NetBSD/sys/dev/ic/smc83c170.c

1560 lines
38 KiB
C

/* $NetBSD: smc83c170.c,v 1.63 2006/04/16 00:38:59 tsutsui Exp $ */
/*-
* Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Standard Microsystems Corp. 83C170
* Ethernet PCI Integrated Controller (EPIC/100).
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: smc83c170.c,v 1.63 2006/04/16 00:38:59 tsutsui Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/miivar.h>
#include <dev/mii/lxtphyreg.h>
#include <dev/ic/smc83c170reg.h>
#include <dev/ic/smc83c170var.h>
void epic_start(struct ifnet *);
void epic_watchdog(struct ifnet *);
int epic_ioctl(struct ifnet *, u_long, caddr_t);
int epic_init(struct ifnet *);
void epic_stop(struct ifnet *, int);
void epic_shutdown(void *);
void epic_reset(struct epic_softc *);
void epic_rxdrain(struct epic_softc *);
int epic_add_rxbuf(struct epic_softc *, int);
void epic_read_eeprom(struct epic_softc *, int, int, uint16_t *);
void epic_set_mchash(struct epic_softc *);
void epic_fixup_clock_source(struct epic_softc *);
int epic_mii_read(struct device *, int, int);
void epic_mii_write(struct device *, int, int, int);
int epic_mii_wait(struct epic_softc *, uint32_t);
void epic_tick(void *);
void epic_statchg(struct device *);
int epic_mediachange(struct ifnet *);
void epic_mediastatus(struct ifnet *, struct ifmediareq *);
#define INTMASK (INTSTAT_FATAL_INT | INTSTAT_TXU | \
INTSTAT_TXC | INTSTAT_RXE | INTSTAT_RQE | INTSTAT_RCC)
int epic_copy_small = 0;
#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
/*
* Attach an EPIC interface to the system.
*/
void
epic_attach(sc)
struct epic_softc *sc;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int rseg, error, miiflags;
u_int i;
bus_dma_segment_t seg;
uint8_t enaddr[ETHER_ADDR_LEN], devname[12 + 1];
uint16_t myea[ETHER_ADDR_LEN / 2], mydevname[6];
char *nullbuf;
callout_init(&sc->sc_mii_callout);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct epic_control_data) + ETHER_PAD_LEN, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error(
"%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct epic_control_data) + ETHER_PAD_LEN,
(caddr_t *)&sc->sc_control_data,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
aprint_error("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
nullbuf =
(char *)sc->sc_control_data + sizeof(struct epic_control_data);
memset(nullbuf, 0, ETHER_PAD_LEN);
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct epic_control_data), 1,
sizeof(struct epic_control_data), 0, BUS_DMA_NOWAIT,
&sc->sc_cddmamap)) != 0) {
aprint_error("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct epic_control_data), NULL,
BUS_DMA_NOWAIT)) != 0) {
aprint_error(
"%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < EPIC_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
EPIC_NFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
&EPIC_DSTX(sc, i)->ds_dmamap)) != 0) {
aprint_error("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < EPIC_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT,
&EPIC_DSRX(sc, i)->ds_dmamap)) != 0) {
aprint_error("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
EPIC_DSRX(sc, i)->ds_mbuf = NULL;
}
/*
* create and map the pad buffer
*/
if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
printf("%s: unable to create pad buffer DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_5;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
printf("%s: unable to load pad buffer DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_6;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
BUS_DMASYNC_PREWRITE);
/*
* Bring the chip out of low-power mode and reset it to a known state.
*/
bus_space_write_4(st, sh, EPIC_GENCTL, 0);
epic_reset(sc);
/*
* Read the Ethernet address from the EEPROM.
*/
epic_read_eeprom(sc, 0, __arraycount(myea), myea);
for (i = 0; i < __arraycount(myea); i++) {
enaddr[i * 2] = myea[i] & 0xff;
enaddr[i * 2 + 1] = myea[i] >> 8;
}
/*
* ...and the device name.
