834 lines
22 KiB
C
834 lines
22 KiB
C
/* $NetBSD: npf_nat.c,v 1.5 2011/01/18 20:33:46 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2010-2011 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This material is based upon work partially supported by The
|
|
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* NPF network address port translation (NAPT).
|
|
* Described in RFC 2663, RFC 3022. Commonly just "NAT".
|
|
*
|
|
* Overview
|
|
*
|
|
* There are few mechanisms: NAT policy, port map and translation.
|
|
* NAT module has a separate ruleset, where rules contain associated
|
|
* NAT policy, thus flexible filter criteria can be used.
|
|
*
|
|
* Translation types
|
|
*
|
|
* There are two types of translation: outbound (NPF_NATOUT) and
|
|
* inbound (NPF_NATIN). It should not be confused with connection
|
|
* direction.
|
|
*
|
|
* Outbound NAT rewrites:
|
|
* - Source on "forwards" stream.
|
|
* - Destination on "backwards" stream.
|
|
* Inbound NAT rewrites:
|
|
* - Destination on "forwards" stream.
|
|
* - Source on "backwards" stream.
|
|
*
|
|
* It should be noted that bi-directional NAT is a combined outbound
|
|
* and inbound translation, therefore constructed as two policies.
|
|
*
|
|
* NAT policies and port maps
|
|
*
|
|
* NAT (translation) policy is applied when a packet matches the rule.
|
|
* Apart from filter criteria, NAT policy has a translation IP address
|
|
* and associated port map. Port map is a bitmap used to reserve and
|
|
* use unique TCP/UDP ports for translation. Port maps are unique to
|
|
* the IP addresses, therefore multiple NAT policies with the same IP
|
|
* will share the same port map.
|
|
*
|
|
* Sessions, translation entries and their life-cycle
|
|
*
|
|
* NAT module relies on session management module. Each translated
|
|
* session has an associated translation entry (npf_nat_t), which
|
|
* contains information used for backwards stream translation, i.e.
|
|
* original IP address with port and translation port, allocated from
|
|
* the port map. Each NAT entry is associated with the policy, which
|
|
* contains translation IP address. Allocated port is returned to the
|
|
* port map and NAT entry is destroyed when session expires.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.5 2011/01/18 20:33:46 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/atomic.h>
|
|
#include <sys/bitops.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pool.h>
|
|
#include <net/pfil.h>
|
|
#include <netinet/in.h>
|
|
|
|
#include "npf_impl.h"
|
|
|
|
/*
|
|
* NPF portmap structure.
|
|
*/
|
|
typedef struct {
|
|
u_int p_refcnt;
|
|
uint32_t p_bitmap[0];
|
|
} npf_portmap_t;
|
|
|
|
/* Portmap range: [ 1024 .. 65535 ] */
|
|
#define PORTMAP_FIRST (1024)
|
|
#define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
|
|
#define PORTMAP_FILLED ((uint32_t)~0)
|
|
#define PORTMAP_MASK (31)
|
|
#define PORTMAP_SHIFT (5)
|
|
|
|
#define PORTMAP_MEM_SIZE \
|
|
(sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
|
|
|
|
/* NAT policy structure. */
|
|
struct npf_natpolicy {
|
|
LIST_HEAD(, npf_nat) n_nat_list;
|
|
kmutex_t n_lock;
|
|
kcondvar_t n_cv;
|
|
npf_portmap_t * n_portmap;
|
|
int n_type;
|
|
int n_flags;
|
|
size_t n_addr_sz;
|
|
npf_addr_t n_taddr;
|
|
in_port_t n_tport;
|
|
};
|
|
|
|
#define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
|
|
#define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
|
|
|
|
/* NAT translation entry for a session. */
|
|
struct npf_nat {
|
|
/* Association (list entry and a link pointer) with NAT policy. */
|
|
LIST_ENTRY(npf_nat) nt_entry;
|
|
npf_natpolicy_t * nt_natpolicy;
|
|
npf_session_t * nt_session;
|
|
/* Original address and port (for backwards translation). */
|
|
npf_addr_t nt_oaddr;
|
|
in_port_t nt_oport;
|
|
/* Translation port (for redirects). */
|
|
in_port_t nt_tport;
|
|
/* ALG (if any) associated with this NAT entry. */
|
|
npf_alg_t * nt_alg;
|
|
uintptr_t nt_alg_arg;
|
|
};
|
|
|
|
static pool_cache_t nat_cache __read_mostly;
|
|
|
|
/*
|
|
* npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
|
|
*/
|
|
|
|
void
|
|
npf_nat_sysinit(void)
|
|
{
|
|
|
|
nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
|
|
0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
|
|
KASSERT(nat_cache != NULL);
|
|
}
|
|
|
|
void
|
|
npf_nat_sysfini(void)
|
|
{
|
|
|
|
/* NAT policies should already be destroyed. */
|
|
pool_cache_destroy(nat_cache);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_newpolicy: create a new NAT policy.
