NetBSD/sys/arch/mips/include/vmparam.h

236 lines
8.2 KiB
C

/* $NetBSD: vmparam.h,v 1.8 1997/07/12 16:19:28 perry Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: vmparam.h 1.16 91/01/18
*
* @(#)vmparam.h 8.2 (Berkeley) 4/22/94
*/
/*
* Machine dependent constants for DEC Station 3100.
*/
/*
* USRTEXT is the start of the user text/data space, while USRSTACK
* is the top (end) of the user stack. LOWPAGES and HIGHPAGES are
* the number of pages from the beginning of the P0 region to the
* beginning of the text and from the beginning of the P1 region to the
* beginning of the stack respectively.
*/
#define USRTEXT 0x00001000
#define USRSTACK 0x80000000 /* Start of user stack */
#define BTOPUSRSTACK 0x80000 /* btop(USRSTACK) */
#define LOWPAGES 0x00001
#define HIGHPAGES 0
/*
* Virtual memory related constants, all in bytes
*/
#ifndef MAXTSIZ
#define MAXTSIZ (24*1024*1024) /* max text size */
#endif
#ifndef DFLDSIZ
#define DFLDSIZ (32*1024*1024) /* initial data size limit */
#endif
#ifndef MAXDSIZ
#define MAXDSIZ (256*1024*1024) /* max data size */
#endif
#ifndef DFLSSIZ
#define DFLSSIZ (1024*1024) /* initial stack size limit */
#endif
#ifndef MAXSSIZ
#define MAXSSIZ (32*1024*1024) /* max stack size */
#endif
/*
* Sizes of the system and user portions of the system page table.
*/
/* SYSPTSIZE IS SILLY; (really number of buffers for I/O) */
#define SYSPTSIZE 1228
#define USRPTSIZE 1024
/*
* PTEs for mapping user space into the kernel for phyio operations.
* 16 pte's are enough to cover 8 disks * MAXBSIZE.
*/
#ifndef USRIOSIZE
#define USRIOSIZE 32
#endif
/*
* PTEs for system V style shared memory.
* This is basically slop for kmempt which we actually allocate (malloc) from.
*/
#ifndef SHMMAXPGS
#define SHMMAXPGS 1024 /* 4mb */
#endif
/*
* Boundary at which to place first MAPMEM segment if not explicitly
* specified. Should be a power of two. This allows some slop for
* the data segment to grow underneath the first mapped segment.
*/
#define MMSEG 0x200000
/*
* The size of the clock loop.
*/
#define LOOPPAGES (maxfree - firstfree)
/*
* The time for a process to be blocked before being very swappable.
* This is a number of seconds which the system takes as being a non-trivial
* amount of real time. You probably shouldn't change this;
* it is used in subtle ways (fractions and multiples of it are, that is, like
* half of a ``long time'', almost a long time, etc.)
* It is related to human patience and other factors which don't really
* change over time.
*/
#define MAXSLP 20
/*
* A swapped in process is given a small amount of core without being bothered
* by the page replacement algorithm. Basically this says that if you are
* swapped in you deserve some resources. We protect the last SAFERSS
* pages against paging and will just swap you out rather than paging you.
* Note that each process has at least UPAGES+CLSIZE pages which are not
* paged anyways (this is currently 8+2=10 pages or 5k bytes), so this
* number just means a swapped in process is given around 25k bytes.
* Just for fun: current memory prices are 4600$ a megabyte on VAX (4/22/81),
* so we loan each swapped in process memory worth 100$, or just admit
* that we don't consider it worthwhile and swap it out to disk which costs
* $30/mb or about $0.75.
* Update: memory prices have changed recently (9/96). At the current
* value of $6 per megabyte, we lend each swapped in process memory worth
* $0.15, or just admit that we don't consider it worthwhile and swap it out
* to disk which costs $0.20/MB, or just under half a cent.
*/
#define SAFERSS 4 /* nominal ``small'' resident set size
protected against replacement */
/*
* DISKRPM is used to estimate the number of paging i/o operations
* which one can expect from a single disk controller.
*/
#define DISKRPM 60
/*
* Klustering constants. Klustering is the gathering
* of pages together for pagein/pageout, while clustering
* is the treatment of hardware page size as though it were
* larger than it really is.
*
* KLMAX gives maximum cluster size in CLSIZE page (cluster-page)
* units. Note that ctod(KLMAX*CLSIZE) must be <= DMMIN in dmap.h.
* ctob(KLMAX) should also be less than MAXPHYS (in vm_swp.c)
* unless you like "big push" panics.
*/
#ifdef notdef /* XXX */
#define KLMAX (4/CLSIZE)
#define KLSEQL (2/CLSIZE) /* in klust if vadvise(VA_SEQL) */
#define KLIN (4/CLSIZE) /* default data/stack in klust */
#define KLTXT (4/CLSIZE) /* default text in klust */
#define KLOUT (4/CLSIZE)
#else
#define KLMAX (1/CLSIZE)
#define KLSEQL (1/CLSIZE)
#define KLIN (1/CLSIZE)
#define KLTXT (1/CLSIZE)
#define KLOUT (1/CLSIZE)
#endif
/*
* KLSDIST is the advance or retard of the fifo reclaim for sequential
* processes data space.
*/
#define KLSDIST 3 /* klusters advance/retard for seq. fifo */
/*
* Paging thresholds (see vm_sched.c).
* Strategy of 1/19/85:
* lotsfree is 512k bytes, but at most 1/4 of memory
* desfree is 200k bytes, but at most 1/8 of memory
*/
#define LOTSFREE (512 * 1024)
#define LOTSFREEFRACT 4
#define DESFREE (200 * 1024)
#define DESFREEFRACT 8
/*
* There are two clock hands, initially separated by HANDSPREAD bytes
* (but at most all of user memory). The amount of time to reclaim
* a page once the pageout process examines it increases with this
* distance and decreases as the scan rate rises.
*/
#define HANDSPREAD (2 * 1024 * 1024)
/*
* The number of times per second to recompute the desired paging rate
* and poke the pagedaemon.
*/
#define RATETOSCHEDPAGING 4
/*
* Believed threshold (in megabytes) for which interleaved
* swapping area is desirable.
*/
#define LOTSOFMEM 2
#define mapin(pte, v, pfnum, prot) \
(*(int *)(pte) = ((pfnum) << PG_SHIFT) | (prot), MachTLBFlushAddr(v))
/*
* Mach derived constants
*/
/* user/kernel map constants */
#define VM_MIN_ADDRESS ((vm_offset_t)0x00000000)
#define VM_MAXUSER_ADDRESS ((vm_offset_t)0x80000000)
#define VM_MAX_ADDRESS ((vm_offset_t)0x80000000)
#define VM_MIN_KERNEL_ADDRESS ((vm_offset_t)0xC0000000)
#define VM_MAX_KERNEL_ADDRESS ((vm_offset_t)0xFFFFC000)
/* virtual sizes (bytes) for various kernel submaps */
#define VM_MBUF_SIZE (NMBCLUSTERS*MCLBYTES)
#define VM_KMEM_SIZE (NKMEMCLUSTERS*CLBYTES)
#define VM_PHYS_SIZE (USRIOSIZE*CLBYTES)
/* pcb base */
#define pcbb(p) ((u_int)(p)->p_addr)