NetBSD/sys/net/npf/npf_ruleset.c
rmind 0e21825481 NPF:
- Implement dynamic NPF rules.  Controlled through npf(3) library of via
  npfctl rule command.  A rule can be removed using a unique identifier,
  returned on addition, or using a key which is SHA1 hash of the rule.
  Adjust npftest and add a regression test.
- Improvements to rule inspection mechanism.
- Initial BPF support as an alternative to n-code.
- Minor fixes; bump the version.
2013-02-09 03:35:31 +00:00

671 lines
15 KiB
C

/* $NetBSD: npf_ruleset.c,v 1.17 2013/02/09 03:35:32 rmind Exp $ */
/*-
* Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NPF ruleset module.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.17 2013/02/09 03:35:32 rmind Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/queue.h>
#include <sys/mbuf.h>
#include <sys/types.h>
#include <net/bpf.h>
#include <net/pfil.h>
#include <net/if.h>
#include "npf_ncode.h"
#include "npf_impl.h"
struct npf_ruleset {
/* List of all rules and dynamic (i.e. named) rules. */
LIST_HEAD(, npf_rule) rs_all;
LIST_HEAD(, npf_rule) rs_dynamic;
/* Number of array slots and active rules. */
u_int rs_slots;
u_int rs_nitems;
/* Array of ordered rules. */
npf_rule_t * rs_rules[];
};
struct npf_rule {
/* Attributes, interface and skip slot. */
uint32_t r_attr;
u_int r_ifid;
u_int r_skip_to;
/* Code to process, if any. */
int r_type;
void * r_code;
size_t r_clen;
/* NAT policy (optional), rule procedure and subset. */
npf_natpolicy_t * r_natp;
npf_rproc_t * r_rproc;
/* Rule priority: (highest) 1, 2 ... n (lowest). */
pri_t r_priority;
/*
* Dynamic group: subset queue and a dynamic group list entry.
* Dynamic rule: entry and the parent rule (the group).
*/
union {
TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
TAILQ_ENTRY(npf_rule) r_entry;
} /* C11 */;
union {
LIST_ENTRY(npf_rule) r_dentry;
npf_rule_t * r_parent;
} /* C11 */;
/* Rule name and all-list entry. */
char r_name[NPF_RULE_MAXNAMELEN];
LIST_ENTRY(npf_rule) r_aentry;
/* Key (optional). */
uint8_t r_key[NPF_RULE_MAXKEYLEN];
};
#define NPF_DYNAMIC_GROUP_P(attr) \
(((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
npf_ruleset_t *
npf_ruleset_create(size_t slots)
{
size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
npf_ruleset_t *rlset;
rlset = kmem_zalloc(len, KM_SLEEP);
rlset->rs_slots = slots;
LIST_INIT(&rlset->rs_dynamic);
LIST_INIT(&rlset->rs_all);
return rlset;
}
static void
npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
{
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
LIST_REMOVE(rl, r_dentry);
}
if ((rl->r_attr & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC) {
npf_rule_t *rg = rl->r_parent;
TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
}
LIST_REMOVE(rl, r_aentry);
}
void
npf_ruleset_destroy(npf_ruleset_t *rlset)
{
size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
npf_rule_t *rl;
while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
npf_ruleset_unlink(rlset, rl);
npf_rule_free(rl);
}
KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
kmem_free(rlset, len);
}
/*
* npf_ruleset_insert: insert the rule into the specified ruleset.
*/
void
npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
{
u_int n = rlset->rs_nitems;
KASSERT(n < rlset->rs_slots);
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
}
rlset->rs_rules[n] = rl;
rlset->rs_nitems++;
if (rl->r_skip_to < ++n) {
rl->r_skip_to = n;
}
}
static npf_rule_t *
npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
{
npf_rule_t *rl;
KASSERT(npf_config_locked_p());
LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
break;
}
return rl;
}
int
npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
{
npf_rule_t *rg, *it;
pri_t priocmd;
rg = npf_ruleset_lookup(rlset, rname);
if (rg == NULL) {
return ENOENT;
}
/* Dynamic rule. */
rl->r_attr |= NPF_RULE_DYNAMIC;
rl->r_parent = rg;
/*
* Rule priority: (highest) 1, 2 ... n (lowest).
* Negative priority indicates an operation and is reset to zero.
