NetBSD/sys/kern/subr_kmem.c
chs 3023aadd79 fix vmem_alloc() to never return an error for VM_SLEEP requests,
thus fixing kmem_alloc() to never return NULL for KM_SLEEP requests.
instead these operations will retry forever, which was the intent.
2016-02-29 00:34:17 +00:00

827 lines
21 KiB
C

/* $NetBSD: subr_kmem.c,v 1.62 2016/02/29 00:34:17 chs Exp $ */
/*-
* Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran and Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Allocator of kernel wired memory. This allocator has some debug features
* enabled with "option DIAGNOSTIC" and "option DEBUG".
*/
/*
* KMEM_SIZE: detect alloc/free size mismatch bugs.
* Prefix each allocations with a fixed-sized, aligned header and record
* the exact user-requested allocation size in it. When freeing, compare
* it with kmem_free's "size" argument.
*
* KMEM_REDZONE: detect overrun bugs.
* Add a 2-byte pattern (allocate one more memory chunk if needed) at the
* end of each allocated buffer. Check this pattern on kmem_free.
*
* These options are enabled on DIAGNOSTIC.
*
* |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
* +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
* |/////| | | | | | | | | |*|**|UU|
* |/HSZ/| | | | | | | | | |*|**|UU|
* |/////| | | | | | | | | |*|**|UU|
* +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+
* |Size | Buffer usable by the caller (requested size) |RedZ|Unused\
*/
/*
* KMEM_POISON: detect modify-after-free bugs.
* Fill freed (in the sense of kmem_free) memory with a garbage pattern.
* Check the pattern on allocation.
*
* KMEM_GUARD
* A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled
* in. See the comment below for what kind of bugs it tries to detect. Even
* if compiled in, it's disabled by default because it's very expensive.
* You can enable it on boot by:
* boot -d
* db> w kmem_guard_depth 0t30000
* db> c
*
* The default value of kmem_guard_depth is 0, which means disabled.
* It can be changed by KMEM_GUARD_DEPTH kernel config option.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.62 2016/02/29 00:34:17 chs Exp $");
#include <sys/param.h>
#include <sys/callback.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/debug.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_map.h>
#include <lib/libkern/libkern.h>
struct kmem_cache_info {
size_t kc_size;
const char * kc_name;
};
static const struct kmem_cache_info kmem_cache_sizes[] = {
{ 8, "kmem-8" },
{ 16, "kmem-16" },
{ 24, "kmem-24" },
{ 32, "kmem-32" },
{ 40, "kmem-40" },
{ 48, "kmem-48" },
{ 56, "kmem-56" },
{ 64, "kmem-64" },
{ 80, "kmem-80" },
{ 96, "kmem-96" },
{ 112, "kmem-112" },
{ 128, "kmem-128" },
{ 160, "kmem-160" },
{ 192, "kmem-192" },
{ 224, "kmem-224" },
{ 256, "kmem-256" },
{ 320, "kmem-320" },
{ 384, "kmem-384" },
{ 448, "kmem-448" },
{ 512, "kmem-512" },
{ 768, "kmem-768" },
{ 1024, "kmem-1024" },
{ 0, NULL }
};
static const struct kmem_cache_info kmem_cache_big_sizes[] = {
{ 2048, "kmem-2048" },
{ 4096, "kmem-4096" },
{ 8192, "kmem-8192" },
{ 16384, "kmem-16384" },
{ 0, NULL }
};
/*
* KMEM_ALIGN is the smallest guaranteed alignment and also the
* smallest allocateable quantum.
* Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
*/
#define KMEM_ALIGN 8
#define KMEM_SHIFT 3
#define KMEM_MAXSIZE 1024
#define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
static size_t kmem_cache_maxidx __read_mostly;
#define KMEM_BIG_ALIGN 2048
#define KMEM_BIG_SHIFT 11
#define KMEM_BIG_MAXSIZE 16384
#define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
static size_t kmem_cache_big_maxidx __read_mostly;
#if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
#define KMEM_SIZE
#define KMEM_REDZONE
#endif /* defined(DIAGNOSTIC) */
#if defined(DEBUG) && defined(_HARDKERNEL)
#define KMEM_SIZE
#define KMEM_POISON
#define KMEM_GUARD
static void *kmem_freecheck;
#endif /* defined(DEBUG) */
#if defined(KMEM_POISON)
static int kmem_poison_ctor(void *, void *, int);
static void kmem_poison_fill(void *, size_t);
static void kmem_poison_check(void *, size_t);
#else /* defined(KMEM_POISON) */
#define kmem_poison_fill(p, sz) /* nothing */
#define kmem_poison_check(p, sz) /* nothing */
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_REDZONE)
#define REDZONE_SIZE 2
static void kmem_redzone_fill(void *, size_t);
static void kmem_redzone_check(void *, size_t);
#else /* defined(KMEM_REDZONE) */
#define REDZONE_SIZE 0
#define kmem_redzone_fill(p, sz) /* nothing */
#define kmem_redzone_check(p, sz) /* nothing */
#endif /* defined(KMEM_REDZONE) */
#if defined(KMEM_SIZE)
struct kmem_header {
size_t size;
} __aligned(KMEM_ALIGN);
#define SIZE_SIZE sizeof(struct kmem_header)
static void kmem_size_set(void *, size_t);
static void kmem_size_check(void *, size_t);
#else
#define SIZE_SIZE 0
#define kmem_size_set(p, sz) /* nothing */
#define kmem_size_check(p, sz) /* nothing */
#endif
#if defined(KMEM_GUARD)
#ifndef KMEM_GUARD_DEPTH
#define KMEM_GUARD_DEPTH 0
#endif
struct kmem_guard {
u_int kg_depth;
intptr_t * kg_fifo;
u_int kg_rotor;
vmem_t * kg_vmem;
};
static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *);
static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool);
static void kmem_guard_free(struct kmem_guard *, size_t, void *);
int kmem_guard_depth = KMEM_GUARD_DEPTH;
static bool kmem_guard_enabled;
static struct kmem_guard kmem_guard;
#endif /* defined(KMEM_GUARD) */
CTASSERT(KM_SLEEP == PR_WAITOK);
CTASSERT(KM_NOSLEEP == PR_NOWAIT);
/*
* kmem_intr_alloc: allocate wired memory.
*/
void *
kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
{
size_t allocsz, index;
size_t size;
pool_cache_t pc;
uint8_t *p;
KASSERT(requested_size > 0);
#ifdef KMEM_GUARD
if (kmem_guard_enabled) {
return kmem_guard_alloc(&kmem_guard, requested_size,
(kmflags & KM_SLEEP) != 0);
}
#endif
size = kmem_roundup_size(requested_size);
allocsz = size + SIZE_SIZE;
#ifdef KMEM_REDZONE
if (size - requested_size < REDZONE_SIZE) {
/* If there isn't enough space in the padding, allocate
* one more memory chunk for the red zone. */
allocsz += kmem_roundup_size(REDZONE_SIZE);
}
#endif
if ((index = ((allocsz -1) >> KMEM_SHIFT))
< kmem_cache_maxidx) {
pc = kmem_cache[index];
} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
< kmem_cache_big_maxidx) {
pc = kmem_cache_big[index];
} else {
int ret = uvm_km_kmem_alloc(kmem_va_arena,
(vsize_t)round_page(size),
((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
| VM_INSTANTFIT, (vmem_addr_t *)&p);
if (ret) {
return NULL;
}
FREECHECK_OUT(&kmem_freecheck, p);
return p;
}
p = pool_cache_get(pc, kmflags);
if (__predict_true(p != NULL)) {
kmem_poison_check(p, allocsz);
FREECHECK_OUT(&kmem_freecheck, p);
kmem_size_set(p, requested_size);
kmem_redzone_fill(p, requested_size + SIZE_SIZE);
return p + SIZE_SIZE;
}
return p;
}
/*
* kmem_intr_zalloc: allocate zeroed wired memory.
