886 lines
22 KiB
C
886 lines
22 KiB
C
/*
|
|
* Copyright (c) 1982, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)if_le.c 7.6 (Berkeley) 5/8/91
|
|
* $Id: if_le.c,v 1.2 1993/05/22 07:56:23 cgd Exp $
|
|
*/
|
|
|
|
#include "le.h"
|
|
#if NLE > 0
|
|
|
|
#include "bpfilter.h"
|
|
|
|
/*
|
|
* AMD 7990 LANCE
|
|
*
|
|
* This driver will generate and accept tailer encapsulated packets even
|
|
* though it buys us nothing. The motivation was to avoid incompatibilities
|
|
* with VAXen, SUNs, and others that handle and benefit from them.
|
|
* This reasoning is dubious.
|
|
*/
|
|
#include "sys/param.h"
|
|
#include "sys/systm.h"
|
|
#include "sys/mbuf.h"
|
|
#include "sys/buf.h"
|
|
#include "sys/protosw.h"
|
|
#include "sys/socket.h"
|
|
#include "sys/syslog.h"
|
|
#include "sys/ioctl.h"
|
|
#include "sys/errno.h"
|
|
|
|
#include "net/if.h"
|
|
#include "net/netisr.h"
|
|
#include "net/route.h"
|
|
|
|
#ifdef INET
|
|
#include "netinet/in.h"
|
|
#include "netinet/in_systm.h"
|
|
#include "netinet/in_var.h"
|
|
#include "netinet/ip.h"
|
|
#include "netinet/if_ether.h"
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include "netns/ns.h"
|
|
#include "netns/ns_if.h"
|
|
#endif
|
|
|
|
#ifdef RMP
|
|
#include "netrmp/rmp.h"
|
|
#include "netrmp/rmp_var.h"
|
|
#endif
|
|
|
|
#include "../include/cpu.h"
|
|
#include "../hp300/isr.h"
|
|
#include "../include/mtpr.h"
|
|
#include "device.h"
|
|
#include "if_lereg.h"
|
|
|
|
#if NBPFILTER > 0
|
|
#include "../net/bpf.h"
|
|
#include "../net/bpfdesc.h"
|
|
#endif
|
|
|
|
/* offsets for: ID, REGS, MEM, NVRAM */
|
|
int lestd[] = { 0, 0x4000, 0x8000, 0xC008 };
|
|
|
|
int leattach();
|
|
struct driver ledriver = {
|
|
leattach, "le",
|
|
};
|
|
|
|
struct isr le_isr[NLE];
|
|
int ledebug = 0; /* console error messages */
|
|
|
|
int leintr(), leinit(), leioctl(), lestart(), ether_output();
|
|
struct mbuf *leget();
|
|
extern struct ifnet loif;
|
|
|
|
/*
|
|
* Ethernet software status per interface.
|
|
*
|
|
* Each interface is referenced by a network interface structure,
|
|
* le_if, which the routing code uses to locate the interface.
|
|
* This structure contains the output queue for the interface, its address, ...
|
|
*/
|
|
struct le_softc {
|
|
struct arpcom sc_ac; /* common Ethernet structures */
|
|
#define sc_if sc_ac.ac_if /* network-visible interface */
|
|
#define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */
|
|
struct lereg0 *sc_r0; /* DIO registers */
|
|
struct lereg1 *sc_r1; /* LANCE registers */
|
|
struct lereg2 *sc_r2; /* dual-port RAM */
|
|
int sc_rmd; /* predicted next rmd to process */
|
|
int sc_runt;
|
|
int sc_jab;
|
|
int sc_merr;
|
|
int sc_babl;
|
|
int sc_cerr;
|
|
int sc_miss;
|
|
int sc_xint;
|
|
int sc_xown;
|
|
int sc_uflo;
|
|
int sc_rxlen;
|
|
int sc_rxoff;
|
|
int sc_txoff;
|
|
int sc_busy;
|
|
short sc_iflags;
|
|
#if NBPFILTER > 0
|
|
caddr_t sc_bpf;
|
|
#endif
|
|
} le_softc[NLE];
|
|
|
|
/* access LANCE registers */
|
|
#define LERDWR(cntl, src, dst) \
|
|
do { \
|
|
(dst) = (src); \
|
|
} while (((cntl)->ler0_status & LE_ACK) == 0);
|
|
|
|
/*
|
|
* Interface exists: make available by filling in network interface
|
|
* record. System will initialize the interface when it is ready
|
|
* to accept packets.