*/
if ((priocmd = rl->r_priority) < 0) {
rl->r_priority = 0;
}
switch (priocmd) {
case NPF_PRI_FIRST:
TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
if (rl->r_priority <= it->r_priority)
break;
}
if (it) {
TAILQ_INSERT_BEFORE(it, rl, r_entry);
} else {
TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
}
break;
case NPF_PRI_LAST:
default:
TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
if (rl->r_priority < it->r_priority)
break;
}
if (it) {
TAILQ_INSERT_BEFORE(it, rl, r_entry);
} else {
TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
}
break;
}
/* Finally, add into the all-list. */
LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
return 0;
}
npf_rule_t *
npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uintptr_t id)
{
npf_rule_t *rg, *rl;
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return NULL;
}
TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
/* Compare ID. On match, remove and return. */
if ((uintptr_t)rl == id) {
npf_ruleset_unlink(rlset, rl);
break;
}
}
return rl;
}
npf_rule_t *
npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
const void *key, size_t len)
{
npf_rule_t *rg, *rl;
KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
return NULL;
}
/* Find the last in the list. */
TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
/* Compare the key. On match, remove and return. */
if (memcmp(rl->r_key, key, len) == 0) {
npf_ruleset_unlink(rlset, rl);
break;
}
}
return rl;
}
/*
* npf_ruleset_reload: share the dynamic rules.
*
* => Active ruleset should be exclusively locked.
*/
void
npf_ruleset_reload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
{
npf_rule_t *rl, *arl;
KASSERT(npf_config_locked_p());
LIST_FOREACH(rl, &nrlset->rs_dynamic, r_dentry) {
if ((arl = npf_ruleset_lookup(arlset, rl->r_name)) == NULL) {
continue;
}
memcpy(&rl->r_subset, &arl->r_subset, sizeof(rl->r_subset));
}
}
/*
* npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
*/
npf_rule_t *
npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
{
npf_rule_t *rl;
/* Find a matching NAT policy in the old ruleset. */
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
if (npf_nat_matchpolicy(rl->r_natp, mnp))
break;
}
return rl;
}
npf_rule_t *
npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
{
npf_natpolicy_t *np;
npf_rule_t *rl;
/* Find a matching NAT policy in the old ruleset. */
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
/*
* NAT policy might not yet be set during the creation of
* the ruleset (in such case, rule is for our policy), or
* policies might be equal due to rule exchange on reload.
*/
np = rl->r_natp;
if (np == NULL || np == mnp)
continue;
if (npf_nat_sharepm(np, mnp))
break;
}
return rl;
}
/*
* npf_ruleset_freealg: inspect the ruleset and disassociate specified
* ALG from all NAT entries using it.
*/
void
npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
{
npf_rule_t *rl;
npf_natpolicy_t *np;
LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
if ((np = rl->r_natp) != NULL) {
npf_nat_freealg(np, alg);
}
}
}
/*
* npf_ruleset_natreload: minimum reload of NAT policies by maching
* two (active and new) NAT rulesets.
*
* => Active ruleset should be exclusively locked.
*/
void
npf_ruleset_natreload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
{
npf_natpolicy_t *np, *anp;
npf_rule_t *rl, *arl;
/* Scan a new NAT ruleset against NAT policies in old ruleset. */
LIST_FOREACH(rl, &nrlset->rs_all, r_aentry) {
np = rl->r_natp;
arl = npf_ruleset_matchnat(arlset, np);
if (arl == NULL) {
continue;
}
/* On match - we exchange NAT policies. */
anp = arl->r_natp;
rl->r_natp = anp;
arl->r_natp = np;
/* Update other NAT policies to share portmap. */
(void)npf_ruleset_sharepm(nrlset, anp);
}
}
/*
* npf_rule_alloc: allocate a rule and copy n-code from user-space.
*/
npf_rule_t *
npf_rule_alloc(prop_dictionary_t rldict)
{
npf_rule_t *rl;
const char *rname;
/* Allocate a rule structure. */
rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
TAILQ_INIT(&rl->r_subset);
rl->r_natp = NULL;
/* Name (optional) */
if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
} else {
rl->r_name[0] = '\0';
}
/* Attributes, priority and interface ID (optional). */
prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
prop_dictionary_get_uint32(rldict, "interface", &rl->r_ifid);
/* Get the skip-to index. No need to validate it. */
prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
/* Key (optional). */
prop_object_t obj = prop_dictionary_get(rldict, "key");
const void *key = prop_data_data_nocopy(obj);
if (key) {
size_t len = prop_data_size(obj);
if (len > NPF_RULE_MAXKEYLEN) {
kmem_free(rl, sizeof(npf_rule_t));
return NULL;
}
memcpy(rl->r_key, key, len);
}
return rl;
}
/*
* npf_rule_setcode: assign filter code to the rule.
*
* => The code should be validated by the caller.
*/
void
npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
{
rl->r_type = type;
rl->r_code = code;
rl->r_clen = size;
}
/*
* npf_rule_setrproc: assign a rule procedure and hold a reference on it.
*/
void
npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
{
npf_rproc_acquire(rp);
rl->r_rproc = rp;
}
/*
* npf_rule_free: free the specified rule.