*/
epic_read_eeprom(sc, 0x2c, __arraycount(mydevname), mydevname);
for (i = 0; i < __arraycount(mydevname); i++) {
devname[i * 2] = mydevname[i] & 0xff;
devname[i * 2 + 1] = mydevname[i] >> 8;
}
devname[sizeof(mydevname)] = '\0';
for (i = sizeof(mydevname) ; i > 0; i--) {
if (devname[i - 1] == ' ')
devname[i - 1] = '\0';
else
break;
}
aprint_normal("%s: %s, Ethernet address %s\n", sc->sc_dev.dv_xname,
devname, ether_sprintf(enaddr));
miiflags = 0;
if (sc->sc_hwflags & EPIC_HAS_MII_FIBER)
miiflags |= MIIF_HAVEFIBER;
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = epic_mii_read;
sc->sc_mii.mii_writereg = epic_mii_write;
sc->sc_mii.mii_statchg = epic_statchg;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epic_mediachange,
epic_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, miiflags);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
if (sc->sc_hwflags & EPIC_HAS_BNC) {
/* use the next free media instance */
sc->sc_serinst = sc->sc_mii.mii_instance++;
ifmedia_add(&sc->sc_mii.mii_media,
IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0,
sc->sc_serinst),
0, NULL);
aprint_normal("%s: 10base2/BNC\n", sc->sc_dev.dv_xname);
} else
sc->sc_serinst = -1;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = epic_ioctl;
ifp->if_start = epic_start;
ifp->if_watchdog = epic_watchdog;
ifp->if_init = epic_init;
ifp->if_stop = epic_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(epic_shutdown, sc);
if (sc->sc_sdhook == NULL)
aprint_error("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_6:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
fail_5:
for (i = 0; i < EPIC_NRXDESC; i++) {
if (EPIC_DSRX(sc, i)->ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
EPIC_DSRX(sc, i)->ds_dmamap);
}
fail_4:
for (i = 0; i < EPIC_NTXDESC; i++) {
if (EPIC_DSTX(sc, i)->ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
EPIC_DSTX(sc, i)->ds_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct epic_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* Shutdown hook. Make sure the interface is stopped at reboot.
*/
void
epic_shutdown(arg)
void *arg;
{
struct epic_softc *sc = arg;
epic_stop(&sc->sc_ethercom.ec_if, 1);
}
/*
* Start packet transmission on the interface.
* [ifnet interface function]
*/
void
epic_start(ifp)
struct ifnet *ifp;
{
struct epic_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct epic_txdesc *txd;
struct epic_descsoft *ds;
struct epic_fraglist *fr;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, opending, seg;
u_int len;
/*
* Remember the previous txpending and the first transmit
* descriptor we use.
*/
opending = sc->sc_txpending;
firsttx = EPIC_NEXTTX(sc->sc_txlast);
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while (sc->sc_txpending < EPIC_NTXDESC) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
/*
* Get the last and next available transmit descriptor.
*/
nexttx = EPIC_NEXTTX(sc->sc_txlast);
txd = EPIC_CDTX(sc, nexttx);
fr = EPIC_CDFL(sc, nexttx);
ds = EPIC_DSTX(sc, nexttx);
dmamap = ds->ds_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of frags, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
(m0->m_pkthdr.len < ETHER_PAD_LEN &&
dmamap-> dm_nsegs == EPIC_NFRAGS)) {
if (error == 0)
bus_dmamap_unload(sc->sc_dmat, dmamap);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/* Initialize the fraglist. */
for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
fr->ef_frags[seg].ef_addr =
dmamap->dm_segs[seg].ds_addr;
fr->ef_frags[seg].ef_length =
dmamap->dm_segs[seg].ds_len;
}
len = m0->m_pkthdr.len;
if (len < ETHER_PAD_LEN) {
fr->ef_frags[seg].ef_addr = sc->sc_nulldma;
fr->ef_frags[seg].ef_length = ETHER_PAD_LEN - len;
len = ETHER_PAD_LEN;
seg++;
}
fr->ef_nfrags = seg;
EPIC_CDFLSYNC(sc, nexttx, BUS_DMASYNC_PREWRITE);
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later.
*/
ds->ds_mbuf = m0;
/*
* Fill in the transmit descriptor.
*/
txd->et_control = ET_TXCTL_LASTDESC | ET_TXCTL_FRAGLIST;
/*
* If this is the first descriptor we're enqueueing,
* don't give it to the EPIC yet. That could cause
* a race condition. We'll do it below.
*/
if (nexttx == firsttx)
txd->et_txstatus = TXSTAT_TXLENGTH(len);
else
txd->et_txstatus =
TXSTAT_TXLENGTH(len) | ET_TXSTAT_OWNER;
EPIC_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
}
if (sc->sc_txpending == EPIC_NTXDESC) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = firsttx;
/*
* Cause a transmit interrupt to happen on the
* last packet we enqueued.
