NetBSD/sys/dev/usb/uaudio.c
2000-03-29 18:24:52 +00:00

2350 lines
58 KiB
C

/* $NetBSD: uaudio.c,v 1.23 2000/03/29 18:24:53 augustss Exp $ */
/*
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (augustss@carlstedt.se) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB audio specs: http://www.teleport.com/~usb/data/Audio10.pdf
* http://www.teleport.com/~usb/data/Frmts10.pdf
* http://www.teleport.com/~usb/data/Termt10.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/file.h>
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/device.h>
#include <sys/poll.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/uaudioreg.h>
#ifdef UAUDIO_DEBUG
#define DPRINTF(x) if (uaudiodebug) logprintf x
#define DPRINTFN(n,x) if (uaudiodebug>(n)) logprintf x
int uaudiodebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define UAUDIO_NCHANBUFS 6 /* number of outstanding request */
#define UAUDIO_NFRAMES 20 /* ms of sound in each request */
#define MIX_MAX_CHAN 8
struct mixerctl {
u_int16_t wValue[MIX_MAX_CHAN]; /* using nchan */
u_int16_t wIndex;
u_int8_t nchan;
u_int8_t type;
#define MIX_ON_OFF 1
#define MIX_SIGNED_16 2
#define MIX_UNSIGNED_16 3
#define MIX_SIGNED_8 4
#define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1)
#define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16)
int minval, maxval;
u_int8_t class;
char ctlname[MAX_AUDIO_DEV_LEN];
char *ctlunit;
};
#define MAKE(h,l) (((h) << 8) | (l))
struct as_info {
u_int8_t alt;
u_int8_t encoding;
usb_interface_descriptor_t *idesc;
usb_endpoint_descriptor_audio_t *edesc;
struct usb_audio_streaming_type1_descriptor *asf1desc;
};
struct chan {
int terminal; /* terminal id */
void (*intr) __P((void *)); /* dma completion intr handler */
void *arg; /* arg for intr() */
usbd_pipe_handle pipe;
int dir; /* direction, UE_DIR_XXX */
u_int sample_size;
u_int sample_rate;
u_int bytes_per_frame;
u_int fraction; /* fraction/1000 is the extra samples/frame */
u_int residue; /* accumulates the fractional samples */
u_char *start; /* upper layer buffer start */
u_char *end; /* upper layer buffer end */
u_char *cur; /* current position in upper layer buffer */
int blksize; /* chunk size to report up */
int transferred; /* transferred bytes not reported up */
int curchanbuf;
struct chanbuf {
struct chan *chan;
usbd_xfer_handle xfer;
u_char *buffer;
u_int16_t sizes[UAUDIO_NFRAMES];
u_int16_t size;
} chanbufs[UAUDIO_NCHANBUFS];
struct uaudio_softc *sc; /* our softc */
};
struct uaudio_softc {
USBBASEDEVICE sc_dev; /* base device */
usbd_device_handle sc_udev; /* USB device */
int sc_ac_iface; /* Audio Control interface */
int sc_as_iface; /* Audio Streaming interface */
usbd_interface_handle sc_ac_ifaceh;
usbd_interface_handle sc_as_ifaceh;
struct chan sc_chan;
int sc_curaltidx;
int sc_nullalt;
int sc_audio_rev;
struct as_info *sc_alts;
int sc_nalts;
int sc_props;
int sc_altflags;
#define HAS_8 0x01
#define HAS_16 0x02
#define HAS_8U 0x04
#define HAS_ALAW 0x08
#define HAS_MULAW 0x10
struct mixerctl *sc_ctls;
int sc_nctls;
device_ptr_t sc_audiodev;
char sc_dying;
};
#define UAC_OUTPUT 0
#define UAC_INPUT 1
#define UAC_EQUAL 2
Static usbd_status uaudio_identify_ac __P((struct uaudio_softc *sc,
usb_config_descriptor_t *cdesc));
Static usbd_status uaudio_identify_as __P((struct uaudio_softc *sc,
usb_config_descriptor_t *cdesc));
Static usbd_status uaudio_process_as __P((struct uaudio_softc *sc,
char *buf, int *offsp, int size,
usb_interface_descriptor_t *id));
Static void uaudio_add_alt __P((struct uaudio_softc *sc,
struct as_info *ai));
Static usb_interface_descriptor_t *uaudio_find_iface
__P((char *buf, int size, int *offsp, int subtype));
Static void uaudio_mixer_add_ctl __P((struct uaudio_softc *sc,
struct mixerctl *mp));
Static char *uaudio_id_name __P((struct uaudio_softc *sc,
usb_descriptor_t **dps, int id));
Static struct usb_audio_cluster uaudio_get_cluster __P((int id,
usb_descriptor_t **dps));
Static void uaudio_add_input __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_output __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_mixer __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_selector __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_feature __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_processing_updown
__P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_processing __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static void uaudio_add_extension __P((struct uaudio_softc *sc,
usb_descriptor_t *v, usb_descriptor_t **dps));
Static usbd_status uaudio_identify __P((struct uaudio_softc *sc,
usb_config_descriptor_t *cdesc));
Static int uaudio_signext __P((int type, int val));
Static int uaudio_value2bsd __P((struct mixerctl *mc, int val));
Static int uaudio_bsd2value __P((struct mixerctl *mc, int val));
Static int uaudio_get __P((struct uaudio_softc *sc, int type,
int which, int wValue, int wIndex, int len));
Static int uaudio_ctl_get __P((struct uaudio_softc *sc, int which,
struct mixerctl *mc, int chan));
Static void uaudio_set __P((struct uaudio_softc *sc, int type,
int which, int wValue, int wIndex, int l, int v));
Static void uaudio_ctl_set __P((struct uaudio_softc *sc, int which,
struct mixerctl *mc, int chan, int val));
Static usbd_status uaudio_set_speed __P((struct uaudio_softc *, int,
u_int));
Static usbd_status uaudio_chan_open __P((struct uaudio_softc *sc,
struct chan *ch));
Static void uaudio_chan_close __P((struct uaudio_softc *sc,
struct chan *ch));
Static usbd_status uaudio_chan_alloc_buffers __P((struct uaudio_softc *,
struct chan *));
Static void uaudio_chan_free_buffers __P((struct uaudio_softc *,
struct chan *));
Static void uaudio_chan_set_param __P((struct chan *ch,
struct audio_params *param, u_char *start,
u_char *end, int blksize));
Static void uaudio_chan_ptransfer __P((struct chan *ch));
Static void uaudio_chan_pintr __P((usbd_xfer_handle xfer,
usbd_private_handle priv, usbd_status status));
Static void uaudio_chan_rtransfer __P((struct chan *ch));
Static void uaudio_chan_rintr __P((usbd_xfer_handle xfer,
usbd_private_handle priv, usbd_status status));
Static int uaudio_open __P((void *, int));
Static void uaudio_close __P((void *));
Static int uaudio_drain __P((void *));
Static int uaudio_query_encoding __P((void *,
struct audio_encoding *));
Static int uaudio_set_params __P((void *, int, int,
struct audio_params *, struct audio_params *));
Static int uaudio_round_blocksize __P((void *, int));
Static int uaudio_trigger_output __P((void *, void *, void *,
int, void (*)(void *), void *,
struct audio_params *));
Static int uaudio_trigger_input __P((void *, void *, void *,
