NetBSD/sys/fs/union/union_subr.c

1230 lines
30 KiB
C

/* $NetBSD: union_subr.c,v 1.75 2017/06/01 02:45:13 chs Exp $ */
/*
* Copyright (c) 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Jan-Simon Pendry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)union_subr.c 8.20 (Berkeley) 5/20/95
*/
/*
* Copyright (c) 1994 Jan-Simon Pendry
*
* This code is derived from software contributed to Berkeley by
* Jan-Simon Pendry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)union_subr.c 8.20 (Berkeley) 5/20/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: union_subr.c,v 1.75 2017/06/01 02:45:13 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/namei.h>
#include <sys/malloc.h>
#include <sys/dirent.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/queue.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/kauth.h>
#include <uvm/uvm_extern.h>
#include <fs/union/union.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>
static LIST_HEAD(uhashhead, union_node) *uhashtbl;
static u_long uhash_mask; /* size of hash table - 1 */
#define UNION_HASH(u, l) \
((((u_long) (u) + (u_long) (l)) >> 8) & uhash_mask)
#define NOHASH ((u_long)-1)
static kmutex_t uhash_lock;
void union_updatevp(struct union_node *, struct vnode *, struct vnode *);
static void union_ref(struct union_node *);
static void union_rele(struct union_node *);
static int union_do_lookup(struct vnode *, struct componentname *, kauth_cred_t, const char *);
int union_vn_close(struct vnode *, int, kauth_cred_t, struct lwp *);
static void union_dircache_r(struct vnode *, struct vnode ***, int *);
struct vnode *union_dircache(struct vnode *, struct lwp *);
void
union_init(void)
{
mutex_init(&uhash_lock, MUTEX_DEFAULT, IPL_NONE);
uhashtbl = hashinit(desiredvnodes, HASH_LIST, true, &uhash_mask);
}
void
union_reinit(void)
{
struct union_node *un;
struct uhashhead *oldhash, *hash;
u_long oldmask, mask, val;
int i;
hash = hashinit(desiredvnodes, HASH_LIST, true, &mask);
mutex_enter(&uhash_lock);
oldhash = uhashtbl;
oldmask = uhash_mask;
uhashtbl = hash;
uhash_mask = mask;
for (i = 0; i <= oldmask; i++) {
while ((un = LIST_FIRST(&oldhash[i])) != NULL) {
LIST_REMOVE(un, un_cache);
val = UNION_HASH(un->un_uppervp, un->un_lowervp);
LIST_INSERT_HEAD(&hash[val], un, un_cache);
}
}
mutex_exit(&uhash_lock);
hashdone(oldhash, HASH_LIST, oldmask);
}
/*
* Free global unionfs resources.
*/
void
union_done(void)
{
hashdone(uhashtbl, HASH_LIST, uhash_mask);
mutex_destroy(&uhash_lock);
/* Make sure to unset the readdir hook. */
vn_union_readdir_hook = NULL;
}
void
union_updatevp(struct union_node *un, struct vnode *uppervp,
struct vnode *lowervp)
{
int ohash = UNION_HASH(un->un_uppervp, un->un_lowervp);
int nhash = UNION_HASH(uppervp, lowervp);
int docache = (lowervp != NULLVP || uppervp != NULLVP);
bool un_unlock;
KASSERT(VOP_ISLOCKED(UNIONTOV(un)) == LK_EXCLUSIVE);
mutex_enter(&uhash_lock);
if (!docache || ohash != nhash) {
if (un->un_cflags & UN_CACHED) {
un->un_cflags &= ~UN_CACHED;
LIST_REMOVE(un, un_cache);
}
}
if (un->un_lowervp != lowervp) {
if (un->un_lowervp) {
vrele(un->un_lowervp);
if (un->un_path) {
free(un->un_path, M_TEMP);
un->un_path = 0;
}
if (un->un_dirvp) {
vrele(un->un_dirvp);
un->un_dirvp = NULLVP;
}
}
un->un_lowervp = lowervp;
mutex_enter(&un->un_lock);
un->un_lowersz = VNOVAL;
mutex_exit(&un->un_lock);
}