*/
EPIC_CDTX(sc, sc->sc_txlast)->et_control |= ET_TXCTL_IAF;
EPIC_CDTXSYNC(sc, sc->sc_txlast,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descriptor to the EPIC now.
*/
EPIC_CDTX(sc, firsttx)->et_txstatus |= ET_TXSTAT_OWNER;
EPIC_CDTXSYNC(sc, firsttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Start the transmitter. */
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
COMMAND_TXQUEUED);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* Watchdog timer handler.
* [ifnet interface function]
*/
void
epic_watchdog(ifp)
struct ifnet *ifp;
{
struct epic_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
(void) epic_init(ifp);
}
/*
* Handle control requests from the operator.
* [ifnet interface function]
*/
int
epic_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct epic_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly. Update our idea of the current media;
* epic_set_mchash() needs to know what it is.
*/
if (ifp->if_flags & IFF_RUNNING) {
mii_pollstat(&sc->sc_mii);
epic_set_mchash(sc);
}
error = 0;
}
break;
}
splx(s);
return (error);
}
/*
* Interrupt handler.
*/
int
epic_intr(arg)
void *arg;
{
struct epic_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct epic_rxdesc *rxd;
struct epic_txdesc *txd;
struct epic_descsoft *ds;
struct mbuf *m;
uint32_t intstat, rxstatus, txstatus;
int i, claimed = 0;
u_int len;
top:
/*
* Get the interrupt status from the EPIC.
*/
intstat = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT);
if ((intstat & INTSTAT_INT_ACTV) == 0)
return (claimed);
claimed = 1;
/*
* Acknowledge the interrupt.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_INTSTAT,
intstat & INTMASK);
/*
* Check for receive interrupts.
*/
if (intstat & (INTSTAT_RCC | INTSTAT_RXE | INTSTAT_RQE)) {
for (i = sc->sc_rxptr;; i = EPIC_NEXTRX(i)) {
rxd = EPIC_CDRX(sc, i);
ds = EPIC_DSRX(sc, i);
EPIC_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstatus = rxd->er_rxstatus;
if (rxstatus & ER_RXSTAT_OWNER) {
/*
* We have processed all of the
* receive buffers.
*/
break;
}
/*
* Make sure the packet arrived intact. If an error
* occurred, update stats and reset the descriptor.
* The buffer will be reused the next time the
* descriptor comes up in the ring.
*/
if ((rxstatus & ER_RXSTAT_PKTINTACT) == 0) {
if (rxstatus & ER_RXSTAT_CRCERROR)
printf("%s: CRC error\n",
sc->sc_dev.dv_xname);
if (rxstatus & ER_RXSTAT_ALIGNERROR)
printf("%s: alignment error\n",
sc->sc_dev.dv_xname);
ifp->if_ierrors++;
EPIC_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* The EPIC includes the CRC with every packet;
* trim it.
*/
len = RXSTAT_RXLENGTH(rxstatus) - ETHER_CRC_LEN;
if (len < sizeof(struct ether_header)) {
/*
* Runt packet; drop it now.
*/
ifp->if_ierrors++;
EPIC_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (epic_copy_small != 0 && len <= MHLEN) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
memcpy(mtod(m, caddr_t),
mtod(ds->ds_mbuf, caddr_t), len);
EPIC_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = ds->ds_mbuf;
if (epic_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
EPIC_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat,
ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if its for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass it on. */
(*ifp->if_input)(ifp, m);
ifp->if_ipackets++;
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
/*
* Check for receive queue underflow.
*/
if (intstat & INTSTAT_RQE) {
printf("%s: receiver queue empty\n",
sc->sc_dev.dv_xname);
/*
* Ring is already built; just restart the
* receiver.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_PRCDAR,
EPIC_CDRXADDR(sc, sc->sc_rxptr));
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_COMMAND,
COMMAND_RXQUEUED | COMMAND_START_RX);
}
}
/*
* Check for transmission complete interrupts.
*/
if (intstat & (INTSTAT_TXC | INTSTAT_TXU)) {
ifp->if_flags &= ~IFF_OACTIVE;
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = EPIC_NEXTTX(i), sc->sc_txpending--) {
txd = EPIC_CDTX(sc, i);
ds = EPIC_DSTX(sc, i);
EPIC_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
txstatus = txd->et_txstatus;
if (txstatus & ET_TXSTAT_OWNER)
break;
EPIC_CDFLSYNC(sc, i, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
0, ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
/*
* Check for errors and collisions.