int, void (*)(void *), void *,
struct audio_params *));
Static int uaudio_halt_in_dma __P((void *));
Static int uaudio_halt_out_dma __P((void *));
Static int uaudio_getdev __P((void *, struct audio_device *));
Static int uaudio_mixer_set_port __P((void *, mixer_ctrl_t *));
Static int uaudio_mixer_get_port __P((void *, mixer_ctrl_t *));
Static int uaudio_query_devinfo __P((void *, mixer_devinfo_t *));
Static int uaudio_get_props __P((void *));
Static struct audio_hw_if uaudio_hw_if = {
uaudio_open,
uaudio_close,
uaudio_drain,
uaudio_query_encoding,
uaudio_set_params,
uaudio_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
uaudio_halt_out_dma,
uaudio_halt_in_dma,
NULL,
uaudio_getdev,
NULL,
uaudio_mixer_set_port,
uaudio_mixer_get_port,
uaudio_query_devinfo,
NULL,
NULL,
NULL,
NULL,
uaudio_get_props,
uaudio_trigger_output,
uaudio_trigger_input,
};
Static struct audio_device uaudio_device = {
"USB audio",
"",
"uaudio"
};
USB_DECLARE_DRIVER(uaudio);
USB_MATCH(uaudio)
{
USB_MATCH_START(uaudio, uaa);
usb_interface_descriptor_t *id;
if (uaa->iface == NULL)
return (UMATCH_NONE);
id = usbd_get_interface_descriptor(uaa->iface);
/* Trigger on the control interface. */
if (id == NULL ||
id->bInterfaceClass != UICLASS_AUDIO ||
id->bInterfaceSubClass != UISUBCLASS_AUDIOCONTROL ||
(usbd_get_quirks(uaa->device)->uq_flags & UQ_BAD_AUDIO))
return (UMATCH_NONE);
return (UMATCH_IFACECLASS_IFACESUBCLASS);
}
USB_ATTACH(uaudio)
{
USB_ATTACH_START(uaudio, sc, uaa);
usb_interface_descriptor_t *id;
usb_config_descriptor_t *cdesc;
char devinfo[1024];
usbd_status err;
int i;
usbd_devinfo(uaa->device, 0, devinfo);
printf(": %s\n", devinfo);
sc->sc_udev = uaa->device;
cdesc = usbd_get_config_descriptor(sc->sc_udev);
if (cdesc == NULL) {
printf("%s: failed to get configuration descriptor\n",
USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
err = uaudio_identify(sc, cdesc);
if (err) {
printf("%s: audio descriptors make no sense, error=%d\n",
USBDEVNAME(sc->sc_dev), err);
USB_ATTACH_ERROR_RETURN;
}
sc->sc_ac_ifaceh = uaa->iface;
/* Pick up the AS interface. */
for (i = 0; i < uaa->nifaces; i++) {
if (uaa->ifaces[i] != NULL) {
id = usbd_get_interface_descriptor(uaa->ifaces[i]);
if (id != NULL &&
id->bInterfaceNumber == sc->sc_as_iface) {
sc->sc_as_ifaceh = uaa->ifaces[i];
uaa->ifaces[i] = NULL;
break;
}
}
}
if (sc->sc_as_ifaceh == NULL) {
printf("%s: missing AS interface(s)\n",USBDEVNAME(sc->sc_dev));
USB_ATTACH_ERROR_RETURN;
}
printf("%s: streaming interface %d, audio rev %d.%02x\n",
USBDEVNAME(sc->sc_dev), sc->sc_as_iface,
sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff);
sc->sc_chan.sc = sc;
DPRINTF(("uaudio_attach: doing audio_attach_mi\n"));
#if defined(__OpenBSD__)
audio_attach_mi(&uaudio_hw_if, sc, &sc->sc_dev);
#else
sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, &sc->sc_dev);
#endif
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev,
USBDEV(sc->sc_dev));
USB_ATTACH_SUCCESS_RETURN;
}
int
uaudio_activate(self, act)
device_ptr_t self;
enum devact act;
{
struct uaudio_softc *sc = (struct uaudio_softc *)self;
int rv = 0;
switch (act) {
case DVACT_ACTIVATE:
return (EOPNOTSUPP);
break;
case DVACT_DEACTIVATE:
if (sc->sc_audiodev)
rv = config_deactivate(sc->sc_audiodev);
sc->sc_dying = 1;
break;
}
return (rv);
}
int
uaudio_detach(self, flags)
device_ptr_t self;
int flags;
{
struct uaudio_softc *sc = (struct uaudio_softc *)self;
int rv = 0;
/* Wait for outstanding requests to complete. */
usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES);
if (sc->sc_audiodev != NULL)
rv = config_detach(sc->sc_audiodev, flags);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
USBDEV(sc->sc_dev));
return (rv);
}
int
uaudio_query_encoding(addr, fp)
void *addr;
struct audio_encoding *fp;
{
struct uaudio_softc *sc = addr;
int flags = sc->sc_altflags;
int idx;
if (sc->sc_dying)
return (EIO);
if (sc->sc_nalts == 0 || flags == 0)
return (ENXIO);
idx = fp->index;
switch (idx) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = flags&HAS_8U ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = flags&HAS_MULAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = flags&HAS_ALAW ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = flags&HAS_8 ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return (0);
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
default:
return (EINVAL);
}
}
usb_interface_descriptor_t *
uaudio_find_iface(buf, size, offsp, subtype)
char *buf;
int size;
int *offsp;
int subtype;
{
usb_interface_descriptor_t *d;
while (*offsp < size) {
d = (void *)(buf + *offsp);
*offsp += d->bLength;
if (d->bDescriptorType == UDESC_INTERFACE &&
d->bInterfaceClass == UICLASS_AUDIO &&
d->bInterfaceSubClass == subtype)
return (d);
}
return (0);
}
void
uaudio_mixer_add_ctl(sc, mc)
struct uaudio_softc *sc;
struct mixerctl *mc;
{
if (sc->sc_nctls == NULL)
sc->sc_ctls = malloc(sizeof *mc, M_USBDEV, M_NOWAIT);
else
sc->sc_ctls = realloc(sc->sc_ctls,
(sc->sc_nctls+1) * sizeof *mc,
M_USBDEV, M_NOWAIT);
if (sc->sc_ctls == NULL) {
printf("uaudio_mixer_add_ctl: no memory\n");
return;
}
if (mc->type != MIX_ON_OFF) {
/* Determine min and max values. */
mc->minval = uaudio_signext(mc->type,
uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex,
MIX_SIZE(mc->type)));
mc->maxval = 1 + uaudio_signext(mc->type,
uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex,
MIX_SIZE(mc->type)));
} else {
mc->minval = 0;
mc->maxval = 1;
}
sc->sc_ctls[sc->sc_nctls++] = *mc;
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 2) {
int i;
DPRINTF(("uaudio_mixer_add_ctl: wValue=%04x",mc->wValue[0]));
for (i = 1; i < mc->nchan; i++)
DPRINTF((",%04x", mc->wValue[i]));
DPRINTF((" wIndex=%04x type=%d name='%s' unit='%s' "
"min=%d max=%d\n",
mc->wIndex, mc->type, mc->ctlname, mc->ctlunit,
mc->minval, mc->maxval));
}
#endif
}
char *
uaudio_id_name(sc, dps, id)
struct uaudio_softc *sc;
usb_descriptor_t **dps;
int id;
{
static char buf[32];
sprintf(buf, "i%d", id);
return (buf);
}
struct usb_audio_cluster
uaudio_get_cluster(id, dps)
int id;
usb_descriptor_t **dps;
{
struct usb_audio_cluster r;
usb_descriptor_t *dp;
int i;
for (i = 0; i < 25; i++) { /* avoid infinite loops */
dp = dps[id];
if (dp == 0)
goto bad;
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
#define p ((struct usb_audio_input_terminal *)dp)
r.bNrChannels = p->bNrChannels;
USETW(r.wChannelConfig, UGETW(p->wChannelConfig));
r.iChannelNames = p->iChannelNames;
#undef p
return (r);
case UDESCSUB_AC_OUTPUT:
#define p ((struct usb_audio_output_terminal *)dp)
id = p->bSourceId;
#undef p
break;
case UDESCSUB_AC_MIXER:
#define p ((struct usb_audio_mixer_unit *)dp)
r = *(struct usb_audio_cluster *)