|
|
*/
|
|
leattach(hd)
|
|
struct hp_device *hd;
|
|
{
|
|
register struct lereg0 *ler0;
|
|
register struct lereg2 *ler2;
|
|
struct lereg2 *lemem = 0;
|
|
struct le_softc *le = &le_softc[hd->hp_unit];
|
|
struct ifnet *ifp = &le->sc_if;
|
|
char *cp;
|
|
int i;
|
|
|
|
ler0 = le->sc_r0 = (struct lereg0 *)(lestd[0] + (int)hd->hp_addr);
|
|
le->sc_r1 = (struct lereg1 *)(lestd[1] + (int)hd->hp_addr);
|
|
ler2 = le->sc_r2 = (struct lereg2 *)(lestd[2] + (int)hd->hp_addr);
|
|
if (ler0->ler0_id != LEID)
|
|
return(0);
|
|
le_isr[hd->hp_unit].isr_intr = leintr;
|
|
hd->hp_ipl = le_isr[hd->hp_unit].isr_ipl = LE_IPL(ler0->ler0_status);
|
|
le_isr[hd->hp_unit].isr_arg = hd->hp_unit;
|
|
ler0->ler0_id = 0xFF;
|
|
DELAY(100);
|
|
|
|
/*
|
|
* Read the ethernet address off the board, one nibble at a time.
|
|
*/
|
|
cp = (char *)(lestd[3] + (int)hd->hp_addr);
|
|
for (i = 0; i < sizeof(le->sc_addr); i++) {
|
|
le->sc_addr[i] = (*++cp & 0xF) << 4;
|
|
cp++;
|
|
le->sc_addr[i] |= *++cp & 0xF;
|
|
cp++;
|
|
}
|
|
printf("le%d: hardware address %s\n", hd->hp_unit,
|
|
ether_sprintf(le->sc_addr));
|
|
|
|
/*
|
|
* Setup for transmit/receive
|
|
*/
|
|
ler2->ler2_mode = LE_MODE;
|
|
ler2->ler2_padr[0] = le->sc_addr[1];
|
|
ler2->ler2_padr[1] = le->sc_addr[0];
|
|
ler2->ler2_padr[2] = le->sc_addr[3];
|
|
ler2->ler2_padr[3] = le->sc_addr[2];
|
|
ler2->ler2_padr[4] = le->sc_addr[5];
|
|
ler2->ler2_padr[5] = le->sc_addr[4];
|
|
#ifdef RMP
|
|
/*
|
|
* Set up logical addr filter to accept multicast 9:0:9:0:0:4
|
|
* This should be an ioctl() to the driver. (XXX)
|
|
*/
|
|
ler2->ler2_ladrf0 = 0x00100000;
|
|
ler2->ler2_ladrf1 = 0x0;
|
|
#else
|
|
ler2->ler2_ladrf0 = 0;
|
|
ler2->ler2_ladrf1 = 0;
|
|
#endif
|
|
ler2->ler2_rlen = LE_RLEN;
|
|
ler2->ler2_rdra = (int)lemem->ler2_rmd;
|
|
ler2->ler2_tlen = LE_TLEN;
|
|
ler2->ler2_tdra = (int)lemem->ler2_tmd;
|
|
isrlink(&le_isr[hd->hp_unit]);
|
|
ler0->ler0_status = LE_IE;
|
|
|
|
ifp->if_unit = hd->hp_unit;
|
|
ifp->if_name = "le";
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_init = leinit;
|
|
ifp->if_ioctl = leioctl;
|
|
ifp->if_output = ether_output;
|
|
ifp->if_start = lestart;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX;
|
|
#if NBPFILTER > 0
|
|
bpfattach(&le->sc_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
if_attach(ifp);
|
|
return (1);
|
|
}
|
|
|
|
ledrinit(ler2)
|
|
register struct lereg2 *ler2;
|
|
{
|
|
register struct lereg2 *lemem = 0;
|
|
register int i;
|
|
|
|
for (i = 0; i < LERBUF; i++) {
|
|
ler2->ler2_rmd[i].rmd0 = (int)lemem->ler2_rbuf[i];
|
|
ler2->ler2_rmd[i].rmd1 = LE_OWN;
|
|
ler2->ler2_rmd[i].rmd2 = -LEMTU;
|
|
ler2->ler2_rmd[i].rmd3 = 0;
|
|
}
|
|
for (i = 0; i < LETBUF; i++) {
|
|