*/
if ((txstatus & ET_TXSTAT_PACKETTX) == 0)
ifp->if_oerrors++;
else
ifp->if_opackets++;
ifp->if_collisions +=
TXSTAT_COLLISIONS(txstatus);
if (txstatus & ET_TXSTAT_CARSENSELOST)
printf("%s: lost carrier\n",
sc->sc_dev.dv_xname);
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* Cancel the watchdog timer if there are no pending
* transmissions.
*/
if (sc->sc_txpending == 0)
ifp->if_timer = 0;
/*
* Kick the transmitter after a DMA underrun.
*/
if (intstat & INTSTAT_TXU) {
printf("%s: transmit underrun\n", sc->sc_dev.dv_xname);
bus_space_write_4(sc->sc_st, sc->sc_sh,
EPIC_COMMAND, COMMAND_TXUGO);
if (sc->sc_txpending)
bus_space_write_4(sc->sc_st, sc->sc_sh,
EPIC_COMMAND, COMMAND_TXQUEUED);
}
/*
* Try to get more packets going.
*/
epic_start(ifp);
}
/*
* Check for fatal interrupts.
*/
if (intstat & INTSTAT_FATAL_INT) {
if (intstat & INTSTAT_PTA)
printf("%s: PCI target abort error\n",
sc->sc_dev.dv_xname);
else if (intstat & INTSTAT_PMA)
printf("%s: PCI master abort error\n",
sc->sc_dev.dv_xname);
else if (intstat & INTSTAT_APE)
printf("%s: PCI address parity error\n",
sc->sc_dev.dv_xname);
else if (intstat & INTSTAT_DPE)
printf("%s: PCI data parity error\n",
sc->sc_dev.dv_xname);
else
printf("%s: unknown fatal error\n",
sc->sc_dev.dv_xname);
(void) epic_init(ifp);
}
/*
* Check for more interrupts.
*/
goto top;
}
/*
* One second timer, used to tick the MII.
*/
void
epic_tick(arg)
void *arg;
{
struct epic_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
}
/*
* Fixup the clock source on the EPIC.
*/
void
epic_fixup_clock_source(sc)
struct epic_softc *sc;
{
int i;
/*
* According to SMC Application Note 7-15, the EPIC's clock
* source is incorrect following a reset. This manifests itself
* as failure to recognize when host software has written to
* a register on the EPIC. The appnote recommends issuing at
* least 16 consecutive writes to the CLOCK TEST bit to correctly
* configure the clock source.
*/
for (i = 0; i < 16; i++)
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TEST,
TEST_CLOCKTEST);
}
/*
* Perform a soft reset on the EPIC.
*/
void
epic_reset(sc)
struct epic_softc *sc;
{
epic_fixup_clock_source(sc);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, 0);
delay(100);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_GENCTL, GENCTL_SOFTRESET);
delay(100);
epic_fixup_clock_source(sc);
}
/*
* Initialize the interface. Must be called at splnet().
*/
int
epic_init(ifp)
struct ifnet *ifp;
{
struct epic_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
uint8_t *enaddr = LLADDR(ifp->if_sadl);
struct epic_txdesc *txd;
struct epic_descsoft *ds;
uint32_t genctl, reg0;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
epic_stop(ifp, 0);
/*
* Reset the EPIC to a known state.
*/
epic_reset(sc);
/*
* Magical mystery initialization.
*/
bus_space_write_4(st, sh, EPIC_TXTEST, 0);
/*
* Initialize the EPIC genctl register:
*
* - 64 byte receive FIFO threshold
* - automatic advance to next receive frame
*/
genctl = GENCTL_RX_FIFO_THRESH0 | GENCTL_ONECOPY;
#if BYTE_ORDER == BIG_ENDIAN
genctl |= GENCTL_BIG_ENDIAN;
#endif
bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
/*
* Reset the MII bus and PHY.
*/
reg0 = bus_space_read_4(st, sh, EPIC_NVCTL);
bus_space_write_4(st, sh, EPIC_NVCTL, reg0 | NVCTL_GPIO1 | NVCTL_GPOE1);
bus_space_write_4(st, sh, EPIC_MIICFG, MIICFG_ENASER);
bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_RESET_PHY);
delay(100);
bus_space_write_4(st, sh, EPIC_GENCTL, genctl);
delay(1000);
bus_space_write_4(st, sh, EPIC_NVCTL, reg0);
/*
* Initialize Ethernet address.