if (un->un_uppervp != uppervp) {
if (un->un_uppervp) {
un_unlock = false;
vrele(un->un_uppervp);
} else
un_unlock = true;
mutex_enter(&un->un_lock);
un->un_uppervp = uppervp;
mutex_exit(&un->un_lock);
if (un_unlock) {
struct vop_unlock_args ap;
ap.a_vp = UNIONTOV(un);
genfs_unlock(&ap);
}
mutex_enter(&un->un_lock);
un->un_uppersz = VNOVAL;
mutex_exit(&un->un_lock);
/* Update union vnode interlock. */
if (uppervp != NULL) {
mutex_obj_hold(uppervp->v_interlock);
uvm_obj_setlock(&UNIONTOV(un)->v_uobj,
uppervp->v_interlock);
}
}
if (docache && (ohash != nhash)) {
LIST_INSERT_HEAD(&uhashtbl[nhash], un, un_cache);
un->un_cflags |= UN_CACHED;
}
mutex_exit(&uhash_lock);
}
void
union_newlower(struct union_node *un, struct vnode *lowervp)
{
union_updatevp(un, un->un_uppervp, lowervp);
}
void
union_newupper(struct union_node *un, struct vnode *uppervp)
{
union_updatevp(un, uppervp, un->un_lowervp);
}
/*
* Keep track of size changes in the underlying vnodes.
* If the size changes, then callback to the vm layer
* giving priority to the upper layer size.
*
* Mutex un_lock hold on entry and released on return.
*/
void
union_newsize(struct vnode *vp, off_t uppersz, off_t lowersz)
{
struct union_node *un = VTOUNION(vp);
off_t sz;
KASSERT(mutex_owned(&un->un_lock));
/* only interested in regular files */
if (vp->v_type != VREG) {
mutex_exit(&un->un_lock);
uvm_vnp_setsize(vp, 0);
return;
}
sz = VNOVAL;
if ((uppersz != VNOVAL) && (un->un_uppersz != uppersz)) {
un->un_uppersz = uppersz;
if (sz == VNOVAL)
sz = un->un_uppersz;
}
if ((lowersz != VNOVAL) && (un->un_lowersz != lowersz)) {
un->un_lowersz = lowersz;
if (sz == VNOVAL)
sz = un->un_lowersz;
}
mutex_exit(&un->un_lock);
if (sz != VNOVAL) {
#ifdef UNION_DIAGNOSTIC
printf("union: %s size now %qd\n",
uppersz != VNOVAL ? "upper" : "lower", sz);
#endif
uvm_vnp_setsize(vp, sz);
}
}
static void
union_ref(struct union_node *un)
{
KASSERT(mutex_owned(&uhash_lock));
un->un_refs++;
}
static void
union_rele(struct union_node *un)
{
mutex_enter(&uhash_lock);
un->un_refs--;
if (un->un_refs > 0) {
mutex_exit(&uhash_lock);
return;
}
if (un->un_cflags & UN_CACHED) {
un->un_cflags &= ~UN_CACHED;
LIST_REMOVE(un, un_cache);
}
mutex_exit(&uhash_lock);
if (un->un_pvp != NULLVP)
vrele(un->un_pvp);
if (un->un_uppervp != NULLVP)
vrele(un->un_uppervp);
if (un->un_lowervp != NULLVP)
vrele(un->un_lowervp);
if (un->un_dirvp != NULLVP)
vrele(un->un_dirvp);
if (un->un_path)
free(un->un_path, M_TEMP);
mutex_destroy(&un->un_lock);
free(un, M_TEMP);
}
/*
* allocate a union_node/vnode pair. the vnode is
* referenced and unlocked. the new vnode is returned
* via (vpp). (mp) is the mountpoint of the union filesystem,
* (dvp) is the parent directory where the upper layer object
* should exist (but doesn't) and (cnp) is the componentname
* information which is partially copied to allow the upper
* layer object to be created at a later time. (uppervp)
* and (lowervp) reference the upper and lower layer objects
* being mapped. either, but not both, can be nil.
* both, if supplied, are unlocked.
* the reference is either maintained in the new union_node
* object which is allocated, or they are vrele'd.
*
* all union_nodes are maintained on a hash
* list. new nodes are only allocated when they cannot
* be found on this list. entries on the list are
* removed when the vfs reclaim entry is called.
