fc7a4ed42c
already, but this makes it explicit and safer in the case where that changes for some reason.)
495 lines
16 KiB
C
495 lines
16 KiB
C
/* $NetBSD: rf_diskqueue.c,v 1.36 2004/11/24 13:42:36 oster Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Mark Holland
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/****************************************************************************
|
|
*
|
|
* rf_diskqueue.c -- higher-level disk queue code
|
|
*
|
|
* the routines here are a generic wrapper around the actual queueing
|
|
* routines. The code here implements thread scheduling, synchronization,
|
|
* and locking ops (see below) on top of the lower-level queueing code.
|
|
*
|
|
* to support atomic RMW, we implement "locking operations". When a
|
|
* locking op is dispatched to the lower levels of the driver, the
|
|
* queue is locked, and no further I/Os are dispatched until the queue
|
|
* receives & completes a corresponding "unlocking operation". This
|
|
* code relies on the higher layers to guarantee that a locking op
|
|
* will always be eventually followed by an unlocking op. The model
|
|
* is that the higher layers are structured so locking and unlocking
|
|
* ops occur in pairs, i.e. an unlocking op cannot be generated until
|
|
* after a locking op reports completion. There is no good way to
|
|
* check to see that an unlocking op "corresponds" to the op that
|
|
* currently has the queue locked, so we make no such attempt. Since
|
|
* by definition there can be only one locking op outstanding on a
|
|
* disk, this should not be a problem.
|
|
*
|
|
* In the kernel, we allow multiple I/Os to be concurrently dispatched
|
|
* to the disk driver. In order to support locking ops in this
|
|
* environment, when we decide to do a locking op, we stop dispatching
|
|
* new I/Os and wait until all dispatched I/Os have completed before
|
|
* dispatching the locking op.
|
|
*
|
|
* Unfortunately, the code is different in the 3 different operating
|
|
* states (user level, kernel, simulator). In the kernel, I/O is
|
|
* non-blocking, and we have no disk threads to dispatch for us.
|
|
* Therefore, we have to dispatch new I/Os to the scsi driver at the
|
|
* time of enqueue, and also at the time of completion. At user
|
|
* level, I/O is blocking, and so only the disk threads may dispatch
|
|
* I/Os. Thus at user level, all we can do at enqueue time is enqueue
|
|
* and wake up the disk thread to do the dispatch.
|
|
*
|
|
****************************************************************************/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_diskqueue.c,v 1.36 2004/11/24 13:42:36 oster Exp $");
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_threadstuff.h"
|
|
#include "rf_raid.h"
|
|
#include "rf_diskqueue.h"
|
|
#include "rf_alloclist.h"
|
|
#include "rf_acctrace.h"
|
|
#include "rf_etimer.h"
|
|
#include "rf_general.h"
|
|
#include "rf_debugprint.h"
|
|
#include "rf_shutdown.h"
|
|
#include "rf_cvscan.h"
|
|
#include "rf_sstf.h"
|
|
#include "rf_fifo.h"
|
|
#include "rf_kintf.h"
|
|
|
|
static void rf_ShutdownDiskQueueSystem(void *);
|
|
|
|
#ifndef RF_DEBUG_DISKQUEUE
|
|
#define RF_DEBUG_DISKQUEUE 0
|
|
#endif
|
|
|
|
