if_percpuq, m);
}
sc->re_ldata.re_rx_prodidx = i;
}
static void
re_txeof(struct rtk_softc *sc)
{
struct ifnet *ifp;
struct re_txq *txq;
uint32_t txstat;
int idx, descidx;
ifp = &sc->ethercom.ec_if;
for (idx = sc->re_ldata.re_txq_considx;
sc->re_ldata.re_txq_free < RE_TX_QLEN;
idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
txq = &sc->re_ldata.re_txq[idx];
KASSERT(txq->txq_mbuf != NULL);
descidx = txq->txq_descidx;
RE_TXDESCSYNC(sc, descidx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
txstat =
le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
if (txstat & RE_TDESC_CMD_OWN) {
break;
}
sc->re_ldata.re_tx_free += txq->txq_nsegs;
KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
m_freem(txq->txq_mbuf);
txq->txq_mbuf = NULL;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
if_statinc_ref(nsr, if_collisions);
if (txstat & RE_TDESC_STAT_TXERRSUM)
if_statinc_ref(nsr, if_oerrors);
else
if_statinc_ref(nsr, if_opackets);
IF_STAT_PUTREF(ifp);
}
sc->re_ldata.re_txq_considx = idx;
if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
ifp->if_flags &= ~IFF_OACTIVE;
/*
* If not all descriptors have been released reaped yet,
* reload the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
/*
* Some chips will ignore a second TX request
* issued while an existing transmission is in
* progress. If the transmitter goes idle but
* there are still packets waiting to be sent,
* we need to restart the channel here to flush
* them out. This only seems to be required with
* the PCIe devices.
*/
CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
}
} else
ifp->if_timer = 0;
}
static void
re_tick(void *arg)
{
struct rtk_softc *sc = arg;
int s;
/* XXX: just return for 8169S/8110S with rev 2 or newer phy */
s = splnet();
mii_tick(&sc->mii);
splx(s);
callout_schedule(&sc->rtk_tick_ch, hz);
}
int
re_intr(void *arg)
{
struct rtk_softc *sc = arg;
struct ifnet *ifp;
uint16_t status;
int handled = 0;
if (!device_has_power(sc->sc_dev))
return 0;
ifp = &sc->ethercom.ec_if;
if ((ifp->if_flags & IFF_UP) == 0)
return 0;
const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
for (;;) {
status = CSR_READ_2(sc, RTK_ISR);
/* If the card has gone away the read returns 0xffff. */
if (status == 0xffff)
break;
if (status) {
handled = 1;
CSR_WRITE_2(sc, RTK_ISR, status);
}
if ((status & status_mask) == 0)
break;
if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
re_rxeof(sc);
if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
re_txeof(sc);
if (status & RTK_ISR_SYSTEM_ERR) {
re_init(ifp);
}
if (status & RTK_ISR_LINKCHG) {
callout_stop(&sc->rtk_tick_ch);
re_tick(sc);
}
}
if (handled)
if_schedule_deferred_start(ifp);
rnd_add_uint32(&sc->rnd_source, status);
return handled;
}
/*
* Main transmit routine for C+ and gigE NICs.
*/
static void
re_start(struct ifnet *ifp)
{
struct rtk_softc *sc;
struct mbuf *m;
bus_dmamap_t map;
struct re_txq *txq;
struct re_desc *d;
uint32_t cmdstat, re_flags, vlanctl;
int ofree, idx, error, nsegs, seg;
int startdesc, curdesc, lastdesc;
bool pad;
sc = ifp->if_softc;
ofree = sc->re_ldata.re_txq_free;
for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->re_ldata.re_txq_free == 0 ||
sc->re_ldata.re_tx_free == 0) {
/* no more free slots left */
ifp->if_flags |= IFF_OACTIVE;
break;
}
/*
* Set up checksum offload. Note: checksum offload bits must
* appear in all descriptors of a multi-descriptor transmit
* attempt. (This is according to testing done with an 8169
* chip. I'm not sure if this is a requirement or a bug.)