*
* the vnode gets attached or referenced with vcache_get().
*/
int
union_allocvp(
struct vnode **vpp,
struct mount *mp,
struct vnode *undvp, /* parent union vnode */
struct vnode *dvp, /* may be null */
struct componentname *cnp, /* may be null */
struct vnode *uppervp, /* may be null */
struct vnode *lowervp, /* may be null */
int docache)
{
int error;
struct union_node *un = NULL, *un1;
struct vnode *vp, *xlowervp = NULLVP;
u_long hash[3];
int try;
bool is_dotdot;
is_dotdot = (dvp != NULL && cnp != NULL && (cnp->cn_flags & ISDOTDOT));
if (uppervp == NULLVP && lowervp == NULLVP)
panic("union: unidentifiable allocation");
if (uppervp && lowervp && (uppervp->v_type != lowervp->v_type)) {
xlowervp = lowervp;
lowervp = NULLVP;
}
if (!docache) {
un = NULL;
goto found;
}
/*
* If both uppervp and lowervp are not NULL we have to
* search union nodes with one vnode as NULL too.
*/
hash[0] = UNION_HASH(uppervp, lowervp);
if (uppervp == NULL || lowervp == NULL) {
hash[1] = hash[2] = NOHASH;
} else {
hash[1] = UNION_HASH(uppervp, NULLVP);
hash[2] = UNION_HASH(NULLVP, lowervp);
}
loop:
mutex_enter(&uhash_lock);
for (try = 0; try < 3; try++) {
if (hash[try] == NOHASH)
continue;
LIST_FOREACH(un, &uhashtbl[hash[try]], un_cache) {
if ((un->un_lowervp && un->un_lowervp != lowervp) ||
(un->un_uppervp && un->un_uppervp != uppervp) ||
un->un_mount != mp)
continue;
union_ref(un);
mutex_exit(&uhash_lock);
error = vcache_get(mp, &un, sizeof(un), &vp);
KASSERT(error != 0 || UNIONTOV(un) == vp);
union_rele(un);
if (error == ENOENT)
goto loop;
else if (error)
goto out;
goto found;
}
}
mutex_exit(&uhash_lock);
found:
if (un) {
if (uppervp != dvp) {
if (is_dotdot)
VOP_UNLOCK(dvp);
vn_lock(UNIONTOV(un), LK_EXCLUSIVE | LK_RETRY);
if (is_dotdot)
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
}
/*
* Save information about the upper layer.
*/
if (uppervp != un->un_uppervp) {
union_newupper(un, uppervp);
} else if (uppervp) {
vrele(uppervp);
}
/*
* Save information about the lower layer.
* This needs to keep track of pathname
* and directory information which union_vn_create
* might need.
*/
if (lowervp != un->un_lowervp) {
union_newlower(un, lowervp);
if (cnp && (lowervp != NULLVP)) {
un->un_path = malloc(cnp->cn_namelen+1,
M_TEMP, M_WAITOK);
memcpy(un->un_path, cnp->cn_nameptr,
cnp->cn_namelen);
un->un_path[cnp->cn_namelen] = '\0';
vref(dvp);
un->un_dirvp = dvp;
}
} else if (lowervp) {
vrele(lowervp);
}
*vpp = UNIONTOV(un);
if (uppervp != dvp)
VOP_UNLOCK(*vpp);
error = 0;
goto out;
}
un = malloc(sizeof(struct union_node), M_TEMP, M_WAITOK);
mutex_init(&un->un_lock, MUTEX_DEFAULT, IPL_NONE);
un->un_refs = 1;
un->un_mount = mp;
un->un_vnode = NULL;
un->un_uppervp = uppervp;
un->un_lowervp = lowervp;
un->un_pvp = undvp;
if (undvp != NULLVP)
vref(undvp);
un->un_dircache = 0;
un->un_openl = 0;
un->un_cflags = 0;
un->un_uppersz = VNOVAL;
un->un_lowersz = VNOVAL;
if (dvp && cnp && (lowervp != NULLVP)) {
un->un_path = malloc(cnp->cn_namelen+1, M_TEMP, M_WAITOK);
memcpy(un->un_path, cnp->cn_nameptr, cnp->cn_namelen);
un->un_path[cnp->cn_namelen] = '\0';
vref(dvp);
un->un_dirvp = dvp;
} else {
un->un_path = 0;
un->un_dirvp = 0;
}
if (docache) {
mutex_enter(&uhash_lock);
LIST_FOREACH(un1, &uhashtbl[hash[0]], un_cache) {
if (un1->un_lowervp == lowervp &&
un1->un_uppervp == uppervp &&
un1->un_mount == mp) {
/*
* Another thread beat us, push back freshly
* allocated node and retry.
