3d6043053d
* Display . . when halted.
829 lines
24 KiB
C
829 lines
24 KiB
C
/* $NetBSD: iq80310_machdep.c,v 1.40 2002/04/12 20:50:26 thorpej Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1997,1998 Mark Brinicombe.
|
|
* Copyright (c) 1997,1998 Causality Limited.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Machine dependant functions for kernel setup for Intel IQ80310 evaluation
|
|
* boards using RedBoot firmware.
|
|
*/
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_pmap_debug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/termios.h>
|
|
|
|
#include <dev/cons.h>
|
|
|
|
#include <machine/db_machdep.h>
|
|
#include <ddb/db_sym.h>
|
|
#include <ddb/db_extern.h>
|
|
|
|
#include <machine/bootconfig.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/frame.h>
|
|
#include <arm/undefined.h>
|
|
|
|
#include <arm/arm32/machdep.h>
|
|
|
|
#include <arm/xscale/i80312reg.h>
|
|
#include <arm/xscale/i80312var.h>
|
|
|
|
#include <dev/pci/ppbreg.h>
|
|
|
|
#include <evbarm/iq80310/iq80310reg.h>
|
|
#include <evbarm/iq80310/iq80310var.h>
|
|
#include <evbarm/iq80310/obiovar.h>
|
|
|
|
#include "opt_ipkdb.h"
|
|
|
|
/*
|
|
* Address to call from cpu_reset() to reset the machine.
|
|
* This is machine architecture dependant as it varies depending
|
|
* on where the ROM appears when you turn the MMU off.
|
|
*/
|
|
|
|
u_int cpu_reset_address = 0;
|
|
|
|
/* Define various stack sizes in pages */
|
|
#define IRQ_STACK_SIZE 1
|
|
#define ABT_STACK_SIZE 1
|
|
#ifdef IPKDB
|
|
#define UND_STACK_SIZE 2
|
|
#else
|
|
#define UND_STACK_SIZE 1
|
|
#endif
|
|
|
|
BootConfig bootconfig; /* Boot config storage */
|
|
char *boot_args = NULL;
|
|
char *boot_file = NULL;
|
|
|
|
vm_offset_t physical_start;
|
|
vm_offset_t physical_freestart;
|
|
vm_offset_t physical_freeend;
|
|
vm_offset_t physical_end;
|
|
u_int free_pages;
|
|
vm_offset_t pagetables_start;
|
|
int physmem = 0;
|
|
|
|
/*int debug_flags;*/
|
|
#ifndef PMAP_STATIC_L1S
|
|
int max_processes = 64; /* Default number */
|
|
#endif /* !PMAP_STATIC_L1S */
|
|
|
|
/* Physical and virtual addresses for some global pages */
|
|
pv_addr_t systempage;
|
|
pv_addr_t irqstack;
|
|
pv_addr_t undstack;
|
|
pv_addr_t abtstack;
|
|
pv_addr_t kernelstack;
|
|
pv_addr_t minidataclean;
|
|
|
|
vm_offset_t msgbufphys;
|
|
|
|
extern u_int data_abort_handler_address;
|
|
extern u_int prefetch_abort_handler_address;
|
|
extern u_int undefined_handler_address;
|
|
|
|
#ifdef PMAP_DEBUG
|
|
extern int pmap_debug_level;
|
|
#endif
|
|
|
|
#define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
|
|
|
|
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
|
|
#define KERNEL_PT_KERNEL_NUM 2
|
|
|
|
/* L2 table for mapping i80312 */
|
|
#define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
|
|
|
|
/* L2 tables for mapping kernel VM */
|
|
#define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
|
|
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
|
|
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
|
|
|
|
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
|
|
|
|
struct user *proc0paddr;
|
|
|
|
/* Prototypes */
|
|
|
|
void consinit(void);
|
|
|
|
#include "com.h"
|
|
#if NCOM > 0
|
|
#include <dev/ic/comreg.h>
|
|
#include <dev/ic/comvar.h>
|
|
#endif
|
|
|
|
/*
|
|
* Define the default console speed for the board. This is generally
|
|
* what the firmware provided with the board defaults to.