#if RF_DEBUG_DISKQUEUE
|
|
#define Dprintf1(s,a) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
|
|
#define Dprintf2(s,a,b) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
|
|
#define Dprintf3(s,a,b,c) if (rf_queueDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
|
|
#else
|
|
#define Dprintf1(s,a)
|
|
#define Dprintf2(s,a,b)
|
|
#define Dprintf3(s,a,b,c)
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* the disk queue switch defines all the functions used in the
|
|
* different queueing disciplines queue ID, init routine, enqueue
|
|
* routine, dequeue routine
|
|
*
|
|
****************************************************************************/
|
|
|
|
static const RF_DiskQueueSW_t diskqueuesw[] = {
|
|
{"fifo", /* FIFO */
|
|
rf_FifoCreate,
|
|
rf_FifoEnqueue,
|
|
rf_FifoDequeue,
|
|
rf_FifoPeek,
|
|
rf_FifoPromote},
|
|
|
|
{"cvscan", /* cvscan */
|
|
rf_CvscanCreate,
|
|
rf_CvscanEnqueue,
|
|
rf_CvscanDequeue,
|
|
rf_CvscanPeek,
|
|
rf_CvscanPromote},
|
|
|
|
{"sstf", /* shortest seek time first */
|
|
rf_SstfCreate,
|
|
rf_SstfEnqueue,
|
|
rf_SstfDequeue,
|
|
rf_SstfPeek,
|
|
rf_SstfPromote},
|
|
|
|
{"scan", /* SCAN (two-way elevator) */
|
|
rf_ScanCreate,
|
|
rf_SstfEnqueue,
|
|
rf_ScanDequeue,
|
|
rf_ScanPeek,
|
|
rf_SstfPromote},
|
|
|
|
{"cscan", /* CSCAN (one-way elevator) */
|
|
rf_CscanCreate,
|
|
rf_SstfEnqueue,
|
|
rf_CscanDequeue,
|
|
rf_CscanPeek,
|
|
rf_SstfPromote},
|
|
|
|
};
|
|
#define NUM_DISK_QUEUE_TYPES (sizeof(diskqueuesw)/sizeof(RF_DiskQueueSW_t))
|
|
|
|
#define RF_MAX_FREE_DQD 256
|
|
#define RF_MIN_FREE_DQD 64
|
|
|
|
#include <sys/buf.h>
|
|
|
|
/* configures a single disk queue */
|
|
|
|
int
|
|
rf_ConfigureDiskQueue(RF_Raid_t *raidPtr, RF_DiskQueue_t *diskqueue,
|
|
RF_RowCol_t c, const RF_DiskQueueSW_t *p,
|
|
RF_SectorCount_t sectPerDisk, dev_t dev,
|
|
int maxOutstanding, RF_ShutdownList_t **listp,
|
|
RF_AllocListElem_t *clList)
|
|
{
|
|
diskqueue->col = c;
|
|
diskqueue->qPtr = p;
|
|
diskqueue->qHdr = (p->Create) (sectPerDisk, clList, listp);
|
|
diskqueue->dev = dev;
|
|
diskqueue->numOutstanding = 0;
|
|
diskqueue->queueLength = 0;
|
|
diskqueue->maxOutstanding = maxOutstanding;
|
|
diskqueue->curPriority = RF_IO_NORMAL_PRIORITY;
|
|
diskqueue->nextLockingOp = NULL;
|
|
diskqueue->flags = 0;
|
|
diskqueue->raidPtr = raidPtr;
|
|
diskqueue->rf_cinfo = &raidPtr->raid_cinfo[c];
|
|
rf_mutex_init(&diskqueue->mutex);
|
|
diskqueue->cond = 0;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rf_ShutdownDiskQueueSystem(void *ignored)
|
|
{
|
|
pool_destroy(&rf_pools.dqd);
|
|
}
|
|
|
|
int
|
|
rf_ConfigureDiskQueueSystem(RF_ShutdownList_t **listp)
|
|
{
|
|
|
|
rf_pool_init(&rf_pools.dqd, sizeof(RF_DiskQueueData_t),
|
|
"rf_dqd_pl", RF_MIN_FREE_DQD, RF_MAX_FREE_DQD);
|
|
rf_ShutdownCreate(listp, rf_ShutdownDiskQueueSystem, NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rf_ConfigureDiskQueues(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
|
|
RF_Config_t *cfgPtr)
|
|
{
|
|
RF_DiskQueue_t *diskQueues, *spareQueues;
|
|
const RF_DiskQueueSW_t *p;
|
|
RF_RowCol_t r,c;
|
|
int rc, i;
|
|
|
|
raidPtr->maxQueueDepth = cfgPtr->maxOutstandingDiskReqs;
|
|
|
|
for (p = NULL, i = 0; i < NUM_DISK_QUEUE_TYPES; i++) {