ler2->ler2_tmd[i].tmd0 = (int)lemem->ler2_tbuf[i];
|
|
ler2->ler2_tmd[i].tmd1 = 0;
|
|
ler2->ler2_tmd[i].tmd2 = 0;
|
|
ler2->ler2_tmd[i].tmd3 = 0;
|
|
}
|
|
}
|
|
|
|
lereset(unit)
|
|
register int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct lereg0 *ler0 = le->sc_r0;
|
|
register struct lereg1 *ler1 = le->sc_r1;
|
|
register struct lereg2 *lemem = 0;
|
|
register int timo = 100000;
|
|
register int stat;
|
|
|
|
#ifdef lint
|
|
stat = unit;
|
|
#endif
|
|
#if NBPFILTER > 0
|
|
if (le->sc_if.if_flags & IFF_PROMISC)
|
|
/* set the promiscuous bit */
|
|
le->sc_r2->ler2_mode = LE_MODE|0x8000;
|
|
else
|
|
le->sc_r2->ler2_mode = LE_MODE;
|
|
#endif
|
|
LERDWR(ler0, LE_CSR0, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_STOP, ler1->ler1_rdp);
|
|
ledrinit(le->sc_r2);
|
|
le->sc_rmd = 0;
|
|
LERDWR(ler0, LE_CSR1, ler1->ler1_rap);
|
|
LERDWR(ler0, (int)&lemem->ler2_mode, ler1->ler1_rdp);
|
|
LERDWR(ler0, LE_CSR2, ler1->ler1_rap);
|
|
LERDWR(ler0, 0, ler1->ler1_rdp);
|
|
LERDWR(ler0, LE_CSR0, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_INIT, ler1->ler1_rdp);
|
|
do {
|
|
if (--timo == 0) {
|
|
printf("le%d: init timeout, stat = 0x%x\n",
|
|
unit, stat);
|
|
break;
|
|
}
|
|
LERDWR(ler0, ler1->ler1_rdp, stat);
|
|
} while ((stat & LE_IDON) == 0);
|
|
LERDWR(ler0, LE_STOP, ler1->ler1_rdp);
|
|
LERDWR(ler0, LE_CSR3, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_BSWP, ler1->ler1_rdp);
|
|
LERDWR(ler0, LE_CSR0, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp);
|
|
le->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface
|
|
*/
|
|
leinit(unit)
|
|
int unit;
|
|
{
|
|
struct le_softc *le = &le_softc[unit];
|
|
register struct ifnet *ifp = &le->sc_if;
|
|
int s;
|
|
|
|
/* not yet, if address still unknown */
|
|
if (ifp->if_addrlist == (struct ifaddr *)0)
|
|
return;
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
s = splimp();
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
lereset(unit);
|
|
(void) lestart(ifp);
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start output on interface. Get another datagram to send
|
|
* off of the interface queue, and copy it to the interface
|
|
* before starting the output.
|
|
*/
|
|
lestart(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct le_softc *le = &le_softc[ifp->if_unit];
|
|
register struct letmd *tmd;
|
|
register struct mbuf *m;
|
|
int len;
|
|
|
|
if ((le->sc_if.if_flags & IFF_RUNNING) == 0)
|
|
return (0);
|
|
IF_DEQUEUE(&le->sc_if.if_snd, m);
|
|
if (m == 0)
|
|
return (0);
|
|
len = leput(le->sc_r2->ler2_tbuf[0], m);
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If bpf is listening on this interface, let it
|
|
* see the packet before we commit it to the wire.