*/
reg0 = enaddr[1] << 8 | enaddr[0];
bus_space_write_4(st, sh, EPIC_LAN0, reg0);
reg0 = enaddr[3] << 8 | enaddr[2];
bus_space_write_4(st, sh, EPIC_LAN1, reg0);
reg0 = enaddr[5] << 8 | enaddr[4];
bus_space_write_4(st, sh, EPIC_LAN2, reg0);
/*
* Initialize receive control. Remember the external buffer
* size setting.
*/
reg0 = bus_space_read_4(st, sh, EPIC_RXCON) &
(RXCON_EXTBUFSIZESEL1 | RXCON_EXTBUFSIZESEL0);
reg0 |= (RXCON_RXMULTICAST | RXCON_RXBROADCAST);
if (ifp->if_flags & IFF_PROMISC)
reg0 |= RXCON_PROMISCMODE;
bus_space_write_4(st, sh, EPIC_RXCON, reg0);
/* Set the current media. */
epic_mediachange(ifp);
/* Set up the multicast hash table. */
epic_set_mchash(sc);
/*
* Initialize the transmit descriptor ring. txlast is initialized
* to the end of the list so that it will wrap around to the first
* descriptor when the first packet is transmitted.
*/
for (i = 0; i < EPIC_NTXDESC; i++) {
txd = EPIC_CDTX(sc, i);
memset(txd, 0, sizeof(struct epic_txdesc));
txd->et_bufaddr = EPIC_CDFLADDR(sc, i);
txd->et_nextdesc = EPIC_CDTXADDR(sc, EPIC_NEXTTX(i));
EPIC_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = EPIC_NTXDESC - 1;
/*
* Initialize the receive descriptor ring.
*/
for (i = 0; i < EPIC_NRXDESC; i++) {
ds = EPIC_DSRX(sc, i);
if (ds->ds_mbuf == NULL) {
if ((error = epic_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
epic_rxdrain(sc);
goto out;
}
} else
EPIC_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/*
* Initialize the interrupt mask and enable interrupts.
*/
bus_space_write_4(st, sh, EPIC_INTMASK, INTMASK);
bus_space_write_4(st, sh, EPIC_GENCTL, genctl | GENCTL_INTENA);
/*
* Give the transmit and receive rings to the EPIC.
*/
bus_space_write_4(st, sh, EPIC_PTCDAR,
EPIC_CDTXADDR(sc, EPIC_NEXTTX(sc->sc_txlast)));
bus_space_write_4(st, sh, EPIC_PRCDAR,
EPIC_CDRXADDR(sc, sc->sc_rxptr));
/*
* Set the EPIC in motion.
*/
bus_space_write_4(st, sh, EPIC_COMMAND,
COMMAND_RXQUEUED | COMMAND_START_RX);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Start the one second clock.
*/
callout_reset(&sc->sc_mii_callout, hz, epic_tick, sc);
/*
* Attempt to start output on the interface.
*/
epic_start(ifp);
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* Drain the receive queue.
*/
void
epic_rxdrain(sc)
struct epic_softc *sc;
{
struct epic_descsoft *ds;
int i;
for (i = 0; i < EPIC_NRXDESC; i++) {
ds = EPIC_DSRX(sc, i);
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
}
/*
* Stop transmission on the interface.
*/
void
epic_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
struct epic_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct epic_descsoft *ds;
uint32_t reg;
int i;
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_mii_callout);
/* Down the MII. */
mii_down(&sc->sc_mii);
/* Paranoia... */
epic_fixup_clock_source(sc);
/*
* Disable interrupts.
*/
reg = bus_space_read_4(st, sh, EPIC_GENCTL);
bus_space_write_4(st, sh, EPIC_GENCTL, reg & ~GENCTL_INTENA);
bus_space_write_4(st, sh, EPIC_INTMASK, 0);
/*
* Stop the DMA engine and take the receiver off-line.
*/
bus_space_write_4(st, sh, EPIC_COMMAND, COMMAND_STOP_RDMA |
COMMAND_STOP_TDMA | COMMAND_STOP_RX);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < EPIC_NTXDESC; i++) {
ds = EPIC_DSTX(sc, i);
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
if (disable)
epic_rxdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Read the EPIC Serial EEPROM.