|
|
if (!strcmp(diskqueuesw[i].queueType, cfgPtr->diskQueueType)) {
|
|
p = &diskqueuesw[i];
|
|
break;
|
|
}
|
|
}
|
|
if (p == NULL) {
|
|
RF_ERRORMSG2("Unknown queue type \"%s\". Using %s\n", cfgPtr->diskQueueType, diskqueuesw[0].queueType);
|
|
p = &diskqueuesw[0];
|
|
}
|
|
raidPtr->qType = p;
|
|
|
|
RF_MallocAndAdd(diskQueues,
|
|
(raidPtr->numCol + RF_MAXSPARE) *
|
|
sizeof(RF_DiskQueue_t), (RF_DiskQueue_t *),
|
|
raidPtr->cleanupList);
|
|
if (diskQueues == NULL)
|
|
return (ENOMEM);
|
|
raidPtr->Queues = diskQueues;
|
|
|
|
for (c = 0; c < raidPtr->numCol; c++) {
|
|
rc = rf_ConfigureDiskQueue(raidPtr, &diskQueues[c],
|
|
c, p,
|
|
raidPtr->sectorsPerDisk,
|
|
raidPtr->Disks[c].dev,
|
|
cfgPtr->maxOutstandingDiskReqs,
|
|
listp, raidPtr->cleanupList);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
|
|
spareQueues = &raidPtr->Queues[raidPtr->numCol];
|
|
for (r = 0; r < raidPtr->numSpare; r++) {
|
|
rc = rf_ConfigureDiskQueue(raidPtr, &spareQueues[r],
|
|
raidPtr->numCol + r, p,
|
|
raidPtr->sectorsPerDisk,
|
|
raidPtr->Disks[raidPtr->numCol + r].dev,
|
|
cfgPtr->maxOutstandingDiskReqs, listp,
|
|
raidPtr->cleanupList);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
return (0);
|
|
}
|
|
/* Enqueue a disk I/O
|
|
*
|
|
* Unfortunately, we have to do things differently in the different
|
|
* environments (simulator, user-level, kernel).
|
|
* At user level, all I/O is blocking, so we have 1 or more threads/disk
|
|
* and the thread that enqueues is different from the thread that dequeues.
|
|
* In the kernel, I/O is non-blocking and so we'd like to have multiple
|
|
* I/Os outstanding on the physical disks when possible.
|
|
*
|
|
* when any request arrives at a queue, we have two choices:
|
|
* dispatch it to the lower levels
|
|
* queue it up
|
|
*
|
|
* kernel rules for when to do what:
|
|
* locking request: queue empty => dispatch and lock queue,
|
|
* else queue it
|
|
* unlocking req : always dispatch it
|
|
* normal req : queue empty => dispatch it & set priority
|
|
* queue not full & priority is ok => dispatch it
|
|
* else queue it
|
|
*
|
|
* user-level rules:
|
|
* always enqueue. In the special case of an unlocking op, enqueue
|
|
* in a special way that will cause the unlocking op to be the next
|
|
* thing dequeued.
|
|
*
|
|
* simulator rules:
|
|
* Do the same as at user level, with the sleeps and wakeups suppressed.
|
|
*/
|
|
void
|
|
rf_DiskIOEnqueue(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int pri)
|
|
{
|
|
RF_ETIMER_START(req->qtime);
|
|
RF_ASSERT(req->type == RF_IO_TYPE_NOP || req->numSector);
|
|
req->priority = pri;
|
|
|
|
#if RF_DEBUG_DISKQUEUE
|
|
if (rf_queueDebug && (req->numSector == 0)) {
|
|
printf("Warning: Enqueueing zero-sector access\n");
|
|
}
|
|
#endif
|
|
/*
|
|
* kernel
|
|
*/
|
|
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
|
|
/* locking request */
|
|
if (RF_LOCKING_REQ(req)) {
|
|
if (RF_QUEUE_EMPTY(queue)) {
|
|
Dprintf2("Dispatching pri %d locking op to c %d (queue empty)\n", pri, queue->col);
|
|
RF_LOCK_QUEUE(queue);
|
|
rf_DispatchKernelIO(queue, req);
|
|
} else {
|
|
queue->queueLength++; /* increment count of number
|
|