|
|
*/
|
|
if (le->sc_bpf)
|
|
bpf_tap(le->sc_bpf, le->sc_r2->ler2_tbuf[0], len);
|
|
#endif
|
|
tmd = le->sc_r2->ler2_tmd;
|
|
tmd->tmd3 = 0;
|
|
tmd->tmd2 = -len;
|
|
tmd->tmd1 = LE_OWN | LE_STP | LE_ENP;
|
|
le->sc_if.if_flags |= IFF_OACTIVE;
|
|
return (0);
|
|
}
|
|
|
|
leintr(unit)
|
|
register int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct lereg0 *ler0 = le->sc_r0;
|
|
register struct lereg1 *ler1;
|
|
register int stat;
|
|
|
|
if ((ler0->ler0_status & LE_IR) == 0)
|
|
return(0);
|
|
if (ler0->ler0_status & LE_JAB) {
|
|
le->sc_jab++;
|
|
lereset(unit);
|
|
return(1);
|
|
}
|
|
ler1 = le->sc_r1;
|
|
LERDWR(ler0, ler1->ler1_rdp, stat);
|
|
if (stat & LE_SERR) {
|
|
leerror(unit, stat);
|
|
if (stat & LE_MERR) {
|
|
le->sc_merr++;
|
|
lereset(unit);
|
|
return(1);
|
|
}
|
|
if (stat & LE_BABL)
|
|
le->sc_babl++;
|
|
if (stat & LE_CERR)
|
|
le->sc_cerr++;
|
|
if (stat & LE_MISS)
|
|
le->sc_miss++;
|
|
LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp);
|
|
}
|
|
if ((stat & LE_RXON) == 0) {
|
|
le->sc_rxoff++;
|
|
lereset(unit);
|
|
return(1);
|
|
}
|
|
if ((stat & LE_TXON) == 0) {
|
|
le->sc_txoff++;
|
|
lereset(unit);
|
|
return(1);
|
|
}
|
|
if (stat & LE_RINT) {
|
|
/* interrupt is cleared in lerint */
|
|
lerint(unit);
|
|
}
|
|
if (stat & LE_TINT) {
|
|
LERDWR(ler0, LE_TINT|LE_INEA, ler1->ler1_rdp);
|
|
lexint(unit);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface transmitter interrupt.
|
|
* Start another output if more data to send.
|
|
*/
|
|
lexint(unit)
|
|
register int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct letmd *tmd = le->sc_r2->ler2_tmd;
|
|
|
|
if ((le->sc_if.if_flags & IFF_OACTIVE) == 0) {
|
|
le->sc_xint++;
|
|
return;
|
|
}
|
|
if (tmd->tmd1 & LE_OWN) {
|
|
le->sc_xown++;
|
|
return;
|
|
}
|
|
if (tmd->tmd1 & LE_ERR) {
|
|
err:
|
|
lexerror(unit);
|
|
le->sc_if.if_oerrors++;
|
|
if (tmd->tmd3 & (LE_TBUFF|LE_UFLO)) {
|
|
le->sc_uflo++;
|
|
lereset(unit);
|
|
}
|
|
else if (tmd->tmd3 & LE_LCOL)
|
|
le->sc_if.if_collisions++;
|
|
else if (tmd->tmd3 & LE_RTRY)
|
|
le->sc_if.if_collisions += 16;
|
|
}
|
|
else if (tmd->tmd3 & LE_TBUFF)
|
|
/* XXX documentation says BUFF not included in ERR */
|
|
goto err;
|
|
else if (tmd->tmd1 & LE_ONE)
|
|
le->sc_if.if_collisions++;
|
|
else if (tmd->tmd1 & LE_MORE)
|
|
/* what is the real number? */
|
|
le->sc_if.if_collisions += 2;
|
|
else
|
|
le->sc_if.if_opackets++;
|
|
le->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
(void) lestart(&le->sc_if);
|
|
}
|
|
|
|
#define LENEXTRMP \
|
|
if (++bix == LERBUF) bix = 0, rmd = le->sc_r2->ler2_rmd; else ++rmd
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
* If input error just drop packet.
|
|
* Decapsulate packet based on type and pass to type specific
|
|
* higher-level input routine.
|
|
*/
|
|
lerint(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register int bix = le->sc_rmd;
|
|
register struct lermd *rmd = &le->sc_r2->ler2_rmd[bix];
|
|
|
|
/*
|
|
* Out of sync with hardware, should never happen?