|
|
*
|
|
* => Shares portmap if policy is on existing translation address.
|
|
* => XXX: serialise at upper layer.
|
|
*/
|
|
npf_natpolicy_t *
|
|
npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *nrlset)
|
|
{
|
|
const npf_addr_t *taddr;
|
|
npf_natpolicy_t *np;
|
|
prop_object_t obj;
|
|
npf_portmap_t *pm;
|
|
|
|
np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
|
|
mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
|
|
cv_init(&np->n_cv, "npfnatcv");
|
|
LIST_INIT(&np->n_nat_list);
|
|
|
|
/* Translation type. */
|
|
obj = prop_dictionary_get(natdict, "type");
|
|
np->n_type = prop_number_integer_value(obj);
|
|
|
|
/* Translation type. */
|
|
obj = prop_dictionary_get(natdict, "flags");
|
|
np->n_flags = prop_number_integer_value(obj);
|
|
|
|
/* Translation IP. */
|
|
obj = prop_dictionary_get(natdict, "translation-ip");
|
|
np->n_addr_sz = prop_data_size(obj);
|
|
KASSERT(np->n_addr_sz > 0 && np->n_addr_sz <= sizeof(npf_addr_t));
|
|
taddr = (const npf_addr_t *)prop_data_data_nocopy(obj);
|
|
memcpy(&np->n_taddr, taddr, np->n_addr_sz);
|
|
|
|
/* Translation port (for redirect case). */
|
|
obj = prop_dictionary_get(natdict, "translation-port");
|
|
np->n_tport = (in_port_t)prop_number_integer_value(obj);
|
|
|
|
KASSERT(np->n_type == NPF_NATIN || np->n_type == NPF_NATOUT);
|
|
|
|
/* Determine if port map is needed. */
|
|
np->n_portmap = NULL;
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
|
|
/* No port map. */
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* Inspect NAT policies in the ruleset for port map sharing.
|
|
* Note that npf_ruleset_sharepm() will increase the reference count.
|
|
*/
|
|
if (!npf_ruleset_sharepm(nrlset, np)) {
|
|
/* Allocate a new port map for the NAT policy. */
|
|
pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
|
|
pm->p_refcnt = 1;
|
|
KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
|
|
np->n_portmap = pm;
|
|
} else {
|
|
KASSERT(np->n_portmap != NULL);
|
|
}
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
|
|
*
|
|
* => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
|
|
*/
|
|
void
|
|
npf_nat_freepolicy(npf_natpolicy_t *np)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
npf_session_t *se;
|
|
npf_nat_t *nt;
|
|
|
|
/* De-associate all entries from the policy. */
|
|
mutex_enter(&np->n_lock);
|
|
LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
|
|
se = nt->nt_session; /* XXXSMP */
|
|
if (se == NULL) {
|
|
continue;
|
|
}
|
|
npf_session_expire(se);
|
|
}
|
|
while (!LIST_EMPTY(&np->n_nat_list)) {
|
|
cv_wait(&np->n_cv, &np->n_lock);
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
|
|
/* Destroy the port map, on last reference. */
|
|
if (pm && --pm->p_refcnt == 0) {
|
|
KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
|
|
kmem_free(pm, PORTMAP_MEM_SIZE);
|
|
}
|
|
cv_destroy(&np->n_cv);
|
|
mutex_destroy(&np->n_lock);
|
|
kmem_free(np, sizeof(npf_natpolicy_t));
|
|
}
|
|
|
|
/*
|
|
* npf_nat_matchpolicy: compare two NAT policies.