&p->baSourceId[p->bNrInPins];
#undef p
return (r);
case UDESCSUB_AC_SELECTOR:
/* XXX This is not really right */
#define p ((struct usb_audio_selector_unit *)dp)
id = p->baSourceId[0];
#undef p
break;
case UDESCSUB_AC_FEATURE:
#define p ((struct usb_audio_feature_unit *)dp)
id = p->bSourceId;
#undef p
break;
case UDESCSUB_AC_PROCESSING:
#define p ((struct usb_audio_processing_unit *)dp)
r = *(struct usb_audio_cluster *)
&p->baSourceId[p->bNrInPins];
#undef p
return (r);
case UDESCSUB_AC_EXTENSION:
#define p ((struct usb_audio_extension_unit *)dp)
r = *(struct usb_audio_cluster *)
&p->baSourceId[p->bNrInPins];
#undef p
return (r);
default:
goto bad;
}
}
bad:
printf("uaudio_get_cluster: bad data\n");
memset(&r, 0, sizeof r);
return (r);
}
void
uaudio_add_input(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
#ifdef UAUDIO_DEBUG
struct usb_audio_input_terminal *d =
(struct usb_audio_input_terminal *)v;
DPRINTFN(2,("uaudio_add_input: bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d "
"iChannelNames=%d iTerminal=%d\n",
d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal,
d->bNrChannels, UGETW(d->wChannelConfig),
d->iChannelNames, d->iTerminal));
#endif
}
void
uaudio_add_output(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
#ifdef UAUDIO_DEBUG
struct usb_audio_output_terminal *d =
(struct usb_audio_output_terminal *)v;
DPRINTFN(2,("uaudio_add_output: bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bSourceId=%d iTerminal=%d\n",
d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal,
d->bSourceId, d->iTerminal));
#endif
}
void
uaudio_add_mixer(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
struct usb_audio_mixer_unit *d = (struct usb_audio_mixer_unit *)v;
struct usb_audio_mixer_unit_1 *d1;
int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k;
uByte *bm;
struct mixerctl mix;
DPRINTFN(2,("uaudio_add_mixer: bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins));
/* Compute the number of input channels */
ichs = 0;
for (i = 0; i < d->bNrInPins; i++)
ichs += uaudio_get_cluster(d->baSourceId[i], dps).bNrChannels;
/* and the number of output channels */
d1 = (struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins];
ochs = d1->bNrChannels;
DPRINTFN(2,("uaudio_add_mixer: ichs=%d ochs=%d\n", ichs, ochs));
bm = d1->bmControls;
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.class = -1;
mix.type = MIX_SIGNED_16;
mix.ctlunit = AudioNvolume;
#define BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1)
for (p = i = 0; i < d->bNrInPins; i++) {
chs = uaudio_get_cluster(d->baSourceId[i], dps).bNrChannels;
mc = 0;
for (c = 0; c < chs; c++) {
mo = 0;
for (o = 0; o < ochs; o++) {
bno = (p + c) * ochs + o;
if (BIT(bno))
mo++;
}
if (mo == 1)
mc++;
}
if (mc == chs && chs <= MIX_MAX_CHAN) {
k = 0;
for (c = 0; c < chs; c++)
for (o = 0; o < ochs; o++) {
bno = (p + c) * ochs + o;
if (BIT(bno))
mix.wValue[k++] =
MAKE(p+c+1, o+1);
}
sprintf(mix.ctlname, "mix%d-%s", d->bUnitId,
uaudio_id_name(sc, dps, d->baSourceId[i]));
mix.nchan = chs;
uaudio_mixer_add_ctl(sc, &mix);
} else {
/* XXX */
}
#undef BIT
p += chs;
}
}
void
uaudio_add_selector(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
#ifdef UAUDIO_DEBUG
struct usb_audio_selector_unit *d =
(struct usb_audio_selector_unit *)v;
DPRINTFN(2,("uaudio_add_selector: bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins));
#endif
printf("uaudio_add_selector: NOT IMPLEMENTED\n");
}
void
uaudio_add_feature(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
struct usb_audio_feature_unit *d = (struct usb_audio_feature_unit *)v;
uByte *ctls = d->bmaControls;
int ctlsize = d->bControlSize;
int nchan = (d->bLength - 7) / ctlsize;
int srcId = d->bSourceId;
u_int fumask, mmask, cmask;
struct mixerctl mix;
int chan, ctl, i, unit;
#define GET(i) (ctls[(i)*ctlsize] | \
(ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0))
mmask = GET(0);
/* Figure out what we can control */
for (cmask = 0, chan = 1; chan < nchan; chan++) {
DPRINTFN(9,("uaudio_add_feature: chan=%d mask=%x\n",
chan, GET(chan)));
cmask |= GET(chan);
}
DPRINTFN(1,("uaudio_add_feature: bUnitId=%d bSourceId=%d, "
"%d channels, mmask=0x%04x, cmask=0x%04x\n",
d->bUnitId, srcId, nchan, mmask, cmask));
if (nchan > MIX_MAX_CHAN)
nchan = MIX_MAX_CHAN;
unit = d->bUnitId;
mix.wIndex = MAKE(unit, sc->sc_ac_iface);
for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) {
fumask = FU_MASK(ctl);
DPRINTFN(4,("uaudio_add_feature: ctl=%d fumask=0x%04x\n",
ctl, fumask));
if (mmask & fumask) {
mix.nchan = 1;
mix.wValue[0] = MAKE(ctl, 0);
} else if (cmask & fumask) {
mix.nchan = nchan - 1;
for (i = 1; i < nchan; i++) {
if (GET(i) & fumask)
mix.wValue[i-1] = MAKE(ctl, i);
else
mix.wValue[i-1] = -1;
}
} else {
continue;
}
#undef GET
mix.class = -1; /* XXX */
switch (ctl) {
case MUTE_CONTROL:
mix.type = MIX_ON_OFF;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNmute);
mix.ctlunit = "";
break;
case VOLUME_CONTROL:
mix.type = MIX_SIGNED_16;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNmaster);
mix.ctlunit = AudioNvolume;
break;
case BASS_CONTROL:
mix.type = MIX_SIGNED_8;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNbass);
mix.ctlunit = AudioNbass;
break;
case MID_CONTROL:
mix.type = MIX_SIGNED_8;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNmid);
mix.ctlunit = AudioNmid;
break;
case TREBLE_CONTROL:
mix.type = MIX_SIGNED_8;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNtreble);
mix.ctlunit = AudioNtreble;
break;
case GRAPHIC_EQUALIZER_CONTROL:
continue; /* XXX don't add anything */
break;
case AGC_CONTROL:
mix.type = MIX_ON_OFF;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNagc);
mix.ctlunit = "";
break;
case DELAY_CONTROL:
mix.type = MIX_UNSIGNED_16;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNdelay);
mix.ctlunit = "4 ms";
break;
case BASS_BOOST_CONTROL:
mix.type = MIX_ON_OFF;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNbassboost);
mix.ctlunit = "";
break;
case LOUDNESS_CONTROL:
mix.type = MIX_ON_OFF;
sprintf(mix.ctlname, "fea%d-%s-%s", unit,
uaudio_id_name(sc, dps, srcId),
AudioNloudness);
mix.ctlunit = "";
break;
}
uaudio_mixer_add_ctl(sc, &mix);
}
}
void
uaudio_add_processing_updown(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
struct usb_audio_processing_unit *d =
(struct usb_audio_processing_unit *)v;
struct usb_audio_processing_unit_1 *d1 =
(struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins];
struct usb_audio_processing_unit_updown *ud =
(struct usb_audio_processing_unit_updown *)
&d1->bmControls[d1->bControlSize];
struct mixerctl mix;
int i;
DPRINTFN(2,("uaudio_add_processing_updown: bUnitId=%d bNrModes=%d\n",