*/
vlanctl = 0;
if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
uint32_t segsz = m->m_pkthdr.segsz;
if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
re_flags = RE_TDESC_CMD_LGSEND |
(segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
} else {
re_flags = RE_TDESC_CMD_LGSEND_V4;
vlanctl |=
(segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
}
} else {
/*
* set RE_TDESC_CMD_IPCSUM if any checksum offloading
* is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
* RE_TDESC_CMD_UDPCSUM doesn't make effects.
*/
re_flags = 0;
if ((m->m_pkthdr.csum_flags &
(M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
!= 0) {
if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
re_flags |= RE_TDESC_CMD_IPCSUM;
if (m->m_pkthdr.csum_flags &
M_CSUM_TCPv4) {
re_flags |=
RE_TDESC_CMD_TCPCSUM;
} else if (m->m_pkthdr.csum_flags &
M_CSUM_UDPv4) {
re_flags |=
RE_TDESC_CMD_UDPCSUM;
}
} else {
vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
if (m->m_pkthdr.csum_flags &
M_CSUM_TCPv4) {
vlanctl |=
RE_TDESC_VLANCTL_TCPCSUM;
} else if (m->m_pkthdr.csum_flags &
M_CSUM_UDPv4) {
vlanctl |=
RE_TDESC_VLANCTL_UDPCSUM;
}
}
}
}
txq = &sc->re_ldata.re_txq[idx];
map = txq->txq_dmamap;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (__predict_false(error)) {
/* XXX try to defrag if EFBIG? */
printf("%s: can't map mbuf (error %d)\n",
device_xname(sc->sc_dev), error);
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
if_statinc(ifp, if_oerrors);
continue;
}
nsegs = map->dm_nsegs;
pad = false;
if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
(re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
(sc->sc_quirk & RTKQ_DESCV2) == 0)) {
pad = true;
nsegs++;
}
if (nsegs > sc->re_ldata.re_tx_free) {
/*
* Not enough free descriptors to transmit this packet.
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, map);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
/*
* Make sure that the caches are synchronized before we
* ask the chip to start DMA for the packet data.
*/
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Set up hardware VLAN tagging. Note: vlan tag info must
* appear in all descriptors of a multi-descriptor
* transmission attempt.
*/
if (vlan_has_tag(m))
vlanctl |= bswap16(vlan_get_tag(m)) |
RE_TDESC_VLANCTL_TAG;
/*
* Map the segment array into descriptors.
* Note that we set the start-of-frame and
* end-of-frame markers for either TX or RX,
* but they really only have meaning in the TX case.
* (In the RX case, it's the chip that tells us
* where packets begin and end.)
* We also keep track of the end of the ring
* and set the end-of-ring bits as needed,
* and we set the ownership bits in all except
* the very first descriptor. (The caller will
* set this descriptor later when it start
* transmission or reception.)