|
|
*/
|
|
#ifndef CONSPEED
|
|
#define CONSPEED B115200
|
|
#endif /* ! CONSPEED */
|
|
|
|
#ifndef CONUNIT
|
|
#define CONUNIT 0
|
|
#endif
|
|
|
|
#ifndef CONMODE
|
|
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
|
|
#endif
|
|
|
|
int comcnspeed = CONSPEED;
|
|
int comcnmode = CONMODE;
|
|
int comcnunit = CONUNIT;
|
|
|
|
/*
|
|
* void cpu_reboot(int howto, char *bootstr)
|
|
*
|
|
* Reboots the system
|
|
*
|
|
* Deal with any syncing, unmounting, dumping and shutdown hooks,
|
|
* then reset the CPU.
|
|
*/
|
|
void
|
|
cpu_reboot(int howto, char *bootstr)
|
|
{
|
|
#ifdef DIAGNOSTIC
|
|
/* info */
|
|
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
|
|
#endif
|
|
|
|
/*
|
|
* If we are still cold then hit the air brakes
|
|
* and crash to earth fast
|
|
*/
|
|
if (cold) {
|
|
doshutdownhooks();
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
printf("rebooting...\n");
|
|
cpu_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/* Disable console buffering */
|
|
|
|
/*
|
|
* If RB_NOSYNC was not specified sync the discs.
|
|
* Note: Unless cold is set to 1 here, syslogd will die during the
|
|
* unmount. It looks like syslogd is getting woken up only to find
|
|
* that it cannot page part of the binary in as the filesystem has
|
|
* been unmounted.
|
|
*/
|
|
if (!(howto & RB_NOSYNC))
|
|
bootsync();
|
|
|
|
/* Say NO to interrupts */
|
|
splhigh();
|
|
|
|
/* Do a dump if requested. */
|
|
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
|
|
dumpsys();
|
|
|
|
/* Run any shutdown hooks */
|
|
doshutdownhooks();
|
|
|
|
/* Make sure IRQ's are disabled */
|
|
IRQdisable;
|
|
|
|
if (howto & RB_HALT) {
|
|
iq80310_7seg('.', '.');
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
}
|
|
|
|
printf("rebooting...\n");
|
|
cpu_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* Mapping table for core kernel memory. This memory is mapped at init
|
|
* time with section mappings.
|
|
*/
|
|
struct l1_sec_map {
|
|
vaddr_t va;
|
|
vaddr_t pa;
|
|
vsize_t size;
|
|
vm_prot_t prot;
|
|
int cache;
|
|
} l1_sec_table[] = {
|
|
/*
|
|
* Map the on-board devices VA == PA so that we can access them
|
|
* with the MMU on or off.
|
|
*/
|
|
{
|
|
IQ80310_OBIO_BASE,
|
|
IQ80310_OBIO_BASE,
|
|
IQ80310_OBIO_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
PTE_NOCACHE,
|
|
},
|
|
|
|
{
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* u_int initarm(...)
|
|
*
|
|
* Initial entry point on startup. This gets called before main() is
|
|
* entered.
|
|
* It should be responsible for setting up everything that must be
|
|
* in place when main is called.
|
|
* This includes
|
|
* Taking a copy of the boot configuration structure.
|
|
* Initialising the physical console so characters can be printed.