|
|
*
|
|
* => Return 0 on match, and non-zero otherwise.
|
|
*/
|
|
bool
|
|
npf_nat_matchpolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
|
|
{
|
|
void *np_raw, *mnp_raw;
|
|
/*
|
|
* Compare the relevant NAT policy information (in raw form),
|
|
* which is enough for matching criterion.
|
|
*/
|
|
KASSERT(np && mnp && np != mnp);
|
|
np_raw = (uint8_t *)np + NPF_NP_CMP_START;
|
|
mnp_raw = (uint8_t *)mnp + NPF_NP_CMP_START;
|
|
return (memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0);
|
|
}
|
|
|
|
bool
|
|
npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
|
|
{
|
|
npf_portmap_t *pm, *mpm;
|
|
|
|
KASSERT(np && mnp && np != mnp);
|
|
|
|
/* Using port map and having equal translation address? */
|
|
if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
|
|
return false;
|
|
}
|
|
if (np->n_addr_sz != mnp->n_addr_sz) {
|
|
return false;
|
|
}
|
|
if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_addr_sz) != 0) {
|
|
return false;
|
|
}
|
|
/* If NAT policy has an old port map - drop the reference. */
|
|
mpm = mnp->n_portmap;
|
|
if (mpm) {
|
|
/* Note: in such case, we must not be a last reference. */
|
|
KASSERT(mpm->p_refcnt > 1);
|
|
mpm->p_refcnt--;
|
|
}
|
|
/* Share the port map. */
|
|
pm = np->n_portmap;
|
|
mnp->n_portmap = pm;
|
|
pm->p_refcnt++;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_getport: allocate and return a port in the NAT policy portmap.
|
|
*
|
|
* => Returns in network byte-order.
|
|
* => Zero indicates failure.
|
|
*/
|
|
static in_port_t
|
|
npf_nat_getport(npf_natpolicy_t *np)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
u_int n = PORTMAP_SIZE, idx, bit;
|
|
uint32_t map, nmap;
|
|
|
|
idx = arc4random() % PORTMAP_SIZE;
|
|
for (;;) {
|
|
KASSERT(idx < PORTMAP_SIZE);
|
|
map = pm->p_bitmap[idx];
|
|
if (__predict_false(map == PORTMAP_FILLED)) {
|
|
if (n-- == 0) {
|
|
/* No space. */
|
|
return 0;
|
|
}
|
|
/* This bitmap is filled, next. */
|
|
idx = (idx ? idx : PORTMAP_SIZE) - 1;
|
|
continue;
|
|
}
|
|
bit = ffs32(~map) - 1;
|
|
nmap = map | (1 << bit);
|
|
if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
|
|
/* Success. */
|
|
break;
|
|
}
|
|
}
|
|
return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_takeport: allocate specific port in the NAT policy portmap.
|
|
*/
|
|
static bool
|
|
npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
uint32_t map, nmap;
|
|
u_int idx, bit;
|
|
|
|
port = ntohs(port) - PORTMAP_FIRST;
|
|
idx = port >> PORTMAP_SHIFT;
|
|
bit = port & PORTMAP_MASK;
|
|
map = pm->p_bitmap[idx];
|
|
nmap = map | (1 << bit);
|
|
if (map == nmap) {
|
|
/* Already taken. */
|
|
return false;
|
|
}
|
|
return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_putport: return port as available in the NAT policy portmap.
|
|
*
|
|
* => Port should be in network byte-order.