*/
mutex_exit(&uhash_lock);
union_rele(un);
goto loop;
}
}
LIST_INSERT_HEAD(&uhashtbl[hash[0]], un, un_cache);
un->un_cflags |= UN_CACHED;
mutex_exit(&uhash_lock);
}
error = vcache_get(mp, &un, sizeof(un), vpp);
KASSERT(error != 0 || UNIONTOV(un) == *vpp);
union_rele(un);
if (error == ENOENT)
goto loop;
out:
if (xlowervp)
vrele(xlowervp);
return error;
}
int
union_freevp(struct vnode *vp)
{
struct union_node *un = VTOUNION(vp);
/* Detach vnode from union node. */
un->un_vnode = NULL;
un->un_uppersz = VNOVAL;
un->un_lowersz = VNOVAL;
/* Detach union node from vnode. */
mutex_enter(vp->v_interlock);
vp->v_data = NULL;
mutex_exit(vp->v_interlock);
union_rele(un);
return 0;
}
int
union_loadvnode(struct mount *mp, struct vnode *vp,
const void *key, size_t key_len, const void **new_key)
{
struct vattr va;
struct vnode *svp;
struct union_node *un;
struct union_mount *um;
voff_t uppersz, lowersz;
KASSERT(key_len == sizeof(un));
memcpy(&un, key, key_len);
um = MOUNTTOUNIONMOUNT(mp);
svp = (un->un_uppervp != NULLVP) ? un->un_uppervp : un->un_lowervp;
vp->v_tag = VT_UNION;
vp->v_op = union_vnodeop_p;
vp->v_data = un;
un->un_vnode = vp;
vp->v_type = svp->v_type;
if (svp->v_type == VCHR || svp->v_type == VBLK)
spec_node_init(vp, svp->v_rdev);
mutex_obj_hold(svp->v_interlock);
uvm_obj_setlock(&vp->v_uobj, svp->v_interlock);
/* detect the root vnode (and aliases) */
if ((un->un_uppervp == um->um_uppervp) &&
((un->un_lowervp == NULLVP) || un->un_lowervp == um->um_lowervp)) {
if (un->un_lowervp == NULLVP) {
un->un_lowervp = um->um_lowervp;
if (un->un_lowervp != NULLVP)
vref(un->un_lowervp);
}
vp->v_vflag |= VV_ROOT;
}
uppersz = lowersz = VNOVAL;
if (un->un_uppervp != NULLVP) {
if (vn_lock(un->un_uppervp, LK_SHARED) == 0) {
if (VOP_GETATTR(un->un_uppervp, &va, FSCRED) == 0)
uppersz = va.va_size;
VOP_UNLOCK(un->un_uppervp);
}
}
if (un->un_lowervp != NULLVP) {
if (vn_lock(un->un_lowervp, LK_SHARED) == 0) {
if (VOP_GETATTR(un->un_lowervp, &va, FSCRED) == 0)
lowersz = va.va_size;
VOP_UNLOCK(un->un_lowervp);
}
}
mutex_enter(&un->un_lock);
union_newsize(vp, uppersz, lowersz);
mutex_enter(&uhash_lock);
union_ref(un);
mutex_exit(&uhash_lock);
*new_key = &vp->v_data;
return 0;
}
/*
* copyfile. copy the vnode (fvp) to the vnode (tvp)
* using a sequence of reads and writes. both (fvp)
* and (tvp) are locked on entry and exit.
*/
int
union_copyfile(struct vnode *fvp, struct vnode *tvp, kauth_cred_t cred,
struct lwp *l)
{
char *tbuf;
struct uio uio;
struct iovec iov;
int error = 0;
/*
* strategy:
* allocate a buffer of size MAXBSIZE.