*/
void *
kmem_intr_zalloc(size_t size, km_flag_t kmflags)
{
void *p;
p = kmem_intr_alloc(size, kmflags);
if (p != NULL) {
memset(p, 0, size);
}
return p;
}
/*
* kmem_intr_free: free wired memory allocated by kmem_alloc.
*/
void
kmem_intr_free(void *p, size_t requested_size)
{
size_t allocsz, index;
size_t size;
pool_cache_t pc;
KASSERT(p != NULL);
KASSERT(requested_size > 0);
#ifdef KMEM_GUARD
if (kmem_guard_enabled) {
kmem_guard_free(&kmem_guard, requested_size, p);
return;
}
#endif
size = kmem_roundup_size(requested_size);
allocsz = size + SIZE_SIZE;
#ifdef KMEM_REDZONE
if (size - requested_size < REDZONE_SIZE) {
allocsz += kmem_roundup_size(REDZONE_SIZE);
}
#endif
if ((index = ((allocsz -1) >> KMEM_SHIFT))
< kmem_cache_maxidx) {
pc = kmem_cache[index];
} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
< kmem_cache_big_maxidx) {
pc = kmem_cache_big[index];
} else {
FREECHECK_IN(&kmem_freecheck, p);
uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
round_page(size));
return;
}
p = (uint8_t *)p - SIZE_SIZE;
kmem_size_check(p, requested_size);
kmem_redzone_check(p, requested_size + SIZE_SIZE);
FREECHECK_IN(&kmem_freecheck, p);
LOCKDEBUG_MEM_CHECK(p, size);
kmem_poison_fill(p, allocsz);
pool_cache_put(pc, p);
}
/* ---- kmem API */
/*
* kmem_alloc: allocate wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_alloc(size_t size, km_flag_t kmflags)
{
void *v;
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
v = kmem_intr_alloc(size, kmflags);
KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
return v;
}
/*
* kmem_zalloc: allocate zeroed wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_zalloc(size_t size, km_flag_t kmflags)
{
void *v;
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
v = kmem_intr_zalloc(size, kmflags);
KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
return v;
}
/*
* kmem_free: free wired memory allocated by kmem_alloc.
* => must not be called from interrupt context.
*/
void
kmem_free(void *p, size_t size)
{
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
kmem_intr_free(p, size);
}
static size_t
kmem_create_caches(const struct kmem_cache_info *array,
pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
{
size_t maxidx = 0;
size_t table_unit = (1 << shift);
size_t size = table_unit;
int i;
for (i = 0; array[i].kc_size != 0 ; i++) {
const char *name = array[i].kc_name;
size_t cache_size = array[i].kc_size;
struct pool_allocator *pa;
int flags = PR_NOALIGN;
pool_cache_t pc;
size_t align;
if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0)
align = CACHE_LINE_SIZE;
else if ((cache_size & (PAGE_SIZE - 1)) == 0)
align = PAGE_SIZE;
else
align = KMEM_ALIGN;
if (cache_size < CACHE_LINE_SIZE)
flags |= PR_NOTOUCH;
/* check if we reached the requested size */
if (cache_size > maxsize || cache_size > PAGE_SIZE) {
break;
}
if ((cache_size >> shift) > maxidx) {
maxidx = cache_size >> shift;
}
if ((cache_size >> shift) > maxidx) {
maxidx = cache_size >> shift;
}
pa = &pool_allocator_kmem;
#if defined(KMEM_POISON)
pc = pool_cache_init(cache_size, align, 0, flags,
name, pa, ipl, kmem_poison_ctor,
NULL, (void *)cache_size);
#else /* defined(KMEM_POISON) */
pc = pool_cache_init(cache_size, align, 0, flags,
name, pa, ipl, NULL, NULL, NULL);
#endif /* defined(KMEM_POISON) */
while (size <= cache_size) {
alloc_table[(size - 1) >> shift] = pc;
size += table_unit;
}
}
return maxidx;
}
void
kmem_init(void)
{
#ifdef KMEM_GUARD
kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth,
kmem_va_arena);
#endif
kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
}
size_t
kmem_roundup_size(size_t size)
{
return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
}
/*
* Used to dynamically allocate string with kmem accordingly to format.