|
|
* Setting up page tables for the kernel
|
|
* Relocating the kernel to the bottom of physical memory
|
|
*/
|
|
u_int
|
|
initarm(void *arg)
|
|
{
|
|
extern vaddr_t xscale_cache_clean_addr;
|
|
extern vsize_t xscale_minidata_clean_size;
|
|
int loop;
|
|
int loop1;
|
|
u_int l1pagetable;
|
|
pv_addr_t kernel_l1pt;
|
|
pv_addr_t kernel_ptpt;
|
|
paddr_t memstart;
|
|
psize_t memsize;
|
|
|
|
/*
|
|
* Clear out the 7-segment display. Whee, the first visual
|
|
* indication that we're running kernel code.
|
|
*/
|
|
iq80310_7seg(' ', ' ');
|
|
|
|
/*
|
|
* Heads up ... Setup the CPU / MMU / TLB functions
|
|
*/
|
|
if (set_cpufuncs())
|
|
panic("cpu not recognized!");
|
|
|
|
/* Calibrate the delay loop. */
|
|
iq80310_calibrate_delay();
|
|
|
|
/*
|
|
* Since we map the on-board devices VA==PA, and the kernel
|
|
* is running VA==PA, it's possible for us to initialize
|
|
* the console now.
|
|
*/
|
|
consinit();
|
|
|
|
/* Talk to the user */
|
|
printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
|
|
|
|
/*
|
|
* Reset the secondary PCI bus. RedBoot doesn't stop devices
|
|
* on the PCI bus before handing us control, so we have to
|
|
* do this.
|
|
*
|
|
* XXX This is arguably a bug in RedBoot, and doing this reset
|
|
* XXX could be problematic in the future if we encounter an
|
|
* XXX application where the PPB in the i80312 is used as a
|
|
* XXX PPB.
|
|
*/
|
|
{
|
|
uint32_t reg;
|
|
|
|
printf("Resetting secondary PCI bus...\n");
|
|
reg = bus_space_read_4(&obio_bs_tag,
|
|
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
|
|
bus_space_write_4(&obio_bs_tag,
|
|
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
|
|
reg | PPB_BC_SECONDARY_RESET);
|
|
delay(10 * 1000); /* 10ms enough? */
|
|
bus_space_write_4(&obio_bs_tag,
|
|
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
|
|
reg);
|
|
}
|
|
|
|
/*
|
|
* We are currently running with the MMU enabled and the
|
|
* entire address space mapped VA==PA, except for the
|
|
* first 64M of RAM is also double-mapped at 0xc0000000.
|
|
* There is an L1 page table at 0xa0004000.
|
|
*/
|
|
|
|
/*
|
|
* Fetch the SDRAM start/size from the i80312 SDRAM configration
|
|
* registers.
|
|
*/
|
|
i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
|
|
&memstart, &memsize);
|
|
|
|
printf("initarm: Configuring system ...\n");
|
|
|
|
/* Fake bootconfig structure for the benefit of pmap.c */
|
|
/* XXX must make the memory description h/w independant */
|
|
bootconfig.dramblocks = 1;
|
|
bootconfig.dram[0].address = memstart;
|
|
bootconfig.dram[0].pages = memsize / NBPG;
|
|
|
|
/*
|
|
* Set up the variables that define the availablilty of
|
|
* physical memory. For now, we're going to set
|
|
* physical_freestart to 0xa0200000 (where the kernel
|
|
* was loaded), and allocate the memory we need downwards.
|
|
* If we get too close to the L1 table that we set up, we
|
|
* will panic. We will update physical_freestart and
|
|
* physical_freeend later to reflect what pmap_bootstrap()
|
|
* wants to see.
|
|
*
|
|
* XXX pmap_bootstrap() needs an enema.
|
|
*/
|
|
physical_start = bootconfig.dram[0].address;
|
|
physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
|
|
|
|
physical_freestart = 0xa0009000UL;
|
|
physical_freeend = 0xa0200000UL;
|
|
|
|
physmem = (physical_end - physical_start) / NBPG;
|
|
|
|
/* Tell the user about the memory */
|
|
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
|
|
physical_start, physical_end - 1);
|
|
|
|
/*
|
|
* Okay, the kernel starts 2MB in from the bottom of physical
|
|
* memory. We are going to allocate our bootstrap pages downwards
|
|
* from there.