* loop doing reads and writes, keeping track
* of the current uio offset.
* give up at the first sign of trouble.
*/
uio.uio_offset = 0;
UIO_SETUP_SYSSPACE(&uio);
tbuf = malloc(MAXBSIZE, M_TEMP, M_WAITOK);
/* ugly loop follows... */
do {
off_t offset = uio.uio_offset;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
iov.iov_base = tbuf;
iov.iov_len = MAXBSIZE;
uio.uio_resid = iov.iov_len;
uio.uio_rw = UIO_READ;
error = VOP_READ(fvp, &uio, 0, cred);
if (error == 0) {
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
iov.iov_base = tbuf;
iov.iov_len = MAXBSIZE - uio.uio_resid;
uio.uio_offset = offset;
uio.uio_rw = UIO_WRITE;
uio.uio_resid = iov.iov_len;
if (uio.uio_resid == 0)
break;
do {
error = VOP_WRITE(tvp, &uio, 0, cred);
} while ((uio.uio_resid > 0) && (error == 0));
}
} while (error == 0);
free(tbuf, M_TEMP);
return (error);
}
/*
* (un) is assumed to be locked on entry and remains
* locked on exit.
*/
int
union_copyup(struct union_node *un, int docopy, kauth_cred_t cred,
struct lwp *l)
{
int error;
struct vnode *lvp, *uvp;
struct vattr lvattr, uvattr;
error = union_vn_create(&uvp, un, l);
if (error)
return (error);
KASSERT(VOP_ISLOCKED(uvp) == LK_EXCLUSIVE);
union_newupper(un, uvp);
lvp = un->un_lowervp;
if (docopy) {
/*
* XX - should not ignore errors
* from VOP_CLOSE
*/
vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_GETATTR(lvp, &lvattr, cred);
if (error == 0)
error = VOP_OPEN(lvp, FREAD, cred);
if (error == 0) {
error = union_copyfile(lvp, uvp, cred, l);
(void) VOP_CLOSE(lvp, FREAD, cred);
}
if (error == 0) {
/* Copy permissions up too */
vattr_null(&uvattr);
uvattr.va_mode = lvattr.va_mode;
uvattr.va_flags = lvattr.va_flags;
error = VOP_SETATTR(uvp, &uvattr, cred);
}
VOP_UNLOCK(lvp);
#ifdef UNION_DIAGNOSTIC
if (error == 0)
uprintf("union: copied up %s\n", un->un_path);
#endif
}
union_vn_close(uvp, FWRITE, cred, l);
/*
* Subsequent IOs will go to the top layer, so
* call close on the lower vnode and open on the
* upper vnode to ensure that the filesystem keeps
* its references counts right. This doesn't do
* the right thing with (cred) and (FREAD) though.
* Ignoring error returns is not right, either.
*/
if (error == 0) {
int i;
vn_lock(lvp, LK_EXCLUSIVE | LK_RETRY);
for (i = 0; i < un->un_openl; i++) {
(void) VOP_CLOSE(lvp, FREAD, cred);
(void) VOP_OPEN(uvp, FREAD, cred);
}
un->un_openl = 0;
VOP_UNLOCK(lvp);
}
return (error);
}
/*
* Prepare the creation of a new node in the upper layer.
*
* (dvp) is the directory in which to create the new node.
* it is locked on entry and exit.
* (cnp) is the componentname to be created.
* (cred, path, hash) are credentials, path and its hash to fill (cnp).
*/
static int
union_do_lookup(struct vnode *dvp, struct componentname *cnp, kauth_cred_t cred,
const char *path)
{
int error;
struct vnode *vp;
cnp->cn_nameiop = CREATE;
cnp->cn_flags = LOCKPARENT | ISLASTCN;
cnp->cn_cred = cred;
cnp->cn_nameptr = path;
cnp->cn_namelen = strlen(path);
error = VOP_LOOKUP(dvp, &vp, cnp);
if (error == 0) {
KASSERT(vp != NULL);
VOP_ABORTOP(dvp, cnp);
vrele(vp);
error = EEXIST;
} else if (error == EJUSTRETURN) {
error = 0;
}
return error;
}
/*
* Create a shadow directory in the upper layer.