|
|
*/
|
|
static void
|
|
npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
|
|
{
|
|
npf_portmap_t *pm = np->n_portmap;
|
|
uint32_t map, nmap;
|
|
u_int idx, bit;
|
|
|
|
port = ntohs(port) - PORTMAP_FIRST;
|
|
idx = port >> PORTMAP_SHIFT;
|
|
bit = port & PORTMAP_MASK;
|
|
do {
|
|
map = pm->p_bitmap[idx];
|
|
KASSERT(map | (1 << bit));
|
|
nmap = map & ~(1 << bit);
|
|
} while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
|
|
*/
|
|
static npf_natpolicy_t *
|
|
npf_nat_inspect(npf_cache_t *npc, nbuf_t *nbuf, ifnet_t *ifp, const int di)
|
|
{
|
|
npf_ruleset_t *rlset;
|
|
npf_rule_t *rl;
|
|
|
|
rlset = npf_core_natset();
|
|
rl = npf_ruleset_match(rlset, npc, nbuf, ifp, di, NPF_LAYER_3);
|
|
return rl ? npf_rule_getnat(rl) : NULL;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_create: create a new NAT translation entry.
|
|
*/
|
|
static npf_nat_t *
|
|
npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np)
|
|
{
|
|
const int proto = npf_cache_ipproto(npc);
|
|
npf_nat_t *nt;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46 | NPC_LAYER4));
|
|
|
|
/* New NAT association. */
|
|
nt = pool_cache_get(nat_cache, PR_NOWAIT);
|
|
if (nt == NULL){
|
|
return NULL;
|
|
}
|
|
npf_stats_inc(NPF_STAT_NAT_CREATE);
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_session = NULL;
|
|
nt->nt_alg = NULL;
|
|
|
|
mutex_enter(&np->n_lock);
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
mutex_exit(&np->n_lock);
|
|
|
|
/* Save the original address which may be rewritten. */
|
|
if (np->n_type == NPF_NATOUT) {
|
|
/* Source (local) for Outbound NAT. */
|
|
memcpy(&nt->nt_oaddr, npc->npc_srcip, npc->npc_ipsz);
|
|
} else {
|
|
/* Destination (external) for Inbound NAT. */
|
|
KASSERT(np->n_type == NPF_NATIN);
|
|
memcpy(&nt->nt_oaddr, npc->npc_dstip, npc->npc_ipsz);
|
|
}
|
|
|
|
/*
|
|
* Port translation, if required, and if it is TCP/UDP.
|
|
*/
|
|
if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
|
|
(proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
|
|
nt->nt_oport = 0;
|
|
nt->nt_tport = 0;
|
|
return nt;
|
|
}
|
|
/* Save the relevant TCP/UDP port. */
|
|
if (proto == IPPROTO_TCP) {
|
|
struct tcphdr *th = &npc->npc_l4.tcp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
th->th_sport : th->th_dport;
|
|
} else {
|
|
struct udphdr *uh = &npc->npc_l4.udp;
|
|
nt->nt_oport = (np->n_type == NPF_NATOUT) ?
|
|
uh->uh_sport : uh->uh_dport;
|
|
}
|
|
|
|
/* Get a new port for translation. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
|
|
nt->nt_tport = npf_nat_getport(np);
|
|
} else {
|
|
nt->nt_tport = np->n_tport;
|
|
}
|
|
return nt;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_translate: perform address and/or port translation.