*/
curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
lastdesc = -1;
for (seg = 0; seg < map->dm_nsegs;
seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
d = &sc->re_ldata.re_tx_list[curdesc];
#ifdef DIAGNOSTIC
RE_TXDESCSYNC(sc, curdesc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdstat = le32toh(d->re_cmdstat);
RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
if (cmdstat & RE_TDESC_STAT_OWN) {
panic("%s: tried to map busy TX descriptor",
device_xname(sc->sc_dev));
}
#endif
d->re_vlanctl = htole32(vlanctl);
re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
cmdstat = re_flags | map->dm_segs[seg].ds_len;
if (seg == 0)
cmdstat |= RE_TDESC_CMD_SOF;
else
cmdstat |= RE_TDESC_CMD_OWN;
if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
cmdstat |= RE_TDESC_CMD_EOR;
if (seg == nsegs - 1) {
cmdstat |= RE_TDESC_CMD_EOF;
lastdesc = curdesc;
}
d->re_cmdstat = htole32(cmdstat);
RE_TXDESCSYNC(sc, curdesc,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
if (__predict_false(pad)) {
d = &sc->re_ldata.re_tx_list[curdesc];
d->re_vlanctl = htole32(vlanctl);
re_set_bufaddr(d, RE_TXPADDADDR(sc));
cmdstat = re_flags |
RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
(RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
cmdstat |= RE_TDESC_CMD_EOR;
d->re_cmdstat = htole32(cmdstat);
RE_TXDESCSYNC(sc, curdesc,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
lastdesc = curdesc;
curdesc = RE_NEXT_TX_DESC(sc, curdesc);
}
KASSERT(lastdesc != -1);
/* Transfer ownership of packet to the chip. */
sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
htole32(RE_TDESC_CMD_OWN);
RE_TXDESCSYNC(sc, startdesc,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* update info of TX queue and descriptors */
txq->txq_mbuf = m;
txq->txq_descidx = lastdesc;
txq->txq_nsegs = nsegs;
sc->re_ldata.re_txq_free--;
sc->re_ldata.re_tx_free -= nsegs;
sc->re_ldata.re_tx_nextfree = curdesc;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m, BPF_D_OUT);
}
if (sc->re_ldata.re_txq_free < ofree) {
/*
* TX packets are enqueued.
*/
sc->re_ldata.re_txq_prodidx = idx;
/*
* Start the transmitter to poll.
*
* RealTek put the TX poll request register in a different
* location on the 8169 gigE chip. I don't know why.
*/
if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
else
CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset
* the countdown timer, which will begin counting until
* it hits the value in the TIMERINT register, and then
* trigger an interrupt. Each time we write to the
* TIMERCNT register, the timer count is reset to 0.
*/
CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
}
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
static int
re_init(struct ifnet *ifp)
{
struct rtk_softc *sc = ifp->if_softc;
uint32_t rxcfg = 0;
uint16_t cfg;
int error;
#ifdef RE_USE_EECMD
const uint8_t *enaddr;
uint32_t reg;
#endif
if ((error = re_enable(sc)) != 0)
goto out;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
re_stop(ifp, 0);
re_reset(sc);
/*
* Enable C+ RX and TX mode, as well as VLAN stripping and
* RX checksum offload. We must configure the C+ register
* before all others.
*/
cfg = RE_CPLUSCMD_PCI_MRW;
/*
* XXX: For old 8169 set bit 14.
* For 8169S/8110S and above, do not set bit 14.
*/
if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
cfg |= (0x1 << 14);
if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
cfg |= RE_CPLUSCMD_VLANSTRIP;
if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
cfg |= RE_CPLUSCMD_RXCSUM_ENB;
if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
cfg |= RE_CPLUSCMD_MACSTAT_DIS;
cfg |= RE_CPLUSCMD_TXENB;
} else
cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
CSR_WRITE_2(sc, RTK_IM, 0x0000);
} else {
CSR_WRITE_2(sc, RTK_IM, 0x5151);
}
}
DELAY(10000);
#ifdef RE_USE_EECMD
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
enaddr = CLLADDR(ifp->if_sadl);
reg = enaddr[0] | (enaddr[1] << 8) |
(enaddr[2] << 16) | (enaddr[3] << 24);
CSR_WRITE_4(sc, RTK_IDR0, reg);
reg = enaddr[4] | (enaddr[5] << 8);
CSR_WRITE_4(sc, RTK_IDR4, reg);
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
#endif
/*
* For C+ mode, initialize the RX descriptors and mbufs.
*/
re_rx_list_init(sc);
re_tx_list_init(sc);
/*
* Load the addresses of the RX and TX lists into the chip.
*/
CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
if (sc->sc_quirk & RTKQ_RXDV_GATED) {
CSR_WRITE_4(sc, RTK_MISC,
CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
}
/*
* Enable transmit and receive.