|
|
*/
|
|
if (rmd->rmd1 & LE_OWN) {
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Process all buffers with valid data
|
|
*/
|
|
while ((rmd->rmd1 & LE_OWN) == 0) {
|
|
int len = rmd->rmd3;
|
|
|
|
/* Clear interrupt to avoid race condition */
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA, le->sc_r1->ler1_rdp);
|
|
|
|
if (rmd->rmd1 & LE_ERR) {
|
|
le->sc_rmd = bix;
|
|
lererror(unit, "bad packet");
|
|
le->sc_if.if_ierrors++;
|
|
} else if ((rmd->rmd1 & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) {
|
|
/*
|
|
* Find the end of the packet so we can see how long
|
|
* it was. We still throw it away.
|
|
*/
|
|
do {
|
|
LERDWR(le->sc_r0, LE_RINT|LE_INEA,
|
|
le->sc_r1->ler1_rdp);
|
|
rmd->rmd3 = 0;
|
|
rmd->rmd1 = LE_OWN;
|
|
LENEXTRMP;
|
|
} while (!(rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP)));
|
|
le->sc_rmd = bix;
|
|
lererror(unit, "chained buffer");
|
|
le->sc_rxlen++;
|
|
/*
|
|
* If search terminated without successful completion
|
|
* we reset the hardware (conservative).
|
|
*/
|
|
if ((rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) !=
|
|
LE_ENP) {
|
|
lereset(unit);
|
|
return;
|
|
}
|
|
} else
|
|
leread(unit, le->sc_r2->ler2_rbuf[bix], len);
|
|
rmd->rmd3 = 0;
|
|
rmd->rmd1 = LE_OWN;
|
|
LENEXTRMP;
|
|
}
|
|
le->sc_rmd = bix;
|
|
}
|
|
|
|
leread(unit, buf, len)
|
|
int unit;
|
|
char *buf;
|
|
int len;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct ether_header *et;
|
|
struct mbuf *m;
|
|
int off, resid;
|
|
|
|
le->sc_if.if_ipackets++;
|
|
et = (struct ether_header *)buf;
|
|
et->ether_type = ntohs((u_short)et->ether_type);
|
|
/* adjust input length to account for header and CRC */
|
|
len = len - sizeof(struct ether_header) - 4;
|
|
|
|
#ifdef RMP
|
|
/* (XXX)
|
|
*
|
|
* If Ethernet Type field is < MaxPacketSize, we probably have
|
|
* a IEEE802 packet here. Make sure that the size is at least
|
|
* that of the HP LLC. Also do sanity checks on length of LLC
|
|
* (old Ethernet Type field) and packet length.
|
|
*
|
|
* Provided the above checks succeed, change `len' to reflect
|
|
* the length of the LLC (i.e. et->ether_type) and change the
|
|
* type field to ETHERTYPE_IEEE so we can switch() on it later.
|
|
* Yes, this is a hack and will eventually be done "right".
|
|
*/
|
|
if (et->ether_type <= IEEE802LEN_MAX && len >= sizeof(struct hp_llc) &&
|
|
len >= et->ether_type && len >= IEEE802LEN_MIN) {
|
|
len = et->ether_type;
|
|
et->ether_type = ETHERTYPE_IEEE; /* hack! */
|
|
}
|
|
#endif
|
|
|
|
#define ledataaddr(et, off, type) ((type)(((caddr_t)((et)+1)+(off))))
|
|
if (et->ether_type >= ETHERTYPE_TRAIL &&
|
|
et->ether_type < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) {
|
|
off = (et->ether_type - ETHERTYPE_TRAIL) * 512;
|
|
if (off >= ETHERMTU)
|
|
return; /* sanity */
|
|
et->ether_type = ntohs(*ledataaddr(et, off, u_short *));
|
|
resid = ntohs(*(ledataaddr(et, off+2, u_short *)));
|
|
if (off + resid > len)
|
|
return; /* sanity */
|
|
len = off + resid;
|
|
} else
|
|
off = 0;
|
|
|
|
if (len <= 0) {
|
|
if (ledebug)
|
|
log(LOG_WARNING,
|
|
"le%d: ierror(runt packet): from %s: len=%d\n",
|
|
unit, ether_sprintf(et->ether_shost), len);
|
|
le->sc_runt++;
|
|
le->sc_if.if_ierrors++;
|
|
return;
|
|
}
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a bpf filter listening on this interface.