|
|
*/
|
|
static int
|
|
npf_nat_translate(npf_cache_t *npc, nbuf_t *nbuf, npf_nat_t *nt,
|
|
const bool forw, const int di)
|
|
{
|
|
void *n_ptr = nbuf_dataptr(nbuf);
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
npf_addr_t *addr;
|
|
in_port_t port;
|
|
|
|
KASSERT(npf_iscached(npc, NPC_IP46));
|
|
|
|
if (forw) {
|
|
/* "Forwards" stream: use translation address/port. */
|
|
KASSERT(
|
|
(np->n_type == NPF_NATIN && di == PFIL_IN) ^
|
|
(np->n_type == NPF_NATOUT && di == PFIL_OUT)
|
|
);
|
|
addr = &np->n_taddr;
|
|
port = nt->nt_tport;
|
|
} else {
|
|
/* "Backwards" stream: use original address/port. */
|
|
KASSERT(
|
|
(np->n_type == NPF_NATIN && di == PFIL_OUT) ^
|
|
(np->n_type == NPF_NATOUT && di == PFIL_IN)
|
|
);
|
|
addr = &nt->nt_oaddr;
|
|
port = nt->nt_oport;
|
|
}
|
|
KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
|
|
|
|
/* Execute ALG hook first. */
|
|
npf_alg_exec(npc, nbuf, nt, di);
|
|
|
|
/*
|
|
* Rewrite IP and/or TCP/UDP checksums first, since it will use
|
|
* the cache containing original values for checksum calculation.
|
|
*/
|
|
if (!npf_rwrcksum(npc, nbuf, n_ptr, di, addr, port)) {
|
|
return EINVAL;
|
|
}
|
|
/*
|
|
* Address translation: rewrite source/destination address, depending
|
|
* on direction (PFIL_OUT - for source, PFIL_IN - for destination).
|
|
*/
|
|
if (!npf_rwrip(npc, nbuf, n_ptr, di, addr)) {
|
|
return EINVAL;
|
|
}
|
|
if ((np->n_flags & NPF_NAT_PORTS) == 0) {
|
|
/* Done. */
|
|
return 0;
|
|
}
|
|
switch (npf_cache_ipproto(npc)) {
|
|
case IPPROTO_TCP:
|
|
case IPPROTO_UDP:
|
|
KASSERT(npf_iscached(npc, NPC_TCP | NPC_UDP));
|
|
/* Rewrite source/destination port. */
|
|
if (!npf_rwrport(npc, nbuf, n_ptr, di, port)) {
|
|
return EINVAL;
|
|
}
|
|
break;
|
|
case IPPROTO_ICMP:
|
|
KASSERT(npf_iscached(npc, NPC_ICMP));
|
|
/* Nothing. */
|
|
break;
|
|
default:
|
|
return ENOTSUP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_do_nat:
|
|
* - Inspect packet for a NAT policy, unless a session with a NAT
|
|
* association already exists. In such case, determine whether it
|
|
* is a "forwards" or "backwards" stream.
|
|
* - Perform translation: rewrite source or destination fields,
|
|
* depending on translation type and direction.
|
|
* - Associate a NAT policy with a session (may establish a new).
|
|
*/
|
|
int
|
|
npf_do_nat(npf_cache_t *npc, npf_session_t *se, nbuf_t *nbuf,
|
|
ifnet_t *ifp, const int di)
|
|
{
|
|
npf_session_t *nse = NULL;
|
|
npf_natpolicy_t *np;
|
|
npf_nat_t *nt;
|
|
int error;
|
|
bool forw, new;
|
|
|
|
/* All relevant IPv4 data should be already cached. */
|
|
if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the NAT entry associated with the session, if any.
|
|
* Determines whether the stream is "forwards" or "backwards".
|
|
* Note: no need to lock, since reference on session is held.
|
|
*/
|
|
if (se && (nt = npf_session_retnat(se, di, &forw)) != NULL) {
|
|
np = nt->nt_natpolicy;
|
|
new = false;
|
|
goto translate;
|
|
}
|
|
|
|
/* Inspect the packet for a NAT policy, if there is no session. */
|
|
npf_core_enter();
|
|
np = npf_nat_inspect(npc, nbuf, ifp, di);
|
|
if (np == NULL) {
|
|
/* If packet does not match - done. */
|
|
npf_core_exit();
|
|
return 0;
|
|
}
|
|
forw = true;
|
|
|
|
/*
|
|
* Create a new NAT entry. Note: it is safe to unlock, since the
|
|
* NAT policy wont be desotroyed while there are list entries, which
|
|
* are removed only on session expiration. Currently, NAT entry is
|
|
* not yet associated with any session.