|
|
*
|
|
* We need to allocate some fixed page tables to get the kernel
|
|
* going. We allocate one page directory and a number of page
|
|
* tables and store the physical addresses in the kernel_pt_table
|
|
* array.
|
|
*
|
|
* The kernel page directory must be on a 16K boundary. The page
|
|
* tables must be on 4K bounaries. What we do is allocate the
|
|
* page directory on the first 16K boundary that we encounter, and
|
|
* the page tables on 4K boundaries otherwise. Since we allocate
|
|
* at least 3 L2 page tables, we are guaranteed to encounter at
|
|
* least one 16K aligned region.
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Allocating page tables\n");
|
|
#endif
|
|
|
|
free_pages = (physical_freeend - physical_freestart) / NBPG;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
|
|
physical_freestart, free_pages, free_pages);
|
|
#endif
|
|
|
|
/* Define a macro to simplify memory allocation */
|
|
#define valloc_pages(var, np) \
|
|
alloc_pages((var).pv_pa, (np)); \
|
|
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
|
|
|
|
#define alloc_pages(var, np) \
|
|
physical_freeend -= ((np) * NBPG); \
|
|
if (physical_freeend < physical_freestart) \
|
|
panic("initarm: out of memory"); \
|
|
(var) = physical_freeend; \
|
|
free_pages -= (np); \
|
|
memset((char *)(var), 0, ((np) * NBPG));
|
|
|
|
loop1 = 0;
|
|
kernel_l1pt.pv_pa = 0;
|
|
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
|
|
/* Are we 16KB aligned for an L1 ? */
|
|
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
|
|
&& kernel_l1pt.pv_pa == 0) {
|
|
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / NBPG);
|
|
} else {
|
|
alloc_pages(kernel_pt_table[loop1].pv_pa,
|
|
L2_TABLE_SIZE / NBPG);
|
|
kernel_pt_table[loop1].pv_va =
|
|
kernel_pt_table[loop1].pv_pa;
|
|
++loop1;
|
|
}
|
|
}
|
|
|
|
/* This should never be able to happen but better confirm that. */
|
|
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
|
|
panic("initarm: Failed to align the kernel page directory\n");
|
|
|
|
/*
|
|
* Allocate a page for the system page mapped to V0x00000000
|
|
* This page will just contain the system vectors and can be
|
|
* shared by all processes.
|
|
*/
|
|
alloc_pages(systempage.pv_pa, 1);
|
|
|
|
/* Allocate a page for the page table to map kernel page tables. */
|
|
valloc_pages(kernel_ptpt, L2_TABLE_SIZE / NBPG);
|
|
|
|
/* Allocate stacks for all modes */
|
|
valloc_pages(irqstack, IRQ_STACK_SIZE);
|
|
valloc_pages(abtstack, ABT_STACK_SIZE);
|
|
valloc_pages(undstack, UND_STACK_SIZE);
|
|
valloc_pages(kernelstack, UPAGES);
|
|
|
|
/* Allocate enough pages for cleaning the Mini-Data cache. */
|
|
KASSERT(xscale_minidata_clean_size <= NBPG);
|
|
valloc_pages(minidataclean, 1);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
|
|
irqstack.pv_va);
|
|
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
|
|
abtstack.pv_va);
|
|
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
|
|
undstack.pv_va);
|
|
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
|
|
kernelstack.pv_va);
|
|
#endif
|
|
|
|
/*
|
|
* XXX Defer this to later so that we can reclaim the memory
|
|
* XXX used by the RedBoot page tables.
|
|
*/
|
|
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
|
|
|
|
/*
|
|
* Ok we have allocated physical pages for the primary kernel
|
|
* page tables
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
|
|
#endif
|
|
|
|
/*
|
|
* Now we start construction of the L1 page table
|
|
* We start by mapping the L2 page tables into the L1.
