NetBSD/sys/arch/prep/prep/clock.c

327 lines
7.7 KiB
C

/* $NetBSD: clock.c,v 1.3 2001/11/18 15:30:43 kleink Exp $ */
/* $OpenBSD: clock.c,v 1.3 1997/10/13 13:42:53 pefo Exp $ */
/*
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <dev/clock_subr.h>
#include <prep/prep/clockvar.h>
#define MINYEAR 1990
void decr_intr __P((struct clockframe *));
static inline u_quad_t mftb __P((void));
/*
* Initially we assume a processor with a bus frequency of 12.5 MHz.
*/
u_long ticks_per_sec;
u_long ns_per_tick;
static long ticks_per_intr;
static volatile u_long lasttb;
struct device *clockdev;
const struct clockfns *clockfns;
int clockinitted;
void
clockattach(dev, fns)
struct device *dev;
const struct clockfns *fns;
{
printf("\n");
if (clockfns != NULL)
panic("clockattach: multiple clocks");
clockdev = dev;
clockfns = fns;
}
/*
* Start the real-time and statistics clocks. Leave stathz 0 since there
* are no other timers available.
*/
void
cpu_initclocks()
{
ticks_per_intr = ticks_per_sec / hz;
asm volatile ("mftb %0" : "=r"(lasttb));
asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(base)
time_t base;
{
struct clocktime ct;
int year;
struct clock_ymdhms dt;
time_t deltat;
int badbase = 0;
if (base < (MINYEAR - 1970) * SECYR) {
printf("WARNING: preposterous time in file system");
/* read the system clock anyway */
base = (MINYEAR - 1970) * SECYR + 186 * SECDAY + SECDAY / 2;
badbase = 1;
}
(*clockfns->cf_get)(clockdev, base, &ct);
#ifdef DEBUG
printf("readclock: %d/%d/%d/%d/%d/%d", ct.year, ct.mon, ct.day,
ct.hour, ct.min, ct.sec);
#endif
clockinitted = 1;
year = 1900 + ct.year;
if (year < 1970)
year += 100;
/* simple sanity checks (2037 = time_t overflow) */
if (year < MINYEAR || year > 2037 ||
ct.mon < 1 || ct.mon > 12 || ct.day < 1 ||
ct.day > 31 || ct.hour > 23 || ct.min > 59 || ct.sec > 59) {
/*
* Believe the time in the file system for lack of
* anything better, resetting the TODR.
*/
time.tv_sec = base;
if (!badbase) {
printf("WARNING: preposterous clock chip time\n");
resettodr();
}
goto bad;
}
dt.dt_year = year;
dt.dt_mon = ct.mon;
dt.dt_day = ct.day;
dt.dt_hour = ct.hour;
dt.dt_min = ct.min;
dt.dt_sec = ct.sec;
time.tv_sec = clock_ymdhms_to_secs(&dt);
#ifdef DEBUG
printf("=>%ld (%d)\n", (long int)time.tv_sec, (int)base);
#endif
if (!badbase) {
/*
* See if we gained/lost two or more days;
* if so, assume something is amiss.
*/
deltat = time.tv_sec - base;
if (deltat < 0)
deltat = -deltat;
if (deltat < 2 * SECDAY)
return;
printf("WARNING: clock %s %ld days",
time.tv_sec < base ? "lost" : "gained",
(long)deltat / SECDAY);
}
bad:
printf(" -- CHECK AND RESET THE DATE!\n");
}
/*
* Reset the TODR based on the time value; used when the TODR
* has a preposterous value and also when the time is reset
* by the stime system call. Also called when the TODR goes past
* TODRZERO + 100*(SECYEAR+2*SECDAY) (e.g. on Jan 2 just after midnight)
* to wrap the TODR around.
*/
void
resettodr()
{
struct clock_ymdhms dt;
struct clocktime ct;
if (!clockinitted)
return;
clock_secs_to_ymdhms(time.tv_sec, &dt);
/* rt clock wants 2 digits */
ct.year = dt.dt_year % 100;
ct.mon = dt.dt_mon;
ct.day = dt.dt_day;
ct.hour = dt.dt_hour;
ct.min = dt.dt_min;
ct.sec = dt.dt_sec;
ct.dow = dt.dt_wday;
#ifdef DEBUG
printf("setclock: %d/%d/%d/%d/%d/%d\n", ct.year, ct.mon, ct.day,
ct.hour, ct.min, ct.sec);
#endif
(*clockfns->cf_set)(clockdev, &ct);
}
/*
* We assume newhz is either stathz or profhz, and that neither will
* change after being set up above. Could recalculate intervals here
* but that would be a drag.
*/
void
setstatclockrate(arg)
int arg;
{
/* Nothing we can do */
}
void
decr_intr(frame)
struct clockframe *frame;
{
int msr;
int pri;
u_long tb;
long tick;
int nticks;
extern long intrcnt[];
/*
* Check whether we are initialized.
*/
if (!ticks_per_intr)
return;
/*
* Based on the actual time delay since the last decrementer reload,
* we arrange for earlier interrupt next time.
*/
asm ("mftb %0; mfdec %1" : "=r"(tb), "=r"(tick));
for (nticks = 0; tick < 0; nticks++)
tick += ticks_per_intr;
asm volatile ("mtdec %0" :: "r"(tick));
/*
* lasttb is used during microtime. Set it to the virtual
* start of this tick interval.
*/
lasttb = tb + tick - ticks_per_intr;
intrcnt[CNT_CLOCK]++;
pri = splclock();
if (pri & SPL_CLOCK)
tickspending += nticks;
else {
nticks += tickspending;
tickspending = 0;
/*
* Reenable interrupts
*/
asm volatile ("mfmsr %0; ori %0, %0, %1; mtmsr %0"
: "=r"(msr) : "K"(PSL_EE));
/*
* Do standard timer interrupt stuff.
* Do softclock stuff only on the last iteration.
*/
frame->pri = pri | SINT_CLOCK;
while (--nticks > 0)
hardclock(frame);
frame->pri = pri;
hardclock(frame);
}
splx(pri);
}
static inline u_quad_t
mftb()
{
u_long scratch;
u_quad_t tb;
asm ("1: mftbu %0; mftb %0+1; mftbu %1; cmpw %0,%1; bne 1b"
: "=r"(tb), "=r"(scratch));
return tb;
}
/*
* Fill in *tvp with current time with microsecond resolution.
*/
void
microtime(tvp)
struct timeval *tvp;
{
u_long tb;
u_long ticks;
int msr, scratch;
asm volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
: "=r"(msr), "=r"(scratch) : "K"((u_short)~PSL_EE));
asm ("mftb %0" : "=r"(tb));
ticks = (tb - lasttb) * ns_per_tick;
*tvp = time;
asm volatile ("mtmsr %0" :: "r"(msr));
ticks /= 1000;
tvp->tv_usec += ticks;
while (tvp->tv_usec >= 1000000) {
tvp->tv_usec -= 1000000;
tvp->tv_sec++;
}
}
/*
* Wait for about n microseconds (at least!).
*/
void
delay(n)
unsigned int n;
{
u_quad_t tb;
u_long tbh, tbl, scratch;
tb = mftb();
tb += (n * 1000 + ns_per_tick - 1) / ns_per_tick;
tbh = tb >> 32;
tbl = tb;
asm volatile ("1: mftbu %0; cmplw %0,%1; blt 1b; bgt 2f;"
"mftb %0; cmplw %0,%2; blt 1b; 2:"
: "=r"(scratch) : "r"(tbh), "r"(tbl));
}