* The new vnode is returned locked.
*
* (um) points to the union mount structure for access to the
* the mounting process's credentials.
* (dvp) is the directory in which to create the shadow directory.
* it is unlocked on entry and exit.
* (cnp) is the componentname to be created.
* (vpp) is the returned newly created shadow directory, which
* is returned locked.
*
* N.B. We still attempt to create shadow directories even if the union
* is mounted read-only, which is a little nonintuitive.
*/
int
union_mkshadow(struct union_mount *um, struct vnode *dvp,
struct componentname *cnp, struct vnode **vpp)
{
int error;
struct vattr va;
struct componentname cn;
char *pnbuf;
if (cnp->cn_namelen + 1 > MAXPATHLEN)
return ENAMETOOLONG;
pnbuf = PNBUF_GET();
memcpy(pnbuf, cnp->cn_nameptr, cnp->cn_namelen);
pnbuf[cnp->cn_namelen] = '\0';
vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
error = union_do_lookup(dvp, &cn,
(um->um_op == UNMNT_ABOVE ? cnp->cn_cred : um->um_cred), pnbuf);
if (error) {
VOP_UNLOCK(dvp);
PNBUF_PUT(pnbuf);
return error;
}
/*
* policy: when creating the shadow directory in the
* upper layer, create it owned by the user who did
* the mount, group from parent directory, and mode
* 777 modified by umask (ie mostly identical to the
* mkdir syscall). (jsp, kb)
*/
vattr_null(&va);
va.va_type = VDIR;
va.va_mode = um->um_cmode;
KASSERT(*vpp == NULL);
error = VOP_MKDIR(dvp, vpp, &cn, &va);
VOP_UNLOCK(dvp);
PNBUF_PUT(pnbuf);
return error;
}
/*
* Create a whiteout entry in the upper layer.
*
* (um) points to the union mount structure for access to the
* the mounting process's credentials.
* (dvp) is the directory in which to create the whiteout.
* it is locked on entry and exit.
* (cnp) is the componentname to be created.
* (un) holds the path and its hash to be created.
*/
int
union_mkwhiteout(struct union_mount *um, struct vnode *dvp,
struct componentname *cnp, struct union_node *un)
{
int error;
struct componentname cn;
error = union_do_lookup(dvp, &cn,
(um->um_op == UNMNT_ABOVE ? cnp->cn_cred : um->um_cred),
un->un_path);
if (error)
return error;
error = VOP_WHITEOUT(dvp, &cn, CREATE);
return error;
}
/*
* union_vn_create: creates and opens a new shadow file
* on the upper union layer. this function is similar
* in spirit to calling vn_open but it avoids calling namei().
* the problem with calling namei is that a) it locks too many
* things, and b) it doesn't start at the "right" directory,
* whereas union_do_lookup is told where to start.
*/
int
union_vn_create(struct vnode **vpp, struct union_node *un, struct lwp *l)
{
struct vnode *vp;
kauth_cred_t cred = l->l_cred;
struct vattr vat;
struct vattr *vap = &vat;
int fmode = FFLAGS(O_WRONLY|O_CREAT|O_TRUNC|O_EXCL);
int error;
int cmode = UN_FILEMODE & ~l->l_proc->p_cwdi->cwdi_cmask;
struct componentname cn;
*vpp = NULLVP;
vn_lock(un->un_dirvp, LK_EXCLUSIVE | LK_RETRY);
error = union_do_lookup(un->un_dirvp, &cn, l->l_cred,
un->un_path);
if (error) {
VOP_UNLOCK(un->un_dirvp);
return error;
}
/*
* Good - there was no race to create the file
* so go ahead and create it. The permissions
* on the file will be 0666 modified by the
* current user's umask. Access to the file, while
* it is unioned, will require access to the top *and*
* bottom files. Access when not unioned will simply
* require access to the top-level file.
* TODO: confirm choice of access permissions.