*/
void
epic_read_eeprom(sc, word, wordcnt, data)
struct epic_softc *sc;
int word, wordcnt;
uint16_t *data;
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
uint16_t reg;
int i, x;
#define EEPROM_WAIT_READY(st, sh) \
while ((bus_space_read_4((st), (sh), EPIC_EECTL) & EECTL_EERDY) == 0) \
/* nothing */
/*
* Enable the EEPROM.
*/
bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
EEPROM_WAIT_READY(st, sh);
for (i = 0; i < wordcnt; i++) {
/* Send CHIP SELECT for one clock tick. */
bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE|EECTL_EECS);
EEPROM_WAIT_READY(st, sh);
/* Shift in the READ opcode. */
for (x = 3; x > 0; x--) {
reg = EECTL_ENABLE|EECTL_EECS;
if (EPIC_EEPROM_OPC_READ & (1 << (x - 1)))
reg |= EECTL_EEDI;
bus_space_write_4(st, sh, EPIC_EECTL, reg);
EEPROM_WAIT_READY(st, sh);
bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
EEPROM_WAIT_READY(st, sh);
bus_space_write_4(st, sh, EPIC_EECTL, reg);
EEPROM_WAIT_READY(st, sh);
}
/* Shift in address. */
for (x = 6; x > 0; x--) {
reg = EECTL_ENABLE|EECTL_EECS;
if ((word + i) & (1 << (x - 1)))
reg |= EECTL_EEDI;
bus_space_write_4(st, sh, EPIC_EECTL, reg);
EEPROM_WAIT_READY(st, sh);
bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
EEPROM_WAIT_READY(st, sh);
bus_space_write_4(st, sh, EPIC_EECTL, reg);
EEPROM_WAIT_READY(st, sh);
}
/* Shift out data. */
reg = EECTL_ENABLE|EECTL_EECS;
data[i] = 0;
for (x = 16; x > 0; x--) {
bus_space_write_4(st, sh, EPIC_EECTL, reg|EECTL_EESK);
EEPROM_WAIT_READY(st, sh);
if (bus_space_read_4(st, sh, EPIC_EECTL) & EECTL_EEDO)
data[i] |= (1 << (x - 1));
bus_space_write_4(st, sh, EPIC_EECTL, reg);
EEPROM_WAIT_READY(st, sh);
}
/* Clear CHIP SELECT. */
bus_space_write_4(st, sh, EPIC_EECTL, EECTL_ENABLE);
EEPROM_WAIT_READY(st, sh);
}
/*
* Disable the EEPROM.
*/
bus_space_write_4(st, sh, EPIC_EECTL, 0);
#undef EEPROM_WAIT_READY
}
/*
* Add a receive buffer to the indicated descriptor.
*/
int
epic_add_rxbuf(sc, idx)
struct epic_softc *sc;
int idx;
{
struct epic_descsoft *ds = EPIC_DSRX(sc, idx);
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("epic_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
EPIC_INIT_RXDESC(sc, idx);
return (0);
}
/*
* Set the EPIC multicast hash table.
*
* NOTE: We rely on a recently-updated mii_media_active here!
*/
void
epic_set_mchash(sc)
struct epic_softc *sc;
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hash, mchash[4];
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the low-order
* 6 bits as an index into the 64 bit multicast hash table (only
* the lower 16 bits of each 32 bit multicast hash register are
* valid). The high order bits select the register, while the
* rest of the bits select the bit within the register.
*/
if (ifp->if_flags & IFF_PROMISC)
goto allmulti;
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_10_T) {
/* XXX hardware bug in 10Mbps mode. */
goto allmulti;
}
mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
hash >>= 26;
/* Set the corresponding bit in the hash table. */
mchash[hash >> 4] |= 1 << (hash & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto sethash;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
mchash[0] = mchash[1] = mchash[2] = mchash[3] = 0xffff;
sethash:
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC0, mchash[0]);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC1, mchash[1]);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC2, mchash[2]);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MC3, mchash[3]);
}
/*
* Wait for the MII to become ready.
*/
int
epic_mii_wait(sc, rw)
struct epic_softc *sc;
uint32_t rw;
{
int i;
for (i = 0; i < 50; i++) {
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL) & rw)
== 0)
break;
delay(2);
}
if (i == 50) {
printf("%s: MII timed out\n", sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
/*
* Read from the MII.