*/
char *
kmem_asprintf(const char *fmt, ...)
{
int size __diagused, len;
va_list va;
char *str;
va_start(va, fmt);
len = vsnprintf(NULL, 0, fmt, va);
va_end(va);
str = kmem_alloc(len + 1, KM_SLEEP);
va_start(va, fmt);
size = vsnprintf(str, len + 1, fmt, va);
va_end(va);
KASSERT(size == len);
return str;
}
/* ------------------ DEBUG / DIAGNOSTIC ------------------ */
#if defined(KMEM_POISON) || defined(KMEM_REDZONE)
#if defined(_LP64)
#define PRIME 0x9e37fffffffc0000UL
#else /* defined(_LP64) */
#define PRIME 0x9e3779b1
#endif /* defined(_LP64) */
static inline uint8_t
kmem_pattern_generate(const void *p)
{
return (uint8_t)(((uintptr_t)p) * PRIME
>> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
}
#endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */
#if defined(KMEM_POISON)
static int
kmem_poison_ctor(void *arg, void *obj, int flag)
{
size_t sz = (size_t)arg;
kmem_poison_fill(obj, sz);
return 0;
}
static void
kmem_poison_fill(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
*cp = kmem_pattern_generate(cp);
cp++;
}
}
static void
kmem_poison_check(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
const uint8_t expected = kmem_pattern_generate(cp);
if (*cp != expected) {
panic("%s: %p: 0x%02x != 0x%02x\n",
__func__, cp, *cp, expected);
}
cp++;
}
}
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_SIZE)
static void
kmem_size_set(void *p, size_t sz)
{
struct kmem_header *hd;
hd = (struct kmem_header *)p;
hd->size = sz;
}
static void
kmem_size_check(void *p, size_t sz)
{
struct kmem_header *hd;
size_t hsz;
hd = (struct kmem_header *)p;
hsz = hd->size;
if (hsz != sz) {
panic("kmem_free(%p, %zu) != allocated size %zu",
(const uint8_t *)p + SIZE_SIZE, sz, hsz);
}
}
#endif /* defined(KMEM_SIZE) */
#if defined(KMEM_REDZONE)
#define STATIC_BYTE 0xFE
CTASSERT(REDZONE_SIZE > 1);
static void
kmem_redzone_fill(void *p, size_t sz)
{
uint8_t *cp, pat;
const uint8_t *ep;
cp = (uint8_t *)p + sz;
ep = cp + REDZONE_SIZE;
/*
* We really don't want the first byte of the red zone to be '\0';
* an off-by-one in a string may not be properly detected.
*/
pat = kmem_pattern_generate(cp);
*cp = (pat == '\0') ? STATIC_BYTE: pat;
cp++;
while (cp < ep) {
*cp = kmem_pattern_generate(cp);
cp++;
}
}
static void
kmem_redzone_check(void *p, size_t sz)
{
uint8_t *cp, pat, expected;
const uint8_t *ep;
cp = (uint8_t *)p + sz;
ep = cp + REDZONE_SIZE;
pat = kmem_pattern_generate(cp);
expected = (pat == '\0') ? STATIC_BYTE: pat;
if (expected != *cp) {
panic("%s: %p: 0x%02x != 0x%02x\n",
__func__, cp, *cp, expected);
}
cp++;
while (cp < ep) {
expected = kmem_pattern_generate(cp);
if (*cp != expected) {
panic("%s: %p: 0x%02x != 0x%02x\n",
__func__, cp, *cp, expected);
}
cp++;
}
}
#endif /* defined(KMEM_REDZONE) */
#if defined(KMEM_GUARD)
/*
* The ultimate memory allocator for debugging, baby. It tries to catch:
*
* 1. Overflow, in realtime. A guard page sits immediately after the
* requested area; a read/write overflow therefore triggers a page
* fault.