|
|
* If so, hand off the raw packet to bpf, which must deal with
|
|
* trailers in its own way.
|
|
*/
|
|
if (le->sc_bpf) {
|
|
bpf_tap(le->sc_bpf, buf, len + sizeof(struct ether_header));
|
|
|
|
/*
|
|
* Note that the interface cannot be in promiscuous mode if
|
|
* there are no bpf listeners. And if we are in promiscuous
|
|
* mode, we have to check if this packet is really ours.
|
|
*
|
|
* XXX This test does not support multicasts.
|
|
*/
|
|
if ((le->sc_if.if_flags & IFF_PROMISC)
|
|
&& bcmp(et->ether_dhost, le->sc_addr,
|
|
sizeof(et->ether_dhost)) != 0
|
|
&& bcmp(et->ether_dhost, etherbroadcastaddr,
|
|
sizeof(et->ether_dhost)) != 0)
|
|
return;
|
|
}
|
|
#endif
|
|
/*
|
|
* Pull packet off interface. Off is nonzero if packet
|
|
* has trailing header; leget will then force this header
|
|
* information to be at the front, but we still have to drop
|
|
* the type and length which are at the front of any trailer data.
|
|
*/
|
|
m = leget(buf, len, off, &le->sc_if);
|
|
if (m == 0)
|
|
return;
|
|
#ifdef RMP
|
|
/*
|
|
* (XXX)
|
|
* This needs to be integrated with the ISO stuff in ether_input()
|
|
*/
|
|
if (et->ether_type == ETHERTYPE_IEEE) {
|
|
/*
|
|
* Snag the Logical Link Control header (IEEE 802.2).
|
|
*/
|
|
struct hp_llc *llc = &(mtod(m, struct rmp_packet *)->hp_llc);
|
|
|
|
/*
|
|
* If the DSAP (and HP's extended DXSAP) indicate this
|
|
* is an RMP packet, hand it to the raw input routine.
|
|
*/
|
|
if (llc->dsap == IEEE_DSAP_HP && llc->dxsap == HPEXT_DXSAP) {
|
|
static struct sockproto rmp_sp = {AF_RMP,RMPPROTO_BOOT};
|
|
static struct sockaddr rmp_src = {AF_RMP};
|
|
static struct sockaddr rmp_dst = {AF_RMP};
|
|
|
|
bcopy(et->ether_shost, rmp_src.sa_data,
|
|
sizeof(et->ether_shost));
|
|
bcopy(et->ether_dhost, rmp_dst.sa_data,
|
|
sizeof(et->ether_dhost));
|
|
|
|
raw_input(m, &rmp_sp, &rmp_src, &rmp_dst);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
ether_input(&le->sc_if, et, m);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from mbuf chain to transmit
|
|
* buffer in board local memory.
|
|
*/
|
|
leput(lebuf, m)
|
|
register char *lebuf;
|
|
register struct mbuf *m;
|
|
{
|
|
register struct mbuf *mp;
|
|
register int len, tlen = 0;
|
|
|
|
for (mp = m; mp; mp = mp->m_next) {
|
|
len = mp->m_len;
|
|
if (len == 0)
|
|
continue;
|
|
tlen += len;
|
|
bcopy(mtod(mp, char *), lebuf, len);
|
|
lebuf += len;
|
|
}
|
|
m_freem(m);
|
|
if (tlen < LEMINSIZE) {
|
|
bzero(lebuf, LEMINSIZE - tlen);
|
|
tlen = LEMINSIZE;
|
|
}
|
|
return(tlen);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from board local memory into mbufs.
|
|
*/
|
|
struct mbuf *
|
|
leget(lebuf, totlen, off0, ifp)
|
|
char *lebuf;
|
|
int totlen, off0;
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct mbuf *m;
|
|
struct mbuf *top = 0, **mp = ⊤
|
|
register int off = off0, len;
|
|
register char *cp;
|
|
char *epkt;
|
|
|
|
lebuf += sizeof (struct ether_header);
|
|
cp = lebuf;
|
|
epkt = cp + totlen;
|
|
if (off) {
|
|
cp += off + 2 * sizeof(u_short);
|
|
totlen -= 2 * sizeof(u_short);
|
|
}
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return (0);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
m->m_len = MHLEN;
|
|
|
|
while (totlen > 0) {
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
m_freem(top);
|
|
return (0);
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
len = min(totlen, epkt - cp);
|
|
if (len >= MINCLSIZE) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
m->m_len = len = min(len, MCLBYTES);
|
|
else
|
|
len = m->m_len;
|
|
} else {
|
|
/*
|
|
* Place initial small packet/header at end of mbuf.