*/
int
epic_mii_read(self, phy, reg)
struct device *self;
int phy, reg;
{
struct epic_softc *sc = (struct epic_softc *)self;
if (epic_mii_wait(sc, MMCTL_WRITE))
return (0);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
MMCTL_ARG(phy, reg, MMCTL_READ));
if (epic_mii_wait(sc, MMCTL_READ))
return (0);
return (bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA) &
MMDATA_MASK);
}
/*
* Write to the MII.
*/
void
epic_mii_write(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct epic_softc *sc = (struct epic_softc *)self;
if (epic_mii_wait(sc, MMCTL_WRITE))
return;
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMDATA, val);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MMCTL,
MMCTL_ARG(phy, reg, MMCTL_WRITE));
}
/*
* Callback from PHY when media changes.
*/
void
epic_statchg(self)
struct device *self;
{
struct epic_softc *sc = (struct epic_softc *)self;
uint32_t txcon, miicfg;
/*
* Update loopback bits in TXCON to reflect duplex mode.
*/
txcon = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_TXCON);
if (sc->sc_mii.mii_media_active & IFM_FDX)
txcon |= (TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
else
txcon &= ~(TXCON_LOOPBACK_D1|TXCON_LOOPBACK_D2);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_TXCON, txcon);
/* On some cards we need manualy set fullduplex led */
if (sc->sc_hwflags & EPIC_DUPLEXLED_ON_694) {
miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
if (IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX)
miicfg |= MIICFG_ENABLE;
else
miicfg &= ~MIICFG_ENABLE;
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
}
/*
* There is a multicast filter bug in 10Mbps mode. Kick the
* multicast filter in case the speed changed.
*/
epic_set_mchash(sc);
}
/*
* Callback from ifmedia to request current media status.
*/
void
epic_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct epic_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* Callback from ifmedia to request new media setting.
*/
int
epic_mediachange(ifp)
struct ifnet *ifp;
{
struct epic_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
struct ifmedia *ifm = &mii->mii_media;
int media = ifm->ifm_cur->ifm_media;
uint32_t miicfg;
struct mii_softc *miisc;
int cfg;
if (!(ifp->if_flags & IFF_UP))
return (0);
if (IFM_INST(media) != sc->sc_serinst) {
/* If we're not selecting serial interface, select MII mode */
#ifdef EPICMEDIADEBUG
printf("%s: parallel mode\n", ifp->if_xname);
#endif
miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
miicfg &= ~MIICFG_SERMODEENA;
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
}
mii_mediachg(mii);
if (IFM_INST(media) == sc->sc_serinst) {
/* select serial interface */
#ifdef EPICMEDIADEBUG
printf("%s: serial mode\n", ifp->if_xname);
#endif
miicfg = bus_space_read_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG);
miicfg |= (MIICFG_SERMODEENA | MIICFG_ENABLE);
bus_space_write_4(sc->sc_st, sc->sc_sh, EPIC_MIICFG, miicfg);
/* There is no driver to fill this */
mii->mii_media_active = media;
mii->mii_media_status = 0;
epic_statchg(&sc->sc_dev);
return (0);
}
/* Lookup selected PHY */
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list)) {
if (IFM_INST(media) == miisc->mii_inst)
break;
}
if (!miisc) {
printf("epic_mediachange: can't happen\n"); /* ??? panic */
return (0);
}
#ifdef EPICMEDIADEBUG
printf("%s: using phy %s\n", ifp->if_xname,
miisc->mii_dev.dv_xname);
#endif
if (miisc->mii_flags & MIIF_HAVEFIBER) {
/* XXX XXX assume it's a Level1 - should check */
/* We have to powerup fiber transceivers */
cfg = PHY_READ(miisc, MII_LXTPHY_CONFIG);
if (IFM_SUBTYPE(media) == IFM_100_FX) {
#ifdef EPICMEDIADEBUG
printf("%s: power up fiber\n", ifp->if_xname);
#endif
cfg |= (CONFIG_LEDC1 | CONFIG_LEDC0);
} else {
#ifdef EPICMEDIADEBUG
printf("%s: power down fiber\n", ifp->if_xname);
#endif
cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
}
PHY_WRITE(miisc, MII_LXTPHY_CONFIG, cfg);
}
return (0);
}