d->bUnitId, ud->bNrModes));
if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) {
DPRINTF(("uaudio_add_processing_updown: no mode select\n"));
return;
}
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0);
mix.class = -1;
mix.type = MIX_ON_OFF; /* XXX */
mix.ctlunit = "";
sprintf(mix.ctlname, "pro%d-mode", d->bUnitId);
for (i = 0; i < ud->bNrModes; i++) {
DPRINTFN(2,("uaudio_add_processing_updown: i=%d bm=0x%x\n",
i, UGETW(ud->waModes[i])));
/* XXX */
}
uaudio_mixer_add_ctl(sc, &mix);
}
void
uaudio_add_processing(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
struct usb_audio_processing_unit *d =
(struct usb_audio_processing_unit *)v;
struct usb_audio_processing_unit_1 *d1 =
(struct usb_audio_processing_unit_1 *)&d->baSourceId[d->bNrInPins];
int ptype = UGETW(d->wProcessType);
struct mixerctl mix;
DPRINTFN(2,("uaudio_add_processing: wProcessType=%d bUnitId=%d "
"bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins));
if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) {
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0);
mix.class = -1;
mix.type = MIX_ON_OFF;
mix.ctlunit = "";
sprintf(mix.ctlname, "pro%d.%d-enable", d->bUnitId, ptype);
uaudio_mixer_add_ctl(sc, &mix);
}
switch(ptype) {
case UPDOWNMIX_PROCESS:
uaudio_add_processing_updown(sc, v, dps);
break;
case DOLBY_PROLOGIC_PROCESS:
case P3D_STEREO_EXTENDER_PROCESS:
case REVERBATION_PROCESS:
case CHORUS_PROCESS:
case DYN_RANGE_COMP_PROCESS:
default:
#ifdef UAUDIO_DEBUG
printf("uaudio_add_processing: unit %d, type=%d not impl.\n",
d->bUnitId, ptype);
#endif
break;
}
}
void
uaudio_add_extension(sc, v, dps)
struct uaudio_softc *sc;
usb_descriptor_t *v;
usb_descriptor_t **dps;
{
struct usb_audio_extension_unit *d =
(struct usb_audio_extension_unit *)v;
struct usb_audio_extension_unit_1 *d1 =
(struct usb_audio_extension_unit_1 *)&d->baSourceId[d->bNrInPins];
struct mixerctl mix;
DPRINTFN(2,("uaudio_add_extension: bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins));
if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) {
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0);
mix.class = -1;
mix.type = MIX_ON_OFF;
mix.ctlunit = "";
sprintf(mix.ctlname, "ext%d-enable", d->bUnitId);
uaudio_mixer_add_ctl(sc, &mix);
}
}
usbd_status
uaudio_identify(sc, cdesc)
struct uaudio_softc *sc;
usb_config_descriptor_t *cdesc;
{
usbd_status err;
err = uaudio_identify_ac(sc, cdesc);
if (err)
return (err);
return (uaudio_identify_as(sc, cdesc));
}
void
uaudio_add_alt(sc, ai)
struct uaudio_softc *sc;
struct as_info *ai;
{
if (sc->sc_nalts == NULL)
sc->sc_alts = malloc(sizeof *ai, M_USBDEV, M_NOWAIT);
else
sc->sc_alts = realloc(sc->sc_alts,
(sc->sc_nalts+1) * sizeof *ai,
M_USBDEV, M_NOWAIT);
if (sc->sc_alts == NULL) {
printf("uaudio_add_alt: no memory\n");
return;
}
DPRINTFN(2,("uaudio_add_alt: adding alt=%d, enc=%d\n",
ai->alt, ai->encoding));
sc->sc_alts[sc->sc_nalts++] = *ai;
}
usbd_status
uaudio_process_as(sc, buf, offsp, size, id)
struct uaudio_softc *sc;
char *buf;
int *offsp;
#define offs (*offsp)
int size;
usb_interface_descriptor_t *id;
{
struct usb_audio_streaming_interface_descriptor *asid;
struct usb_audio_streaming_type1_descriptor *asf1d;
usb_endpoint_descriptor_audio_t *ed;
struct usb_audio_streaming_endpoint_descriptor *sed;
int format, chan, prec, enc;
int dir, type;
struct as_info ai;
asid = (void *)(buf + offs);
if (asid->bDescriptorType != UDESC_CS_INTERFACE ||
asid->bDescriptorSubtype != AS_GENERAL)
return (USBD_INVAL);
offs += asid->bLength;
if (offs > size)
return (USBD_INVAL);
asf1d = (void *)(buf + offs);
if (asf1d->bDescriptorType != UDESC_CS_INTERFACE ||
asf1d->bDescriptorSubtype != FORMAT_TYPE)
return (USBD_INVAL);
offs += asf1d->bLength;
if (offs > size)
return (USBD_INVAL);
if (asf1d->bFormatType != FORMAT_TYPE_I) {
printf("%s: ignored setting with type %d format\n",
USBDEVNAME(sc->sc_dev), UGETW(asid->wFormatTag));
return (USBD_NORMAL_COMPLETION);
}
ed = (void *)(buf + offs);
if (ed->bDescriptorType != UDESC_ENDPOINT)
return (USBD_INVAL);
DPRINTF(("uaudio_process_as: endpoint bLength=%d bDescriptorType=%d "
"bEndpointAddress=%d bmAttributes=0x%x wMaxPacketSize=%d "
"bInterval=%d bRefresh=%d bSynchAddress=%d\n",
ed->bLength, ed->bDescriptorType, ed->bEndpointAddress,
ed->bmAttributes, UGETW(ed->wMaxPacketSize),
ed->bInterval, ed->bRefresh, ed->bSynchAddress));
offs += ed->bLength;
if (offs > size)
return (USBD_INVAL);
if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS)
return (USBD_INVAL);
dir = UE_GET_DIR(ed->bEndpointAddress);
type = UE_GET_ISO_TYPE(ed->bmAttributes);
/* We can't handle endpoints that need a sync pipe. */
if (dir == UE_DIR_IN ? type == UE_ISO_ADAPT : type == UE_ISO_ASYNC) {
printf("%s: ignored %sput endpoint of type 0x%x\n",
USBDEVNAME(sc->sc_dev),
dir == UE_DIR_IN ? "in" : "out",
ed->bmAttributes & UE_ISO_TYPE);
return (USBD_NORMAL_COMPLETION);
}
sed = (void *)(buf + offs);
if (sed->bDescriptorType != UDESC_CS_ENDPOINT ||
sed->bDescriptorSubtype != AS_GENERAL)
return (USBD_INVAL);
offs += sed->bLength;
if (offs > size)
return (USBD_INVAL);
format = UGETW(asid->wFormatTag);
chan = asf1d->bNrChannels;
prec = asf1d->bBitResolution;
if (prec != 8 && prec != 16) {
#ifdef AUDIO_DEBUG
printf("%s: ignored setting with precision %d\n",
USBDEVNAME(sc->sc_dev), prec);
#endif
return (USBD_NORMAL_COMPLETION);
}
switch (format) {
case UA_FMT_PCM:
sc->sc_altflags |= prec == 8 ? HAS_8 : HAS_16;
enc = AUDIO_ENCODING_SLINEAR_LE;
break;
case UA_FMT_PCM8:
enc = AUDIO_ENCODING_ULINEAR_LE;
sc->sc_altflags |= HAS_8U;
break;
case UA_FMT_ALAW:
enc = AUDIO_ENCODING_ALAW;
sc->sc_altflags |= HAS_ALAW;
break;
case UA_FMT_MULAW:
enc = AUDIO_ENCODING_ULAW;
sc->sc_altflags |= HAS_MULAW;
break;
default:
printf("%s: ignored setting with format %d\n",
USBDEVNAME(sc->sc_dev), format);
return (USBD_NORMAL_COMPLETION);
}
DPRINTFN(1,("uaudio_identify: alt=%d enc=%d chan=%d prec=%d\n",
id->bAlternateSetting, enc, chan, prec));
ai.alt = id->bAlternateSetting;
ai.encoding = enc;
ai.idesc = id;
ai.edesc = ed;
ai.asf1desc = asf1d;
uaudio_add_alt(sc, &ai);
sc->sc_chan.terminal = asid->bTerminalLink; /* XXX */
sc->sc_chan.dir = dir;
return (USBD_NORMAL_COMPLETION);
}
#undef offs
usbd_status
uaudio_identify_as(sc, cdesc)
struct uaudio_softc *sc;
usb_config_descriptor_t *cdesc;
{
usb_interface_descriptor_t *id;
usbd_status err;
char *buf;
int size, offs;
size = UGETW(cdesc->wTotalLength);
buf = (char *)cdesc;
/* Locate the AudioStreaming interface descriptor. */
offs = 0;
id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOSTREAM);
if (id == NULL)
return (USBD_INVAL);
sc->sc_as_iface = id->bInterfaceNumber;