|
|
*/
|
|
nt = npf_nat_create(npc, np);
|
|
if (nt == NULL) {
|
|
npf_core_exit();
|
|
return ENOMEM;
|
|
}
|
|
npf_core_exit();
|
|
new = true;
|
|
|
|
/* Determine whether any ALG matches. */
|
|
if (npf_alg_match(npc, nbuf, nt)) {
|
|
KASSERT(nt->nt_alg != NULL);
|
|
}
|
|
|
|
/*
|
|
* If there is no local session (no "keep state" rule - unusual, but
|
|
* possible configuration), establish one before translation. Note
|
|
* that it is not a "pass" session, therefore passing of "backwards"
|
|
* stream depends on other, stateless filtering rules.
|
|
*/
|
|
if (se == NULL) {
|
|
nse = npf_session_establish(npc, nbuf, di);
|
|
if (nse == NULL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
se = nse;
|
|
}
|
|
translate:
|
|
/* Perform the translation. */
|
|
error = npf_nat_translate(npc, nbuf, nt, forw, di);
|
|
if (error) {
|
|
goto out;
|
|
}
|
|
|
|
if (__predict_false(new)) {
|
|
/*
|
|
* Associate NAT translation entry with the session.
|
|
* Note: packet now has a translated address in the cache.
|
|
*/
|
|
nt->nt_session = se;
|
|
error = npf_session_setnat(se, nt, di);
|
|
out:
|
|
if (error) {
|
|
/* If session was for NAT only - expire it. */
|
|
if (nse) {
|
|
npf_session_expire(nse);
|
|
}
|
|
/* Will free the structure and return the port. */
|
|
npf_nat_expire(nt);
|
|
}
|
|
if (nse != NULL) {
|
|
npf_session_release(nse);
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_gettrans: return translation IP address and port.
|
|
*/
|
|
void
|
|
npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
|
|
*addr = &np->n_taddr;
|
|
*port = nt->nt_tport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_getorig: return original IP address and port from translation entry.
|
|
*/
|
|
void
|
|
npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
|
|
{
|
|
|
|
*addr = &nt->nt_oaddr;
|
|
*port = nt->nt_oport;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_setalg: associate an ALG with the NAT entry.
|
|
*/
|
|
void
|
|
npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
|
|
{
|
|
|
|
nt->nt_alg = alg;
|
|
nt->nt_alg_arg = arg;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_expire: free NAT-related data structures on session expiration.
|
|
*/
|
|
void
|
|
npf_nat_expire(npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
|
|
/* Return any taken port to the portmap. */
|
|
if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
|
|
npf_nat_putport(np, nt->nt_tport);
|
|
}
|
|
|
|
/* Remove NAT entry from the list, notify any waiters if last entry. */
|
|
mutex_enter(&np->n_lock);
|
|
LIST_REMOVE(nt, nt_entry);
|
|
if (LIST_EMPTY(&np->n_nat_list)) {
|
|
cv_broadcast(&np->n_cv);
|
|
}
|
|
mutex_exit(&np->n_lock);
|
|
|
|
/* Free structure, increase the counter. */
|
|
pool_cache_put(nat_cache, nt);
|
|
npf_stats_inc(NPF_STAT_NAT_DESTROY);
|
|
}
|
|
|
|
/*
|
|
* npf_nat_save: construct NAT entry and reference to the NAT policy.