* of requests waiting in this
|
|
* queue */
|
|
Dprintf2("Enqueueing pri %d locking op to c %d (queue not empty)\n", pri, queue->col);
|
|
req->queue = (void *) queue;
|
|
(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
|
|
}
|
|
}
|
|
/* unlocking request */
|
|
else
|
|
if (RF_UNLOCKING_REQ(req)) { /* we'll do the actual unlock
|
|
* when this I/O completes */
|
|
Dprintf2("Dispatching pri %d unlocking op to c %d\n", pri, queue->col);
|
|
RF_ASSERT(RF_QUEUE_LOCKED(queue));
|
|
rf_DispatchKernelIO(queue, req);
|
|
}
|
|
/* normal request */
|
|
else
|
|
if (RF_OK_TO_DISPATCH(queue, req)) {
|
|
Dprintf2("Dispatching pri %d regular op to c %d (ok to dispatch)\n", pri, queue->col);
|
|
rf_DispatchKernelIO(queue, req);
|
|
} else {
|
|
queue->queueLength++; /* increment count of
|
|
* number of requests
|
|
* waiting in this queue */
|
|
Dprintf2("Enqueueing pri %d regular op to c %d (not ok to dispatch)\n", pri, queue->col);
|
|
req->queue = (void *) queue;
|
|
(queue->qPtr->Enqueue) (queue->qHdr, req, pri);
|
|
}
|
|
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOEnqueue");
|
|
}
|
|
|
|
|
|
/* get the next set of I/Os started, kernel version only */
|
|
void
|
|
rf_DiskIOComplete(RF_DiskQueue_t *queue, RF_DiskQueueData_t *req, int status)
|
|
{
|
|
int done = 0;
|
|
|
|
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
|
|
|
|
/* unlock the queue: (1) after an unlocking req completes (2) after a
|
|
* locking req fails */
|
|
if (RF_UNLOCKING_REQ(req) || (RF_LOCKING_REQ(req) && status)) {
|
|
Dprintf1("DiskIOComplete: unlocking queue at c %d\n", queue->col);
|
|
RF_ASSERT(RF_QUEUE_LOCKED(queue));
|
|
RF_UNLOCK_QUEUE(queue);
|
|
}
|
|
queue->numOutstanding--;
|
|
RF_ASSERT(queue->numOutstanding >= 0);
|
|
|
|
/* dispatch requests to the disk until we find one that we can't. */
|
|
/* no reason to continue once we've filled up the queue */
|
|
/* no reason to even start if the queue is locked */
|
|
|
|
while (!done && !RF_QUEUE_FULL(queue) && !RF_QUEUE_LOCKED(queue)) {
|
|
if (queue->nextLockingOp) {
|
|
req = queue->nextLockingOp;
|
|
queue->nextLockingOp = NULL;
|
|
Dprintf2("DiskIOComplete: a pri %d locking req was pending at c %d\n", req->priority, queue->col);
|
|
} else {
|
|
req = (queue->qPtr->Dequeue) (queue->qHdr);
|
|
if (req != NULL) {
|
|
Dprintf2("DiskIOComplete: extracting pri %d req from queue at c %d\n", req->priority, queue->col);
|
|
} else {
|
|
Dprintf1("DiskIOComplete: no more requests to extract.\n", "");
|
|
}
|
|
}
|
|
if (req) {
|
|
queue->queueLength--; /* decrement count of number
|
|
* of requests waiting in this
|
|
* queue */
|
|
RF_ASSERT(queue->queueLength >= 0);
|
|
}
|
|
if (!req)
|
|
done = 1;
|
|
else
|
|
if (RF_LOCKING_REQ(req)) {
|
|
if (RF_QUEUE_EMPTY(queue)) { /* dispatch it */
|
|
Dprintf2("DiskIOComplete: dispatching pri %d locking req to c %d (queue empty)\n", req->priority, queue->col);
|
|
RF_LOCK_QUEUE(queue);
|
|
rf_DispatchKernelIO(queue, req);
|
|
done = 1;
|
|
} else { /* put it aside to wait for
|
|
* the queue to drain */
|
|
Dprintf2("DiskIOComplete: postponing pri %d locking req to c %d\n", req->priority, queue->col);
|
|
RF_ASSERT(queue->nextLockingOp == NULL);
|
|
queue->nextLockingOp = req;
|