DPRINTF(("uaudio_identify_as: AS interface is %d\n", sc->sc_as_iface));
sc->sc_chan.terminal = -1;
/* Loop through all the alternate settings. */
while (offs <= size) {
switch (id->bNumEndpoints) {
case 0:
DPRINTFN(2, ("uaudio_identify: AS null alt=%d\n",
id->bAlternateSetting));
sc->sc_nullalt = id->bAlternateSetting;
break;
case 1:
err = uaudio_process_as(sc, buf, &offs, size, id);
break;
default:
#ifdef AUDIO_DEBUG
printf("%s: ignored audio interface with %d "
"endpoints\n",
USBDEVNAME(sc->sc_dev), id->bNumEndpoints);
#endif
break;
}
id = uaudio_find_iface(buf, size, &offs,UISUBCLASS_AUDIOSTREAM);
if (id == NULL)
break;
}
if (offs > size)
return (USBD_INVAL);
DPRINTF(("uaudio_identify_as: %d alts available\n", sc->sc_nalts));
if (sc->sc_chan.terminal < 0) {
printf("%s: no useable endpoint found\n",
USBDEVNAME(sc->sc_dev));
return (USBD_INVAL);
}
return (USBD_NORMAL_COMPLETION);
}
usbd_status
uaudio_identify_ac(sc, cdesc)
struct uaudio_softc *sc;
usb_config_descriptor_t *cdesc;
{
usb_interface_descriptor_t *id;
struct usb_audio_control_descriptor *acdp;
usb_descriptor_t *dp, *dps[256];
char *buf, *ibuf, *ibufend;
int size, offs, aclen, ndps, i;
size = UGETW(cdesc->wTotalLength);
buf = (char *)cdesc;
/* Locate the AudioControl interface descriptor. */
offs = 0;
id = uaudio_find_iface(buf, size, &offs, UISUBCLASS_AUDIOCONTROL);
if (id == NULL)
return (USBD_INVAL);
if (offs + sizeof *acdp > size)
return (USBD_INVAL);
sc->sc_ac_iface = id->bInterfaceNumber;
DPRINTFN(2,("uaudio_identify: AC interface is %d\n", sc->sc_ac_iface));
/* A class-specific AC interface header should follow. */
ibuf = buf + offs;
acdp = (struct usb_audio_control_descriptor *)ibuf;
if (acdp->bDescriptorType != UDESC_CS_INTERFACE ||
acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER)
return (USBD_INVAL);
aclen = UGETW(acdp->wTotalLength);
if (offs + aclen > size)
return (USBD_INVAL);
if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC) &&
UGETW(acdp->bcdADC) != UAUDIO_VERSION)
return (USBD_INVAL);
sc->sc_audio_rev = UGETW(acdp->bcdADC);
DPRINTFN(2,("uaudio_identify: found AC header, vers=%03x, len=%d\n",
sc->sc_audio_rev, aclen));
sc->sc_nullalt = -1;
/* Scan through all the AC specific descriptors */
ibufend = ibuf + aclen;
dp = (usb_descriptor_t *)ibuf;
ndps = 0;
memset(dps, 0, sizeof dps);
for (;;) {
ibuf += dp->bLength;
if (ibuf >= ibufend)
break;
dp = (usb_descriptor_t *)ibuf;
if (ibuf + dp->bLength > ibufend)
return (USBD_INVAL);
if (dp->bDescriptorType != UDESC_CS_INTERFACE) {
printf("uaudio_identify: skip desc type=0x%02x\n",
dp->bDescriptorType);
continue;
}
i = ((struct usb_audio_input_terminal *)dp)->bTerminalId;
dps[i] = dp;
if (i > ndps)
ndps = i;
}
ndps++;
for (i = 0; i < ndps; i++) {
dp = dps[i];
if (dp == NULL)
continue;
DPRINTF(("uaudio_identify: subtype=%d\n",
dp->bDescriptorSubtype));
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_HEADER:
printf("uaudio_identify: unexpected AC header\n");
break;
case UDESCSUB_AC_INPUT:
uaudio_add_input(sc, dp, dps);
break;
case UDESCSUB_AC_OUTPUT:
uaudio_add_output(sc, dp, dps);
break;
case UDESCSUB_AC_MIXER:
uaudio_add_mixer(sc, dp, dps);
break;
case UDESCSUB_AC_SELECTOR:
uaudio_add_selector(sc, dp, dps);
break;
case UDESCSUB_AC_FEATURE:
uaudio_add_feature(sc, dp, dps);
break;
case UDESCSUB_AC_PROCESSING:
uaudio_add_processing(sc, dp, dps);
break;
case UDESCSUB_AC_EXTENSION:
uaudio_add_extension(sc, dp, dps);
break;
default:
printf("uaudio_identify: bad AC desc subtype=0x%02x\n",
dp->bDescriptorSubtype);
break;
}
}
return (USBD_NORMAL_COMPLETION);
}
int
uaudio_query_devinfo(addr, mi)
void *addr;
mixer_devinfo_t *mi;
{
struct uaudio_softc *sc = addr;
struct mixerctl *mc;
int n, nctls;
DPRINTFN(2,("uaudio_query_devinfo: index=%d\n", mi->index));
if (sc->sc_dying)
return (EIO);
n = mi->index;
nctls = sc->sc_nctls;
if (n < 0 || n >= nctls) {
switch (n - nctls) {
case UAC_OUTPUT:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = nctls + UAC_OUTPUT;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strcpy(mi->label.name, AudioCoutputs);
return (0);
case UAC_INPUT:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = nctls + UAC_INPUT;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strcpy(mi->label.name, AudioCinputs);
return (0);
case UAC_EQUAL:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = nctls + UAC_EQUAL;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strcpy(mi->label.name, AudioCequalization);
return (0);
default:
return (ENXIO);
}
}
mc = &sc->sc_ctls[n];
strncpy(mi->label.name, mc->ctlname, MAX_AUDIO_DEV_LEN);
mi->mixer_class = mc->class;
mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */
switch (mc->type) {
case MIX_ON_OFF:
mi->type = AUDIO_MIXER_ENUM;
mi->un.e.num_mem = 2;
strcpy(mi->un.e.member[0].label.name, AudioNoff);
mi->un.e.member[0].ord = 0;
strcpy(mi->un.e.member[1].label.name, AudioNon);
mi->un.e.member[1].ord = 1;
break;
default:
mi->type = AUDIO_MIXER_VALUE;
strncpy(mi->un.v.units.name, mc->ctlunit, MAX_AUDIO_DEV_LEN);
mi->un.v.num_channels = mc->nchan;
break;
}
return (0);
}
int
uaudio_open(addr, flags)
void *addr;
int flags;
{
struct uaudio_softc *sc = addr;
DPRINTF(("uaudio_open: sc=%p\n", sc));
if (sc->sc_dying)
return (EIO);
if (sc->sc_chan.terminal < 0)
return (ENXIO);
if ((flags & FREAD) && sc->sc_chan.dir != UE_DIR_IN)
return (EACCES);
if ((flags & FWRITE) && sc->sc_chan.dir != UE_DIR_OUT)
return (EACCES);
sc->sc_chan.intr = 0;
return (0);
}
/*
* Close function is called at splaudio().
*/
void
uaudio_close(addr)
void *addr;
{
struct uaudio_softc *sc = addr;
DPRINTF(("uaudio_close: sc=%p\n", sc));
uaudio_halt_in_dma(sc);
uaudio_halt_out_dma(sc);
sc->sc_chan.intr = 0;
}
int
uaudio_drain(addr)
void *addr;
{
struct uaudio_softc *sc = addr;
usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES);
return (0);
}
int
uaudio_halt_out_dma(addr)
void *addr;
{
struct uaudio_softc *sc = addr;
DPRINTF(("uaudio_halt_out_dma: enter\n"));
if (sc->sc_chan.pipe != NULL) {
uaudio_chan_close(sc, &sc->sc_chan);
sc->sc_chan.pipe = 0;
uaudio_chan_free_buffers(sc, &sc->sc_chan);
}
return (0);
}
int
uaudio_halt_in_dma(addr)
void *addr;
{
struct uaudio_softc *sc = addr;
DPRINTF(("uaudio_halt_in_dma: enter\n"));
if (sc->sc_chan.pipe != NULL) {
uaudio_chan_close(sc, &sc->sc_chan);
sc->sc_chan.pipe = 0;
uaudio_chan_free_buffers(sc, &sc->sc_chan);
}
return (0);
}
int
uaudio_getdev(addr, retp)
void *addr;
struct audio_device *retp;
{
struct uaudio_softc *sc = addr;
DPRINTF(("uaudio_mixer_getdev:\n"));
if (sc->sc_dying)
return (EIO);
*retp = uaudio_device;
return (0);
}
/*
* Make sure the block size is large enough to hold all outstanding transfers.