|
|
* This means that we can replace L1 mappings later on if necessary
|
|
*/
|
|
l1pagetable = kernel_l1pt.pv_pa;
|
|
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
pmap_link_l2pt(l1pagetable, 0x00000000,
|
|
&kernel_pt_table[KERNEL_PT_SYS]);
|
|
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
|
|
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
|
|
pmap_link_l2pt(l1pagetable, IQ80310_IOPXS_VBASE,
|
|
&kernel_pt_table[KERNEL_PT_IOPXS]);
|
|
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
|
|
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
|
|
pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
|
|
|
|
/* update the top of the kernel VM */
|
|
pmap_curmaxkvaddr =
|
|
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping kernel\n");
|
|
#endif
|
|
|
|
/* Now we fill in the L2 pagetable for the kernel static code/data */
|
|
{
|
|
extern char etext[], _end[];
|
|
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
|
|
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
|
|
u_int logical;
|
|
|
|
textsize = (textsize + PGOFSET) & ~PGOFSET;
|
|
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
|
|
|
|
logical = 0x00200000; /* offset of kernel in RAM */
|
|
|
|
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
|
|
physical_start + logical, textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
|
|
physical_start + logical, totalsize - textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
}
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Constructing L2 page tables\n");
|
|
#endif
|
|
|
|
/* Map the stack pages */
|
|
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
|
|
IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
|
|
ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
|
|
UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
|
|
UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
|
|
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
/* Map the Mini-Data cache clean area. */
|
|
xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
|
|
minidataclean.pv_pa);
|
|
|
|
/* Map the page table that maps the kernel pages */
|
|
pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
/*
|
|
* Map entries in the page table used to map PTE's
|
|
* Basically every kernel page table gets mapped here
|
|
*/
|
|
/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
|
|
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
|
|
pmap_map_entry(l1pagetable,
|
|
PTE_BASE + ((KERNEL_BASE +
|
|
(loop * 0x00400000)) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
}
|
|
pmap_map_entry(l1pagetable,
|
|
PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
|
|
kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
pmap_map_entry(l1pagetable,
|
|
PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_SYS].pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
|
|
pmap_map_entry(l1pagetable,
|
|
PTE_BASE + ((KERNEL_VM_BASE +
|
|
(loop * 0x00400000)) >> (PGSHIFT-2)),
|
|
kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
/* Map the vector page. */
|
|
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
/*
|
|
* Map devices we can map w/ section mappings.
|
|
*/
|
|
loop = 0;
|
|
while (l1_sec_table[loop].size) {
|
|
vm_size_t sz;
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
|
|
l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
|
|
l1_sec_table[loop].va);
|
|
#endif
|
|
for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
|
|
pmap_map_section(l1pagetable,
|
|
l1_sec_table[loop].va + sz,
|
|
l1_sec_table[loop].pa + sz,
|
|
l1_sec_table[loop].prot,
|
|
l1_sec_table[loop].cache);
|
|
++loop;
|
|
}
|
|
|
|
/*
|
|
* Map the PCI I/O spaces and i80312 registers. These are too
|
|
* small to be mapped w/ section mappings.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
|
|
I80312_PCI_XLATE_PIOW_BASE,
|
|
I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
|
|
IQ80310_PIOW_VBASE);
|
|
#endif
|
|
pmap_map_chunk(l1pagetable, IQ80310_PIOW_VBASE,
|
|
I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
|
|
I80312_PCI_XLATE_SIOW_BASE,
|
|
I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
|
|
IQ80310_SIOW_VBASE);
|
|
#endif
|
|
pmap_map_chunk(l1pagetable, IQ80310_SIOW_VBASE,
|
|
I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
|
|
I80312_PMMR_BASE,
|
|
I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
|
|
IQ80310_80312_VBASE);
|
|
#endif
|
|
pmap_map_chunk(l1pagetable, IQ80310_80312_VBASE,
|
|
I80312_PMMR_BASE, I80312_PMMR_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
/*
|
|
* Give the XScale global cache clean code an appropriately
|
|
* sized chunk of unmapped VA space starting at 0xff000000
|
|
* (our device mappings end before this address).