|
|
*/
|
|
int
|
|
npf_nat_save(prop_dictionary_t sedict, prop_array_t natlist, npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np = nt->nt_natpolicy;
|
|
prop_object_iterator_t it;
|
|
prop_dictionary_t npdict;
|
|
prop_data_t nd, npd;
|
|
uintptr_t itnp;
|
|
|
|
/* Set NAT entry data. */
|
|
nd = prop_data_create_data(nt, sizeof(npf_nat_t));
|
|
prop_dictionary_set(sedict, "nat-data", nd);
|
|
|
|
/* Find or create a NAT policy. */
|
|
it = prop_array_iterator(natlist);
|
|
while ((npdict = prop_object_iterator_next(it)) != NULL) {
|
|
CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
|
|
itnp = (uintptr_t)prop_number_unsigned_integer_value(
|
|
prop_dictionary_get(npdict, "id-ptr"));
|
|
if (itnp == (uintptr_t)np) {
|
|
break;
|
|
}
|
|
}
|
|
if (npdict == NULL) {
|
|
/* Create NAT policy dictionary and copy the data. */
|
|
npdict = prop_dictionary_create();
|
|
npd = prop_data_create_data(np, sizeof(npf_natpolicy_t));
|
|
|
|
/* Set the data, insert into the array. */
|
|
CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
|
|
prop_dictionary_set(npdict, "id-ptr",
|
|
prop_number_create_unsigned_integer((uintptr_t)np));
|
|
prop_dictionary_set(npdict, "nat-policy-data", npd);
|
|
prop_array_add(natlist, npdict);
|
|
}
|
|
prop_dictionary_set(sedict, "nat-policy",
|
|
prop_dictionary_copy(npdict));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* npf_nat_restore: find a matching NAT policy and restore NAT entry.
|
|
*
|
|
* => Caller should lock the active NAT ruleset.
|
|
*/
|
|
npf_nat_t *
|
|
npf_nat_restore(prop_dictionary_t sedict, npf_session_t *se)
|
|
{
|
|
const npf_natpolicy_t *onp;
|
|
const npf_nat_t *ntraw;
|
|
prop_object_t obj;
|
|
npf_natpolicy_t *np;
|
|
npf_rule_t *rl;
|
|
npf_nat_t *nt;
|
|
|
|
/* Get raw NAT entry. */
|
|
obj = prop_dictionary_get(sedict, "nat-data");
|
|
ntraw = prop_data_data_nocopy(obj);
|
|
if (ntraw == NULL || prop_data_size(obj) != sizeof(npf_nat_t)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Find a stored NAT policy information. */
|
|
obj = prop_dictionary_get(
|
|
prop_dictionary_get(sedict, "nat-policy"), "nat-policy-data");
|
|
onp = prop_data_data_nocopy(obj);
|
|
if (onp == NULL || prop_data_size(obj) != sizeof(npf_natpolicy_t)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Match if there is an existing NAT policy. */
|
|
rl = npf_ruleset_matchnat(npf_core_natset(), __UNCONST(onp));
|
|
if (rl == NULL) {
|
|
return NULL;
|
|
}
|
|
np = npf_rule_getnat(rl);
|
|
KASSERT(np != NULL);
|
|
|
|
/* Take a specific port from port-map. */
|
|
if (!npf_nat_takeport(np, ntraw->nt_tport)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Create and return NAT entry for association. */
|
|
nt = pool_cache_get(nat_cache, PR_WAITOK);
|
|
memcpy(nt, ntraw, sizeof(npf_nat_t));
|
|
LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
|
|
nt->nt_natpolicy = np;
|
|
nt->nt_session = se;
|
|
nt->nt_alg = NULL;
|
|
return nt;
|
|
}
|
|
|
|
#if defined(DDB) || defined(_NPF_TESTING)
|
|
|
|
void
|
|
npf_nat_dump(npf_nat_t *nt)
|
|
{
|
|
npf_natpolicy_t *np;
|
|
struct in_addr ip;
|
|
|
|
np = nt->nt_natpolicy;
|
|
memcpy(&ip, &np->n_taddr, sizeof(ip));
|
|
printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
|
|
np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
|
|
memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
|
|
printf("\tNAT: original address %s oport %d tport %d\n",
|
|
inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
|
|
if (nt->nt_alg) {
|
|
printf("\tNAT ALG = %p, ARG = %p\n",
|
|
nt->nt_alg, (void *)nt->nt_alg_arg);
|
|
}
|
|
}
|
|
|
|
#endif
|