*/
int
uaudio_round_blocksize(addr, blk)
void *addr;
int blk;
{
struct uaudio_softc *sc = addr;
int bpf;
bpf = sc->sc_chan.bytes_per_frame + sc->sc_chan.sample_size;
/* XXX */
bpf *= UAUDIO_NFRAMES * UAUDIO_NCHANBUFS;
bpf = (bpf + 15) &~ 15;
if (blk < bpf)
blk = bpf;
#ifdef DIAGNOSTIC
if (blk <= 0) {
printf("uaudio_round_blocksize: blk=%d\n", blk);
blk = 512;
}
#endif
DPRINTFN(1,("uaudio_round_blocksize: blk=%d\n", blk));
return (blk);
}
int
uaudio_get_props(addr)
void *addr;
{
struct uaudio_softc *sc = addr;
return (sc->sc_props);
}
int
uaudio_get(sc, which, type, wValue, wIndex, len)
struct uaudio_softc *sc;
int type, which, wValue, wIndex, len;
{
usb_device_request_t req;
u_int8_t data[4];
usbd_status err;
int val;
if (wValue == -1)
return (0);
req.bmRequestType = type;
req.bRequest = which;
USETW(req.wValue, wValue);
USETW(req.wIndex, wIndex);
USETW(req.wLength, len);
DPRINTFN(2,("uaudio_get: type=0x%02x req=0x%02x wValue=0x%04x "
"wIndex=0x%04x len=%d\n",
type, which, wValue, wIndex, len));
err = usbd_do_request(sc->sc_udev, &req, &data);
if (err) {
DPRINTF(("uaudio_get: err=%s\n", usbd_errstr(err)));
return (-1);
}
switch (len) {
case 1:
val = data[0];
break;
case 2:
val = data[0] | (data[1] << 8);
break;
default:
DPRINTF(("uaudio_get: bad length=%d\n", len));
return (-1);
}
DPRINTFN(2,("uaudio_get: val=%d\n", val));
return (val);
}
void
uaudio_set(sc, which, type, wValue, wIndex, len, val)
struct uaudio_softc *sc;
int type, which, wValue, wIndex, len, val;
{
usb_device_request_t req;
u_int8_t data[4];
usbd_status err;
if (wValue == -1)
return;
req.bmRequestType = type;
req.bRequest = which;
USETW(req.wValue, wValue);
USETW(req.wIndex, wIndex);
USETW(req.wLength, len);
switch (len) {
case 1:
data[0] = val;
break;
case 2:
data[0] = val;
data[1] = val >> 8;
break;
default:
return;
}
DPRINTFN(2,("uaudio_set: type=0x%02x req=0x%02x wValue=0x%04x "
"wIndex=0x%04x len=%d, val=%d\n",
type, which, wValue, wIndex, len, val & 0xffff));
err = usbd_do_request(sc->sc_udev, &req, &data);
#ifdef UAUDIO_DEBUG
if (err)
DPRINTF(("uaudio_set: err=%d\n", err));
#endif
}
int
uaudio_signext(type, val)
int type, val;
{
if (!MIX_UNSIGNED(type)) {
if (MIX_SIZE(type) == 2)
val = (int16_t)val;
else
val = (int8_t)val;
}
return (val);
}
int
uaudio_value2bsd(mc, val)
struct mixerctl *mc;
int val;
{
DPRINTFN(5, ("uaudio_value2bsd: type=%03x val=%d min=%d max=%d ",
mc->type, val, mc->minval, mc->maxval));
if (mc->type == MIX_ON_OFF)
val = val != 0;
else
val = (uaudio_signext(mc->type, val) - mc->minval) * 256
/ (mc->maxval - mc->minval);
DPRINTFN(5, ("val'=%d\n", val));
return (val);
}
int
uaudio_bsd2value(mc, val)
struct mixerctl *mc;
int val;
{
DPRINTFN(5,("uaudio_bsd2value: type=%03x val=%d min=%d max=%d ",
mc->type, val, mc->minval, mc->maxval));
if (mc->type == MIX_ON_OFF)
val = val != 0;
else
val = val * (mc->maxval - mc->minval) / 256 + mc->minval;
DPRINTFN(5, ("val'=%d\n", val));
return (val);
}
int
uaudio_ctl_get(sc, which, mc, chan)
struct uaudio_softc *sc;
int which;
struct mixerctl *mc;
int chan;
{
int val;
DPRINTFN(5,("uaudio_ctl_get: which=%d chan=%d\n", which, chan));
val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan],
mc->wIndex, MIX_SIZE(mc->type));
return (uaudio_value2bsd(mc, val));
}
void
uaudio_ctl_set(sc, which, mc, chan, val)
struct uaudio_softc *sc;
int which;
struct mixerctl *mc;
int chan;
int val;
{
val = uaudio_bsd2value(mc, val);
uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan],
mc->wIndex, MIX_SIZE(mc->type), val);
}
int
uaudio_mixer_get_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct uaudio_softc *sc = addr;
struct mixerctl *mc;
int i, n, vals[MIX_MAX_CHAN], val;
DPRINTFN(2,("uaudio_mixer_get_port: index=%d\n", cp->dev));
if (sc->sc_dying)
return (EIO);
n = cp->dev;
if (n < 0 || n >= sc->sc_nctls)
return (ENXIO);
mc = &sc->sc_ctls[n];
if (mc->type == MIX_ON_OFF) {
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0);
} else {
if (cp->type != AUDIO_MIXER_VALUE)
return (EINVAL);
if (cp->un.value.num_channels != 1 &&
cp->un.value.num_channels != mc->nchan)
return (EINVAL);
for (i = 0; i < mc->nchan; i++)
vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i);
if (cp->un.value.num_channels == 1 && mc->nchan != 1) {
for (val = 0, i = 0; i < mc->nchan; i++)
val += vals[i];
vals[0] = val / mc->nchan;
}
for (i = 0; i < cp->un.value.num_channels; i++)
cp->un.value.level[i] = vals[i];
}
return (0);
}
int
uaudio_mixer_set_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct uaudio_softc *sc = addr;
struct mixerctl *mc;
int i, n, vals[MIX_MAX_CHAN];
DPRINTFN(2,("uaudio_mixer_set_port: index = %d\n", cp->dev));
if (sc->sc_dying)
return (EIO);
n = cp->dev;
if (n < 0 || n >= sc->sc_nctls)
return (ENXIO);
mc = &sc->sc_ctls[n];
if (mc->type == MIX_ON_OFF) {
if (cp->type != AUDIO_MIXER_ENUM)
return (EINVAL);
uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord);
} else {
if (cp->type != AUDIO_MIXER_VALUE)
return (EINVAL);
if (cp->un.value.num_channels == 1)
for (i = 0; i < mc->nchan; i++)
vals[i] = cp->un.value.level[0];
else if (cp->un.value.num_channels == mc->nchan)
for (i = 0; i < mc->nchan; i++)
vals[i] = cp->un.value.level[i];
else
return (EINVAL);
for (i = 0; i < mc->nchan; i++)
uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]);
}
return (0);
}
int
uaudio_trigger_input(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct uaudio_softc *sc = addr;
struct chan *ch = &sc->sc_chan;
usbd_status err;
int i, s;
if (sc->sc_dying)
return (EIO);
DPRINTFN(3,("uaudio_trigger_input: sc=%p start=%p end=%p "
"blksize=%d\n", sc, start, end, blksize));
uaudio_chan_set_param(ch, param, start, end, blksize);
DPRINTFN(3,("uaudio_trigger_input: sample_size=%d bytes/frame=%d "
"fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame,
ch->fraction));
err = uaudio_chan_alloc_buffers(sc, ch);
if (err)
return (EIO);
err = uaudio_chan_open(sc, ch);
if (err) {
uaudio_chan_free_buffers(sc, ch);
return (EIO);
}
sc->sc_chan.intr = intr;
sc->sc_chan.arg = arg;
s = splusb();
for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX -1 shouldn't be needed */
uaudio_chan_rtransfer(ch);
splx(s);
return (0);
}
int
uaudio_trigger_output(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct uaudio_softc *sc = addr;
struct chan *ch = &sc->sc_chan;
usbd_status err;
int i, s;
if (sc->sc_dying)
return (EIO);
DPRINTFN(3,("uaudio_trigger_output: sc=%p start=%p end=%p "