*/
if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
/* test mode is needed only for old 8169 */
CSR_WRITE_4(sc, RTK_TXCFG,
RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
} else
CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RTK_RXCFG);
rxcfg |= RTK_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= RTK_RXCFG_RX_ALLPHYS;
else
rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST)
rxcfg |= RTK_RXCFG_RX_BROAD;
else
rxcfg &= ~RTK_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
/*
* Program the multicast filter, if necessary.
*/
rtk_setmulti(sc);
/*
* some chips require to enable TX/RX *AFTER* TX/RX configuration
*/
if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
/*
* Enable interrupts.
*/
if (sc->re_testmode)
CSR_WRITE_2(sc, RTK_IMR, 0);
else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
else
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
/* Start RX/TX process. */
CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
#ifdef notdef
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
#endif
/*
* Initialize the timer interrupt register so that
* a timer interrupt will be generated once the timer
* reaches a certain number of ticks. The timer is
* reloaded on each transmit. This gives us TX interrupt
* moderation, which dramatically improves TX frame rate.
*/
unsigned defer; /* timer interval / ns */
unsigned period; /* busclock period / ns */
/*
* Maximum frame rate
* 1500 byte PDU -> 81274 Hz
* 46 byte PDU -> 1488096 Hz
*
* Deferring interrupts by up to 128us needs descriptors for
* 1500 byte PDU -> 10.4 frames
* 46 byte PDU -> 190.4 frames
*
*/
defer = 128000;
if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
period = 1;
defer = 0;
} else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
period = 8;
} else {
switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
case RTK_BUSFREQ_33MHZ:
period = 30;
break;
case RTK_BUSFREQ_66MHZ:
period = 15;
break;
default:
/* lowest possible clock */
period = 60;
break;
}
}
/* Timer Interrupt register address varies */
uint16_t re8139_reg;
if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
re8139_reg = RTK_TIMERINT;
else
re8139_reg = RTK_TIMERINT_8169;
CSR_WRITE_4(sc, re8139_reg, defer / period);
if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
/*
* For 8169 gigE NICs, set the max allowed RX packet
* size so we can receive jumbo frames.
*/
CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
}
if (sc->re_testmode)
return 0;
CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_schedule(&sc->rtk_tick_ch, hz);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n",
device_xname(sc->sc_dev));
}
return error;
}
static int
re_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct rtk_softc *sc = ifp->if_softc;
struct ifreq *ifr = data;
int s, error = 0;
s = splnet();
switch (command) {
case SIOCSIFMTU:
/*
* Disable jumbo frames if it's not supported.
*/
if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
break;
}
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
error = EINVAL;
else if ((error = ifioctl_common(ifp, command, data)) ==
ENETRESET)
error = 0;
break;
default:
if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
break;
error = 0;
if (command == SIOCSIFCAP)
error = (*ifp->if_init)(ifp);
else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING)
rtk_setmulti(sc);
break;
}
splx(s);
return error;
}
static void
re_watchdog(struct ifnet *ifp)
{
struct rtk_softc *sc;
int s;
sc = ifp->if_softc;
s = splnet();
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
re_txeof(sc);
re_rxeof(sc);
re_init(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
re_stop(struct ifnet *ifp, int disable)
{
int i;
struct rtk_softc *sc = ifp->if_softc;
callout_stop(&sc->rtk_tick_ch);
mii_down(&sc->mii);
if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
RTK_CMD_RX_ENB);
else
CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
DELAY(1000);
CSR_WRITE_2(sc, RTK_IMR, 0x0000);
CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
if (sc->re_head != NULL) {
m_freem(sc->re_head);
sc->re_head = sc->re_tail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < RE_TX_QLEN; i++) {
if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat,
sc->re_ldata.re_txq[i].txq_dmamap);
m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
sc->re_ldata.re_txq[i].txq_mbuf = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < RE_RX_DESC_CNT; i++) {
if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat,
sc->re_ldata.re_rxsoft[i].rxs_dmamap);
m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
}
}
if (disable)
re_disable(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}