|
|
*/
|
|
if (len < m->m_len) {
|
|
if (top == 0 && len + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = len;
|
|
} else
|
|
len = m->m_len;
|
|
}
|
|
bcopy(cp, mtod(m, caddr_t), (unsigned)len);
|
|
cp += len;
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
totlen -= len;
|
|
if (cp == epkt)
|
|
cp = lebuf;
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
leioctl(ifp, cmd, data)
|
|
register struct ifnet *ifp;
|
|
int cmd;
|
|
caddr_t data;
|
|
{
|
|
register struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct le_softc *le = &le_softc[ifp->if_unit];
|
|
struct lereg1 *ler1 = le->sc_r1;
|
|
int s = splimp(), error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
leinit(ifp->if_unit); /* before arpwhohas */
|
|
((struct arpcom *)ifp)->ac_ipaddr =
|
|
IA_SIN(ifa)->sin_addr;
|
|
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host = *(union ns_host *)(le->sc_addr);
|
|
else {
|
|
/*
|
|
* The manual says we can't change the address
|
|
* while the receiver is armed,
|
|
* so reset everything
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
bcopy((caddr_t)ina->x_host.c_host,
|
|
(caddr_t)le->sc_addr, sizeof(le->sc_addr));
|
|
}
|
|
leinit(ifp->if_unit); /* does le_setaddr() */
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
leinit(ifp->if_unit);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
ifp->if_flags & IFF_RUNNING) {
|
|
LERDWR(le->sc_r0, LE_STOP, ler1->ler1_rdp);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if (ifp->if_flags & IFF_UP &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0)
|
|
leinit(ifp->if_unit);
|
|
/*
|
|
* If the state of the promiscuous bit changes, the interface
|
|
* must be reset to effect the change.
|
|
*/
|
|
if (((ifp->if_flags ^ le->sc_iflags) & IFF_PROMISC) &&
|
|
(ifp->if_flags & IFF_RUNNING)) {
|
|
le->sc_iflags = ifp->if_flags;
|
|
lereset(ifp->if_unit);
|
|
lestart(ifp);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
leerror(unit, stat)
|
|
int unit;
|
|
int stat;
|
|
{
|
|
if (!ledebug)
|
|
return;
|
|
|
|
/*
|
|
* Not all transceivers implement heartbeat
|
|
* so we only log CERR once.
|
|
*/
|
|
if ((stat & LE_CERR) && le_softc[unit].sc_cerr)
|
|
return;
|
|
log(LOG_WARNING,
|
|
"le%d: error: stat=%b\n", unit,
|
|
stat,
|
|
"\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT");
|
|
}
|
|
|
|
lererror(unit, msg)
|
|
int unit;
|
|
char *msg;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct lermd *rmd;
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
rmd = &le->sc_r2->ler2_rmd[le->sc_rmd];
|
|
len = rmd->rmd3;
|
|
log(LOG_WARNING,
|
|
"le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n",
|
|
unit, msg,
|
|
len > 11 ? ether_sprintf(&le->sc_r2->ler2_rbuf[le->sc_rmd][6]) : "unknown",
|
|
le->sc_rmd, len,
|
|
rmd->rmd1,
|
|
"\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP");
|
|
}
|
|
|
|
lexerror(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *le = &le_softc[unit];
|
|
register struct letmd *tmd;
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
tmd = le->sc_r2->ler2_tmd;
|
|
len = -tmd->tmd2;
|
|
log(LOG_WARNING,
|
|
"le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n",
|
|
unit,
|
|
len > 5 ? ether_sprintf(&le->sc_r2->ler2_tbuf[0][0]) : "unknown",
|
|
0, len,
|
|
tmd->tmd1,
|
|
"\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP",
|
|
tmd->tmd3,
|
|
"\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY");
|
|
}
|
|
#endif
|