"blksize=%d\n", sc, start, end, blksize));
uaudio_chan_set_param(ch, param, start, end, blksize);
DPRINTFN(3,("uaudio_trigger_output: sample_size=%d bytes/frame=%d "
"fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame,
ch->fraction));
err = uaudio_chan_alloc_buffers(sc, ch);
if (err)
return (EIO);
err = uaudio_chan_open(sc, ch);
if (err) {
uaudio_chan_free_buffers(sc, ch);
return (EIO);
}
sc->sc_chan.intr = intr;
sc->sc_chan.arg = arg;
s = splusb();
for (i = 0; i < UAUDIO_NCHANBUFS-1; i++) /* XXX */
uaudio_chan_ptransfer(ch);
splx(s);
return (0);
}
/* Set up a pipe for a channel. */
usbd_status
uaudio_chan_open(sc, ch)
struct uaudio_softc *sc;
struct chan *ch;
{
struct as_info *as = &sc->sc_alts[sc->sc_curaltidx];
int endpt = as->edesc->bEndpointAddress;
usbd_status err;
DPRINTF(("uaudio_open_chan: endpt=0x%02x, speed=%d, alt=%d\n",
endpt, ch->sample_rate, as->alt));
/* Set alternate interface corresponding to the mode. */
err = usbd_set_interface(sc->sc_as_ifaceh, as->alt);
if (err)
return (err);
/* Some devices do not support this request, so ignore errors. */
#ifdef UAUDIO_DEBUG
err = uaudio_set_speed(sc, endpt, ch->sample_rate);
if (err)
DPRINTF(("uaudio_chan_open: set_speed failed err=%s\n",
usbd_errstr(err)));
#else
(void)uaudio_set_speed(sc, endpt, ch->sample_rate);
#endif
DPRINTF(("uaudio_open_chan: create pipe to 0x%02x\n", endpt));
err = usbd_open_pipe(sc->sc_as_ifaceh, endpt, 0, &ch->pipe);
return (err);
}
void
uaudio_chan_close(sc, ch)
struct uaudio_softc *sc;
struct chan *ch;
{
if (sc->sc_nullalt >= 0) {
DPRINTF(("uaudio_close_chan: set null alt=%d\n",
sc->sc_nullalt));
usbd_set_interface(sc->sc_as_ifaceh, sc->sc_nullalt);
}
usbd_abort_pipe(ch->pipe);
usbd_close_pipe(ch->pipe);
}
usbd_status
uaudio_chan_alloc_buffers(sc, ch)
struct uaudio_softc *sc;
struct chan *ch;
{
usbd_xfer_handle xfer;
void *buf;
int i, size;
size = (ch->bytes_per_frame + ch->sample_size) * UAUDIO_NFRAMES;
for (i = 0; i < UAUDIO_NCHANBUFS; i++) {
xfer = usbd_alloc_xfer(sc->sc_udev);
if (xfer == 0)
goto bad;
ch->chanbufs[i].xfer = xfer;
buf = usbd_alloc_buffer(xfer, size);
if (buf == 0) {
i++;
goto bad;
}
ch->chanbufs[i].buffer = buf;
ch->chanbufs[i].chan = ch;
}
return (USBD_NORMAL_COMPLETION);
bad:
while (--i >= 0)
/* implicit buffer free */
usbd_free_xfer(ch->chanbufs[i].xfer);
return (USBD_NOMEM);
}
void
uaudio_chan_free_buffers(sc, ch)
struct uaudio_softc *sc;
struct chan *ch;
{
int i;
for (i = 0; i < UAUDIO_NCHANBUFS; i++)
usbd_free_xfer(ch->chanbufs[i].xfer);
}
/* Called at splusb() */
void
uaudio_chan_ptransfer(ch)
struct chan *ch;
{
struct chanbuf *cb;
int i, n, size, residue, total;
if (ch->sc->sc_dying)
return;
/* Pick the next channel buffer. */
cb = &ch->chanbufs[ch->curchanbuf];
if (++ch->curchanbuf >= UAUDIO_NCHANBUFS)
ch->curchanbuf = 0;
/* Compute the size of each frame in the next transfer. */
residue = ch->residue;
total = 0;
for (i = 0; i < UAUDIO_NFRAMES; i++) {
size = ch->bytes_per_frame;
residue += ch->fraction;
if (residue >= USB_FRAMES_PER_SECOND) {
size += ch->sample_size;
residue -= USB_FRAMES_PER_SECOND;
}
cb->sizes[i] = size;
total += size;
}
ch->residue = residue;
cb->size = total;
/*
* Transfer data from upper layer buffer to channel buffer, taking
* care of wrapping the upper layer buffer.
*/
n = min(total, ch->end - ch->cur);
memcpy(cb->buffer, ch->cur, n);
ch->cur += n;
if (ch->cur >= ch->end)
ch->cur = ch->start;
if (total > n) {
total -= n;
memcpy(cb->buffer + n, ch->cur, total);
ch->cur += total;
}
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 8) {
DPRINTF(("uaudio_chan_ptransfer: buffer=%p, residue=0.%03d\n",
cb->buffer, ch->residue));
for (i = 0; i < UAUDIO_NFRAMES; i++) {
DPRINTF((" [%d] length %d\n", i, cb->sizes[i]));
}
}
#endif
DPRINTFN(5,("uaudio_chan_transfer: ptransfer xfer=%p\n", cb->xfer));
/* Fill the request */
usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes,
UAUDIO_NFRAMES, USBD_NO_COPY,
uaudio_chan_pintr);
(void)usbd_transfer(cb->xfer);
}
void
uaudio_chan_pintr(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct chanbuf *cb = priv;
struct chan *ch = cb->chan;
u_int32_t count;
int s;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
DPRINTFN(5,("uaudio_chan_pintr: count=%d, transferred=%d\n",
count, ch->transferred));
#ifdef DIAGNOSTIC
if (count != cb->size) {
printf("uaudio_chan_pintr: count(%d) != size(%d)\n",
count, cb->size);
}
#endif
ch->transferred += cb->size;
s = splaudio();
/* Call back to upper layer */
while (ch->transferred >= ch->blksize) {
ch->transferred -= ch->blksize;
DPRINTFN(5,("uaudio_chan_pintr: call %p(%p)\n",
ch->intr, ch->arg));
ch->intr(ch->arg);
}
splx(s);
/* start next transfer */
uaudio_chan_ptransfer(ch);
}
/* Called at splusb() */
void
uaudio_chan_rtransfer(ch)
struct chan *ch;
{
struct chanbuf *cb;
int i, size, residue, total;
if (ch->sc->sc_dying)
return;
/* Pick the next channel buffer. */
cb = &ch->chanbufs[ch->curchanbuf];
if (++ch->curchanbuf >= UAUDIO_NCHANBUFS)
ch->curchanbuf = 0;
/* Compute the size of each frame in the next transfer. */
residue = ch->residue;
total = 0;
for (i = 0; i < UAUDIO_NFRAMES; i++) {
size = ch->bytes_per_frame;
residue += ch->fraction;
if (residue >= USB_FRAMES_PER_SECOND) {
size += ch->sample_size;
residue -= USB_FRAMES_PER_SECOND;
}
cb->sizes[i] = size;
total += size;
}
ch->residue = residue;
cb->size = total;
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 8) {
DPRINTF(("uaudio_chan_rtransfer: buffer=%p, residue=0.%03d\n",
cb->buffer, ch->residue));
for (i = 0; i < UAUDIO_NFRAMES; i++) {
DPRINTF((" [%d] length %d\n", i, cb->sizes[i]));
}
}
#endif
DPRINTFN(5,("uaudio_chan_rtransfer: transfer xfer=%p\n", cb->xfer));
/* Fill the request */
usbd_setup_isoc_xfer(cb->xfer, ch->pipe, cb, cb->sizes,
UAUDIO_NFRAMES, USBD_NO_COPY,
uaudio_chan_rintr);
(void)usbd_transfer(cb->xfer);
}
void
uaudio_chan_rintr(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct chanbuf *cb = priv;
struct chan *ch = cb->chan;
u_int32_t count;
int s, n;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
DPRINTFN(5,("uaudio_chan_rintr: count=%d, transferred=%d\n",
count, ch->transferred));
#ifdef DIAGNOSTIC
if (count != cb->size) {
printf("uaudio_chan_pintr: count(%d) != size(%d)\n",
count, cb->size);
}
#endif
/*
* Transfer data from channel buffer to upper layer buffer, taking
* care of wrapping the upper layer buffer.