*/
void
npf_rule_free(npf_rule_t *rl)
{
npf_natpolicy_t *np = rl->r_natp;
npf_rproc_t *rp = rl->r_rproc;
if (np) {
/* Free NAT policy. */
npf_nat_freepolicy(np);
}
if (rp) {
/* Release rule procedure. */
npf_rproc_release(rp);
}
if (rl->r_code) {
/* Free n-code. */
kmem_free(rl->r_code, rl->r_clen);
}
kmem_free(rl, sizeof(npf_rule_t));
}
/*
* npf_rule_getrproc: acquire a reference and return rule procedure, if any.
* npf_rule_getnat: get NAT policy assigned to the rule.
*/
npf_rproc_t *
npf_rule_getrproc(npf_rule_t *rl)
{
npf_rproc_t *rp = rl->r_rproc;
if (rp) {
npf_rproc_acquire(rp);
}
return rp;
}
npf_natpolicy_t *
npf_rule_getnat(const npf_rule_t *rl)
{
return rl->r_natp;
}
/*
* npf_rule_setnat: assign NAT policy to the rule and insert into the
* NAT policy list in the ruleset.
*/
void
npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
{
KASSERT(rl->r_natp == NULL);
rl->r_natp = np;
}
/*
* npf_rule_inspect: match the interface, direction and run the filter code.
* Returns true if rule matches, false otherise.
*/
static inline bool
npf_rule_inspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *rl,
const int di_mask, const int layer)
{
const ifnet_t *ifp = nbuf->nb_ifp;
const void *code;
/* Match the interface. */
if (rl->r_ifid && rl->r_ifid != ifp->if_index) {
return false;
}
/* Match the direction. */
if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
if ((rl->r_attr & di_mask) == 0)
return false;
}
/* Execute the code, if any. */
if ((code = rl->r_code) == NULL) {
return true;
}
switch (rl->r_type) {
case NPF_CODE_NC:
return npf_ncode_process(npc, code, nbuf, layer) == 0;
case NPF_CODE_BPF: {
struct mbuf *m = nbuf_head_mbuf(nbuf);
size_t pktlen = m_length(m);
return bpf_filter(code, (unsigned char *)m, pktlen, 0) != 0;
}
default:
KASSERT(false);
}
return false;
}
/*
* npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
* This is only for the dynamic rules. Subrules cannot have nested rules.
*/
static npf_rule_t *
npf_rule_reinspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *drl,
const int di_mask, const int layer)
{
npf_rule_t *final_rl = NULL, *rl;
KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
continue;
}
if (rl->r_attr & NPF_RULE_FINAL) {
return rl;
}
final_rl = rl;
}
return final_rl;
}
/*
* npf_ruleset_inspect: inspect the packet against the given ruleset.
*
* Loop through the rules in the set and run n-code processor of each rule
* against the packet (nbuf chain). If sub-ruleset is found, inspect it.
*
* => Caller is responsible for nbuf chain protection.
*/
npf_rule_t *
npf_ruleset_inspect(npf_cache_t *npc, nbuf_t *nbuf,
const npf_ruleset_t *rlset, const int di, const int layer)
{
const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
const u_int nitems = rlset->rs_nitems;
npf_rule_t *final_rl = NULL;
u_int n = 0;
KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
while (n < nitems) {
npf_rule_t *rl = rlset->rs_rules[n];
const u_int skip_to = rl->r_skip_to;
const uint32_t attr = rl->r_attr;
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
KASSERT(n < skip_to);
/* Group is a barrier: return a matching if found any. */
if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
break;
}
/* Main inspection of the rule. */
if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
n = skip_to;
continue;
}
if (NPF_DYNAMIC_GROUP_P(attr)) {
/*
* If this is a dynamic rule, re-inspect the subrules.
* If it has any matching rule, then it is final.
*/
rl = npf_rule_reinspect(npc, nbuf, rl, di_mask, layer);
if (rl != NULL) {
final_rl = rl;
break;
}
} else if ((attr & NPF_RULE_GROUP) == 0) {
/*
* Groups themselves are not matching.
*/
final_rl = rl;
}
/* Set the matching rule and check for "final". */
if (attr & NPF_RULE_FINAL) {
break;
}
n++;
}
KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
return final_rl;
}
/*
* npf_rule_conclude: return decision and the flags for conclusion.
*
* => Returns ENETUNREACH if "block" and 0 if "pass".
*/
int
npf_rule_conclude(const npf_rule_t *rl, int *retfl)
{
/* If not passing - drop the packet. */
*retfl = rl->r_attr;
return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
}
#if defined(DDB) || defined(_NPF_TESTING)
void
npf_rulenc_dump(const npf_rule_t *rl)
{
const uint32_t *op = rl->r_code;
size_t n = rl->r_clen;
while (n) {
printf("\t> |0x%02x|\n", (uint32_t)*op);
op++;
n -= sizeof(*op);
}
printf("-> %s\n", (rl->r_attr & NPF_RULE_PASS) ? "pass" : "block");
}
#endif