*/
vattr_null(vap);
vap->va_type = VREG;
vap->va_mode = cmode;
vp = NULL;
error = VOP_CREATE(un->un_dirvp, &vp, &cn, vap);
if (error) {
VOP_UNLOCK(un->un_dirvp);
return error;
}
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
VOP_UNLOCK(un->un_dirvp);
error = VOP_OPEN(vp, fmode, cred);
if (error) {
vput(vp);
return error;
}
vp->v_writecount++;
*vpp = vp;
return 0;
}
int
union_vn_close(struct vnode *vp, int fmode, kauth_cred_t cred, struct lwp *l)
{
if (fmode & FWRITE)
--vp->v_writecount;
return (VOP_CLOSE(vp, fmode, cred));
}
void
union_removed_upper(struct union_node *un)
{
struct vnode *vp = UNIONTOV(un);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
#if 1
/*
* We do not set the uppervp to NULLVP here, because lowervp
* may also be NULLVP, so this routine would end up creating
* a bogus union node with no upper or lower VP (that causes
* pain in many places that assume at least one VP exists).
* Since we've removed this node from the cache hash chains,
* it won't be found again. When all current holders
* release it, union_inactive() will vgone() it.
*/
union_diruncache(un);
#else
union_newupper(un, NULLVP);
#endif
VOP_UNLOCK(vp);
mutex_enter(&uhash_lock);
if (un->un_cflags & UN_CACHED) {
un->un_cflags &= ~UN_CACHED;
LIST_REMOVE(un, un_cache);
}
mutex_exit(&uhash_lock);
}
#if 0
struct vnode *
union_lowervp(struct vnode *vp)
{
struct union_node *un = VTOUNION(vp);
if ((un->un_lowervp != NULLVP) &&
(vp->v_type == un->un_lowervp->v_type)) {
if (vget(un->un_lowervp, 0, true /* wait */) == 0)
return (un->un_lowervp);
}
return (NULLVP);
}
#endif
/*
* determine whether a whiteout is needed
* during a remove/rmdir operation.
*/
int
union_dowhiteout(struct union_node *un, kauth_cred_t cred)
{
struct vattr va;
if (un->un_lowervp != NULLVP)
return (1);
if (VOP_GETATTR(un->un_uppervp, &va, cred) == 0 &&
(va.va_flags & OPAQUE))
return (1);
return (0);
}
static void
union_dircache_r(struct vnode *vp, struct vnode ***vppp, int *cntp)
{
struct union_node *un;
if (vp->v_op != union_vnodeop_p) {
if (vppp) {
vref(vp);
*(*vppp)++ = vp;
if (--(*cntp) == 0)
panic("union: dircache table too small");
} else {
(*cntp)++;
}
return;
}
un = VTOUNION(vp);
if (un->un_uppervp != NULLVP)
union_dircache_r(un->un_uppervp, vppp, cntp);
if (un->un_lowervp != NULLVP)
union_dircache_r(un->un_lowervp, vppp, cntp);
}
struct vnode *
union_dircache(struct vnode *vp, struct lwp *l)
{
int cnt;
struct vnode *nvp = NULLVP;
struct vnode **vpp;
struct vnode **dircache;
int error;
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
dircache = VTOUNION(vp)->un_dircache;
nvp = NULLVP;
if (dircache == 0) {
cnt = 0;
union_dircache_r(vp, 0, &cnt);
cnt++;
dircache = (struct vnode **)
malloc(cnt * sizeof(struct vnode *),
M_TEMP, M_WAITOK);
vpp = dircache;
union_dircache_r(vp, &vpp, &cnt);
VTOUNION(vp)->un_dircache = dircache;
*vpp = NULLVP;
vpp = dircache + 1;
} else {
vpp = dircache;
do {
if (*vpp++ == VTOUNION(vp)->un_uppervp)
break;
} while (*vpp != NULLVP);
}
if (*vpp == NULLVP)
goto out;
vref(*vpp);
error = union_allocvp(&nvp, vp->v_mount, NULLVP, NULLVP, 0, *vpp, NULLVP, 0);
if (!error) {
vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY);
VTOUNION(vp)->un_dircache = 0;
VTOUNION(nvp)->un_dircache = dircache;
}
out:
VOP_UNLOCK(vp);
return (nvp);
}
void
union_diruncache(struct union_node *un)
{
struct vnode **vpp;
KASSERT(VOP_ISLOCKED(UNIONTOV(un)) == LK_EXCLUSIVE);
if (un->un_dircache != 0) {
for (vpp = un->un_dircache; *vpp != NULLVP; vpp++)
vrele(*vpp);
free(un->un_dircache, M_TEMP);
un->un_dircache = 0;
}
}
/*
* Check whether node can rmdir (check empty).