* 2. Invalid pointer/size passed, at free. A kmem_header structure sits
* just before the requested area, and holds the allocated size. Any
* difference with what is given at free triggers a panic.
* 3. Underflow, at free. If an underflow occurs, the kmem header will be
* modified, and 2. will trigger a panic.
* 4. Use-after-free. When freeing, the memory is unmapped, and depending
* on the value of kmem_guard_depth, the kernel will more or less delay
* the recycling of that memory. Which means that any ulterior read/write
* access to the memory will trigger a page fault, given it hasn't been
* recycled yet.
*/
#include <sys/atomic.h>
#include <uvm/uvm.h>
static bool
kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm)
{
vaddr_t va;
/* If not enabled, we have nothing to do. */
if (depth == 0) {
return false;
}
depth = roundup(depth, PAGE_SIZE / sizeof(void *));
KASSERT(depth != 0);
/*
* Allocate fifo.
*/
va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE,
UVM_KMF_WIRED | UVM_KMF_ZERO);
if (va == 0) {
return false;
}
/*
* Init object.
*/
kg->kg_vmem = vm;
kg->kg_fifo = (void *)va;
kg->kg_depth = depth;
kg->kg_rotor = 0;
printf("kmem_guard(%p): depth %d\n", kg, depth);
return true;
}
static void *
kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok)
{
struct vm_page *pg;
vm_flag_t flags;
vmem_addr_t va;
vaddr_t loopva;
vsize_t loopsize;
size_t size;
void **p;
/*
* Compute the size: take the kmem header into account, and add a guard
* page at the end.
*/
size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
/* Allocate pages of kernel VA, but do not map anything in yet. */
flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP);
if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) {
return NULL;
}
loopva = va;
loopsize = size - PAGE_SIZE;
while (loopsize) {
pg = uvm_pagealloc(NULL, loopva, NULL, 0);
if (__predict_false(pg == NULL)) {
if (waitok) {
uvm_wait("kmem_guard");
continue;
} else {
uvm_km_pgremove_intrsafe(kernel_map, va,
va + size);
vmem_free(kg->kg_vmem, va, size);
return NULL;
}
}
pg->flags &= ~PG_BUSY; /* new page */
UVM_PAGE_OWN(pg, NULL);
pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
loopva += PAGE_SIZE;
loopsize -= PAGE_SIZE;
}
pmap_update(pmap_kernel());
/*
* Offset the returned pointer so that the unmapped guard page sits
* immediately after the returned object.
*/
p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES);
kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size);
return (void *)p;
}
static void
kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p)
{
vaddr_t va;
u_int rotor;
size_t size;
uint8_t *ptr;
ptr = (uint8_t *)p - SIZE_SIZE;
kmem_size_check(ptr, requested_size);
va = trunc_page((vaddr_t)ptr);
size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE;
KASSERT(pmap_extract(pmap_kernel(), va, NULL));
KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL));
/*
* Unmap and free the pages. The last one is never allocated.
*/
uvm_km_pgremove_intrsafe(kernel_map, va, va + size);
pmap_update(pmap_kernel());
#if 0
/*
* XXX: Here, we need to atomically register the va and its size in the
* fifo.
*/
/*
* Put the VA allocation into the list and swap an old one out to free.
* This behaves mostly like a fifo.
*/
rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth;
va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va);
if (va != 0) {
vmem_free(kg->kg_vmem, va, size);
}
#else
(void)rotor;
vmem_free(kg->kg_vmem, va, size);
#endif
}
#endif /* defined(KMEM_GUARD) */