|
|
*/
|
|
xscale_cache_clean_addr = 0xff000000U;
|
|
|
|
/*
|
|
* Now we have the real page tables in place so we can switch to them.
|
|
* Once this is done we will be running with the REAL kernel page
|
|
* tables.
|
|
*/
|
|
|
|
/*
|
|
* Update the physical_freestart/physical_freeend/free_pages
|
|
* variables.
|
|
*/
|
|
{
|
|
extern char _end[];
|
|
|
|
physical_freestart = physical_start +
|
|
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
|
|
KERNEL_BASE);
|
|
physical_freeend = physical_end;
|
|
free_pages = (physical_freeend - physical_freestart) / NBPG;
|
|
}
|
|
|
|
/* Switch tables */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
|
|
physical_freestart, free_pages, free_pages);
|
|
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
|
|
#endif
|
|
setttb(kernel_l1pt.pv_pa);
|
|
cpu_tlb_flushID();
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("done!\n");
|
|
#endif
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("bootstrap done.\n");
|
|
#endif
|
|
|
|
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
|
|
|
|
/*
|
|
* Pages were allocated during the secondary bootstrap for the
|
|
* stacks for different CPU modes.
|
|
* We must now set the r13 registers in the different CPU modes to
|
|
* point to these stacks.
|
|
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
|
|
* of the stack memory.
|
|
*/
|
|
printf("init subsystems: stacks ");
|
|
|
|
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
|
|
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
|
|
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
|
|
|
|
/*
|
|
* Well we should set a data abort handler.
|
|
* Once things get going this will change as we will need a proper
|
|
* handler.
|
|
* Until then we will use a handler that just panics but tells us
|
|
* why.
|
|
* Initialisation of the vectors will just panic on a data abort.
|
|
* This just fills in a slighly better one.
|
|
*/
|
|
printf("vectors ");
|
|
data_abort_handler_address = (u_int)data_abort_handler;
|
|
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
|
|
undefined_handler_address = (u_int)undefinedinstruction_bounce;
|
|
|
|
/* Initialise the undefined instruction handlers */
|
|
printf("undefined ");
|
|
undefined_init();
|
|
|
|
/* Boot strap pmap telling it where the kernel page table is */
|
|
printf("pmap ");
|
|
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
|
|
|
|
/* Setup the IRQ system */
|
|
printf("irq ");
|
|
iq80310_intr_init();
|
|
printf("done.\n");
|
|
|
|
#ifdef IPKDB
|
|
/* Initialise ipkdb */
|
|
ipkdb_init();
|
|
if (boothowto & RB_KDB)
|
|
ipkdb_connect(0);
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
db_machine_init();
|
|
|
|
/* Firmware doesn't load symbols. */
|
|
ddb_init(0, NULL, NULL);
|
|
|
|
if (boothowto & RB_KDB)
|
|
Debugger();
|
|
#endif
|
|
|
|
/* We return the new stack pointer address */
|
|
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
|
|
}
|
|
|
|
void
|
|
consinit(void)
|
|
{
|
|
static const bus_addr_t comcnaddrs[] = {
|
|
IQ80310_UART2, /* com0 (J9) */
|
|
IQ80310_UART1, /* com1 (J10) */
|
|
};
|
|
static int consinit_called;
|
|
|
|
if (consinit_called != 0)
|
|
return;
|
|
|
|
consinit_called = 1;
|
|
|
|
#if NCOM > 0
|
|
if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
|
|
COM_FREQ, comcnmode))
|
|
panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
|
|
#else
|
|
panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
|
|
#endif
|
|
}
|