*/
int
union_check_rmdir(struct union_node *un, kauth_cred_t cred)
{
int dirlen, eofflag, error;
char *dirbuf;
struct vattr va;
struct vnode *tvp;
struct dirent *dp, *edp;
struct componentname cn;
struct iovec aiov;
struct uio auio;
KASSERT(un->un_uppervp != NULL);
/* Check upper for being opaque. */
KASSERT(VOP_ISLOCKED(un->un_uppervp));
error = VOP_GETATTR(un->un_uppervp, &va, cred);
if (error || (va.va_flags & OPAQUE))
return error;
if (un->un_lowervp == NULL)
return 0;
/* Check lower for being empty. */
vn_lock(un->un_lowervp, LK_SHARED | LK_RETRY);
error = VOP_GETATTR(un->un_lowervp, &va, cred);
if (error) {
VOP_UNLOCK(un->un_lowervp);
return error;
}
dirlen = va.va_blocksize;
dirbuf = kmem_alloc(dirlen, KM_SLEEP);
/* error = 0; */
eofflag = 0;
auio.uio_offset = 0;
do {
aiov.iov_len = dirlen;
aiov.iov_base = dirbuf;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_resid = aiov.iov_len;
auio.uio_rw = UIO_READ;
UIO_SETUP_SYSSPACE(&auio);
error = VOP_READDIR(un->un_lowervp, &auio, cred, &eofflag,
NULL, NULL);
if (error)
break;
edp = (struct dirent *)&dirbuf[dirlen - auio.uio_resid];
for (dp = (struct dirent *)dirbuf;
error == 0 && dp < edp;
dp = (struct dirent *)((char *)dp + dp->d_reclen)) {
if (dp->d_reclen == 0) {
error = ENOTEMPTY;
break;
}
if (dp->d_type == DT_WHT ||
(dp->d_namlen == 1 && dp->d_name[0] == '.') ||
(dp->d_namlen == 2 && !memcmp(dp->d_name, "..", 2)))
continue;
/* Check for presence in the upper layer. */
cn.cn_nameiop = LOOKUP;
cn.cn_flags = ISLASTCN | RDONLY;
cn.cn_cred = cred;
cn.cn_nameptr = dp->d_name;
cn.cn_namelen = dp->d_namlen;
error = VOP_LOOKUP(un->un_uppervp, &tvp, &cn);
if (error == ENOENT && (cn.cn_flags & ISWHITEOUT)) {
error = 0;
continue;
}
if (error == 0)
vrele(tvp);
error = ENOTEMPTY;
}
} while (error == 0 && !eofflag);
kmem_free(dirbuf, dirlen);
VOP_UNLOCK(un->un_lowervp);
return error;
}
/*
* This hook is called from vn_readdir() to switch to lower directory
* entry after the upper directory is read.
*/
int
union_readdirhook(struct vnode **vpp, struct file *fp, struct lwp *l)
{
struct vnode *vp = *vpp, *lvp;
struct vattr va;
int error;
if (vp->v_op != union_vnodeop_p)
return (0);
/*
* If the directory is opaque,
* then don't show lower entries
*/
vn_lock(vp, LK_SHARED | LK_RETRY);
error = VOP_GETATTR(vp, &va, fp->f_cred);
VOP_UNLOCK(vp);
if (error || (va.va_flags & OPAQUE))
return error;
if ((lvp = union_dircache(vp, l)) == NULLVP)
return (0);
error = VOP_OPEN(lvp, FREAD, fp->f_cred);
if (error) {
vput(lvp);
return (error);
}
VOP_UNLOCK(lvp);
fp->f_vnode = lvp;
fp->f_offset = 0;
error = vn_close(vp, FREAD, fp->f_cred);
if (error)
return (error);
*vpp = lvp;
return (0);
}