*/
n = min(count, ch->end - ch->cur);
memcpy(ch->cur, cb->buffer, n);
ch->cur += n;
if (ch->cur >= ch->end)
ch->cur = ch->start;
if (count > n) {
memcpy(ch->cur, cb->buffer + n, count - n);
ch->cur += count - n;
}
/* Call back to upper layer */
ch->transferred += cb->size;
s = splaudio();
while (ch->transferred >= ch->blksize) {
ch->transferred -= ch->blksize;
DPRINTFN(5,("uaudio_chan_pintr: call %p(%p)\n",
ch->intr, ch->arg));
ch->intr(ch->arg);
}
splx(s);
/* start next transfer */
uaudio_chan_rtransfer(ch);
}
void
uaudio_chan_set_param(ch, param, start, end, blksize)
struct chan *ch;
struct audio_params *param;
u_char *start, *end;
int blksize;
{
int samples_per_frame, sample_size;
sample_size = param->precision * param->channels / 8;
samples_per_frame = param->sample_rate / USB_FRAMES_PER_SECOND;
ch->fraction = param->sample_rate % USB_FRAMES_PER_SECOND;
ch->sample_size = sample_size;
ch->sample_rate = param->sample_rate;
ch->bytes_per_frame = samples_per_frame * sample_size;
ch->residue = 0;
ch->start = start;
ch->end = end;
ch->cur = start;
ch->blksize = blksize;
ch->transferred = 0;
ch->curchanbuf = 0;
}
int
uaudio_set_params(addr, setmode, usemode, p, r)
void *addr;
int setmode, usemode;
struct audio_params *p, *r;
{
struct uaudio_softc *sc = addr;
int flags = sc->sc_altflags;
int pfactor, rfactor;
int enc, i, j;
void (*pswcode) __P((void *, u_char *buf, int cnt));
void (*rswcode) __P((void *, u_char *buf, int cnt));
if (sc->sc_dying)
return (EIO);
if (sc->sc_chan.pipe != NULL)
return (EBUSY);
pswcode = rswcode = 0;
pfactor = rfactor = 1;
enc = p->encoding;
switch (p->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
if (p->precision == 16) {
rswcode = pswcode = swap_bytes;
enc = AUDIO_ENCODING_SLINEAR_LE;
} else if (p->precision == 8 && !(flags & HAS_8)) {
pswcode = rswcode = change_sign8;
enc = AUDIO_ENCODING_ULINEAR_LE;
}
break;
case AUDIO_ENCODING_SLINEAR_LE:
if (p->precision == 8 && !(flags & HAS_8)) {
pswcode = rswcode = change_sign8;
enc = AUDIO_ENCODING_ULINEAR_LE;
}
break;
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision == 16) {
pswcode = swap_bytes_change_sign16_le;
rswcode = change_sign16_swap_bytes_le;
enc = AUDIO_ENCODING_SLINEAR_LE;
} else if (p->precision == 8 && !(flags & HAS_8U)) {
pswcode = rswcode = change_sign8;
enc = AUDIO_ENCODING_SLINEAR_LE;
}
break;
case AUDIO_ENCODING_ULINEAR_LE:
if (p->precision == 16) {
pswcode = rswcode = change_sign16_le;
enc = AUDIO_ENCODING_SLINEAR_LE;
} else if (p->precision == 8 && !(flags & HAS_8U)) {
pswcode = rswcode = change_sign8;
enc = AUDIO_ENCODING_SLINEAR_LE;
}
break;
case AUDIO_ENCODING_ULAW:
if (!(flags & HAS_MULAW)) {
if (flags & HAS_8U) {
pswcode = mulaw_to_ulinear8;
rswcode = ulinear8_to_mulaw;
enc = AUDIO_ENCODING_ULINEAR_LE;
} else if (flags & HAS_8) {
pswcode = mulaw_to_slinear8;
rswcode = slinear8_to_mulaw;
enc = AUDIO_ENCODING_SLINEAR_LE;
#if 0
} else if (flags & HAS_16) {
pswcode = mulaw_to_slinear16_le;
pfactor = 2;
/* XXX recording not handled */
enc = AUDIO_ENCODING_SLINEAR_LE;
#endif
} else
return (EINVAL);
}
break;
case AUDIO_ENCODING_ALAW:
if (!(flags & HAS_ALAW)) {
if (flags & HAS_8U) {
pswcode = alaw_to_ulinear8;
rswcode = ulinear8_to_alaw;
enc = AUDIO_ENCODING_ULINEAR_LE;
} else if (flags & HAS_8) {
pswcode = alaw_to_slinear8;
rswcode = slinear8_to_alaw;
enc = AUDIO_ENCODING_SLINEAR_LE;
#if 0
} else if (flags & HAS_16) {
pswcode = alaw_to_slinear16_le;
pfactor = 2;
/* XXX recording not handled */
enc = AUDIO_ENCODING_SLINEAR_LE;
#endif
} else
return (EINVAL);
}
break;
default:
return (EINVAL);
}
/* XXX do some other conversions... */
DPRINTF(("uaudio_set_params: chan=%d prec=%d enc=%d rate=%ld\n",
p->channels, p->precision, enc, p->sample_rate));
for (i = 0; i < sc->sc_nalts; i++) {
struct usb_audio_streaming_type1_descriptor *a1d =
sc->sc_alts[i].asf1desc;
if (p->channels == a1d->bNrChannels &&
p->precision ==a1d->bBitResolution &&
enc == sc->sc_alts[i].encoding) {
if (a1d->bSamFreqType == UA_SAMP_CONTNUOUS) {
DPRINTFN(2,("uaudio_set_params: cont %d-%d\n",
UA_SAMP_LO(a1d), UA_SAMP_HI(a1d)));
if (UA_SAMP_LO(a1d) < p->sample_rate &&
p->sample_rate < UA_SAMP_HI(a1d))
goto found;
} else {
for (j = 0; j < a1d->bSamFreqType; j++) {
DPRINTFN(2,("uaudio_set_params: disc #"
"%d: %d\n", j, UA_GETSAMP(a1d, j)));
/* XXX allow for some slack */
if (UA_GETSAMP(a1d, j) ==
p->sample_rate)
goto found;
}
}
}
}
return (EINVAL);
found:
p->sw_code = pswcode;
r->sw_code = rswcode;
p->factor = pfactor;
r->factor = rfactor;
sc->sc_curaltidx = i;
DPRINTF(("uaudio_set_params: use altidx=%d, altno=%d\n",
sc->sc_curaltidx,
sc->sc_alts[sc->sc_curaltidx].idesc->bAlternateSetting));
return (0);
}
usbd_status
uaudio_set_speed(sc, endpt, speed)
struct uaudio_softc *sc;
int endpt;
u_int speed;
{
usb_device_request_t req;
u_int8_t data[3];
DPRINTFN(5,("uaudio_set_speed: endpt=%d speed=%u\n", endpt, speed));
req.bmRequestType = UT_WRITE_CLASS_ENDPOINT;
req.bRequest = SET_CUR;
USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0);
USETW(req.wIndex, endpt);
USETW(req.wLength, 3);
data[0] = speed;
data[1] = speed >> 8;
data[2] = speed >> 16;
return (usbd_do_request(sc->sc_udev, &req, &data));
}