|
done = 1;
|
|
}
|
|
} else
|
|
if (RF_UNLOCKING_REQ(req)) { /* should not happen:
|
|
* unlocking ops should
|
|
* not get queued */
|
|
RF_ASSERT(RF_QUEUE_LOCKED(queue)); /* support it anyway for
|
|
* the future */
|
|
Dprintf2("DiskIOComplete: dispatching pri %d unl req to c %d (SHOULD NOT SEE THIS)\n", req->priority, queue->col);
|
|
rf_DispatchKernelIO(queue, req);
|
|
done = 1;
|
|
} else
|
|
if (RF_OK_TO_DISPATCH(queue, req)) {
|
|
Dprintf2("DiskIOComplete: dispatching pri %d regular req to c %d (ok to dispatch)\n", req->priority, queue->col);
|
|
rf_DispatchKernelIO(queue, req);
|
|
} else { /* we can't dispatch it,
|
|
* so just re-enqueue
|
|
* it. */
|
|
/* potential trouble here if
|
|
* disk queues batch reqs */
|
|
Dprintf2("DiskIOComplete: re-enqueueing pri %d regular req to c %d\n", req->priority, queue->col);
|
|
queue->queueLength++;
|
|
(queue->qPtr->Enqueue) (queue->qHdr, req, req->priority);
|
|
done = 1;
|
|
}
|
|
}
|
|
|
|
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOComplete");
|
|
}
|
|
/* promotes accesses tagged with the given parityStripeID from low priority
|
|
* to normal priority. This promotion is optional, meaning that a queue
|
|
* need not implement it. If there is no promotion routine associated with
|
|
* a queue, this routine does nothing and returns -1.
|
|
*/
|
|
int
|
|
rf_DiskIOPromote(RF_DiskQueue_t *queue, RF_StripeNum_t parityStripeID,
|
|
RF_ReconUnitNum_t which_ru)
|
|
{
|
|
int retval;
|
|
|
|
if (!queue->qPtr->Promote)
|
|
return (-1);
|
|
RF_LOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
|
|
retval = (queue->qPtr->Promote) (queue->qHdr, parityStripeID, which_ru);
|
|
RF_UNLOCK_QUEUE_MUTEX(queue, "DiskIOPromote");
|
|
return (retval);
|
|
}
|
|
|
|
RF_DiskQueueData_t *
|
|
rf_CreateDiskQueueData(RF_IoType_t typ, RF_SectorNum_t ssect,
|
|
RF_SectorCount_t nsect, caddr_t buf,
|
|
RF_StripeNum_t parityStripeID,
|
|
RF_ReconUnitNum_t which_ru,
|
|
int (*wakeF) (void *, int), void *arg,
|
|
RF_DiskQueueData_t *next,
|
|
RF_AccTraceEntry_t *tracerec, void *raidPtr,
|
|
RF_DiskQueueDataFlags_t flags, void *kb_proc)
|
|
{
|
|
RF_DiskQueueData_t *p;
|
|
int s;
|
|
|
|
p = pool_get(&rf_pools.dqd, PR_WAITOK);
|
|
memset(p, 0, sizeof(RF_DiskQueueData_t));
|
|
/* Need to be at splbio to access bufpool! */
|
|
s = splbio();
|
|
p->bp = pool_get(&bufpool, PR_NOWAIT); /* XXX: make up our minds here.
|
|
WAITOK, or NOWAIT?? */
|
|
splx(s);
|
|
if (p->bp == NULL) {
|
|
/* no memory for the buffer!?!? */
|
|
pool_put(&rf_pools.dqd, p);
|
|
return(NULL);
|
|
}
|
|
|
|
memset(p->bp, 0, sizeof(struct buf));
|
|
p->sectorOffset = ssect + rf_protectedSectors;
|
|
p->numSector = nsect;
|
|
p->type = typ;
|
|
p->buf = buf;
|
|
p->parityStripeID = parityStripeID;
|
|
p->which_ru = which_ru;
|
|
p->CompleteFunc = wakeF;
|
|
p->argument = arg;
|
|
p->next = next;
|
|
p->tracerec = tracerec;
|
|
p->priority = RF_IO_NORMAL_PRIORITY;
|
|
p->raidPtr = raidPtr;
|
|
p->flags = flags;
|
|
p->b_proc = kb_proc;
|
|
return (p);
|
|
}
|
|
|
|
void
|
|
rf_FreeDiskQueueData(RF_DiskQueueData_t *p)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
pool_put(&bufpool, p->bp);
|
|
splx(s);
|
|
pool_put(&rf_pools.dqd, p);
|
|
}
|