3824 lines
101 KiB
C
3824 lines
101 KiB
C
/* $NetBSD: if_iwn.c,v 1.7 2008/03/13 16:29:48 taca Exp $ */
|
||
|
||
/*-
|
||
* Copyright (c) 2007
|
||
* Damien Bergamini <damien.bergamini@free.fr>
|
||
*
|
||
* Permission to use, copy, modify, and distribute this software for any
|
||
* purpose with or without fee is hereby granted, provided that the above
|
||
* copyright notice and this permission notice appear in all copies.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
*/
|
||
|
||
#include <sys/cdefs.h>
|
||
__KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.7 2008/03/13 16:29:48 taca Exp $");
|
||
|
||
|
||
/*
|
||
* Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
|
||
*/
|
||
|
||
#include "bpfilter.h"
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/sockio.h>
|
||
#include <sys/sysctl.h>
|
||
#include <sys/mbuf.h>
|
||
#include <sys/kernel.h>
|
||
#include <sys/socket.h>
|
||
#include <sys/systm.h>
|
||
#include <sys/malloc.h>
|
||
#include <sys/conf.h>
|
||
#include <sys/kauth.h>
|
||
#include <sys/callout.h>
|
||
|
||
#include <machine/bus.h>
|
||
#include <machine/endian.h>
|
||
#include <machine/intr.h>
|
||
|
||
#include <dev/pci/pcireg.h>
|
||
#include <dev/pci/pcivar.h>
|
||
#include <dev/pci/pcidevs.h>
|
||
|
||
#if NBPFILTER > 0
|
||
#include <net/bpf.h>
|
||
#endif
|
||
#include <net/if.h>
|
||
#include <net/if_arp.h>
|
||
#include <net/if_dl.h>
|
||
#include <net/if_media.h>
|
||
#include <net/if_types.h>
|
||
|
||
#include <netinet/in.h>
|
||
#include <netinet/in_systm.h>
|
||
#include <netinet/in_var.h>
|
||
#include <net/if_ether.h>
|
||
#include <netinet/ip.h>
|
||
|
||
#include <net80211/ieee80211_var.h>
|
||
#include <net80211/ieee80211_amrr.h>
|
||
#include <net80211/ieee80211_radiotap.h>
|
||
|
||
#include <dev/firmload.h>
|
||
|
||
#include <dev/pci/if_iwnreg.h>
|
||
#include <dev/pci/if_iwnvar.h>
|
||
|
||
#if 0
|
||
static const struct pci_matchid iwn_devices[] = {
|
||
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 },
|
||
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 }
|
||
};
|
||
#endif
|
||
|
||
/*
|
||
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
|
||
*/
|
||
static const struct ieee80211_rateset iwn_rateset_11a =
|
||
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
|
||
|
||
static const struct ieee80211_rateset iwn_rateset_11b =
|
||
{ 4, { 2, 4, 11, 22 } };
|
||
|
||
static const struct ieee80211_rateset iwn_rateset_11g =
|
||
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
|
||
|
||
|
||
#define EDCA_NUM_AC 4
|
||
static int iwn_match(device_t , struct cfdata *, void *);
|
||
static void iwn_attach(device_t , device_t, void *);
|
||
static int iwn_detach(device_t, int);
|
||
|
||
static void iwn_radiotap_attach(struct iwn_softc *);
|
||
static int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
|
||
void **, bus_size_t, bus_size_t, int);
|
||
static void iwn_dma_contig_free(struct iwn_dma_info *);
|
||
static int iwn_alloc_shared(struct iwn_softc *);
|
||
static void iwn_free_shared(struct iwn_softc *);
|
||
static int iwn_alloc_kw(struct iwn_softc *);
|
||
static void iwn_free_kw(struct iwn_softc *);
|
||
static int iwn_alloc_fwmem(struct iwn_softc *);
|
||
static void iwn_free_fwmem(struct iwn_softc *);
|
||
static struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
|
||
static void iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
|
||
static int iwn_alloc_rpool(struct iwn_softc *);
|
||
static void iwn_free_rpool(struct iwn_softc *);
|
||
static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
||
static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
||
static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
||
static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
|
||
int, int);
|
||
static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
|
||
static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
|
||
static struct ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
|
||
static void iwn_newassoc(struct ieee80211_node *, int);
|
||
static int iwn_media_change(struct ifnet *);
|
||
static int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
||
static void iwn_mem_lock(struct iwn_softc *);
|
||
static void iwn_mem_unlock(struct iwn_softc *);
|
||
static uint32_t iwn_mem_read(struct iwn_softc *, uint32_t);
|
||
static void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
|
||
static void iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
|
||
const uint32_t *, int);
|
||
static int iwn_eeprom_lock(struct iwn_softc *);
|
||
static void iwn_eeprom_unlock(struct iwn_softc *);
|
||
static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
|
||
static int iwn_load_microcode(struct iwn_softc *, const uint8_t *, int);
|
||
static int iwn_load_firmware(struct iwn_softc *);
|
||
static void iwn_calib_timeout(void *);
|
||
static void iwn_iter_func(void *, struct ieee80211_node *);
|
||
static void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
|
||
static void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
|
||
struct iwn_rx_data *);
|
||
static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
|
||
static void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
|
||
static void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
|
||
static void iwn_notif_intr(struct iwn_softc *);
|
||
static int iwn_intr(void *);
|
||
static void iwn_read_eeprom(struct iwn_softc *);
|
||
static void iwn_read_eeprom_channels(struct iwn_softc *, int);
|
||
static void iwn_print_power_group(struct iwn_softc *, int);
|
||
static uint8_t iwn_plcp_signal(int);
|
||
static int iwn_tx_data(struct iwn_softc *, struct mbuf *,
|
||
struct ieee80211_node *, int);
|
||
static void iwn_start(struct ifnet *);
|
||
static void iwn_watchdog(struct ifnet *);
|
||
static int iwn_ioctl(struct ifnet *, u_long, void *);
|
||
static int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
|
||
static int iwn_wme_update(struct ieee80211com *);
|
||
static int iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int);
|
||
static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
|
||
static int iwn_set_critical_temp(struct iwn_softc *);
|
||
static void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
|
||
static void iwn_power_calibration(struct iwn_softc *, int);
|
||
static int iwn_set_txpower(struct iwn_softc *,
|
||
struct ieee80211_channel *, int);
|
||
static int iwn_get_rssi(const struct iwn_rx_stat *);
|
||
static int iwn_get_noise(const struct iwn_rx_general_stats *);
|
||
static int iwn_get_temperature(struct iwn_softc *);
|
||
static int iwn_init_sensitivity(struct iwn_softc *);
|
||
static void iwn_compute_differential_gain(struct iwn_softc *,
|
||
const struct iwn_rx_general_stats *);
|
||
static void iwn_tune_sensitivity(struct iwn_softc *,
|
||
const struct iwn_rx_stats *);
|
||
static int iwn_send_sensitivity(struct iwn_softc *);
|
||
/*static int iwn_setup_beacon(struct iwn_softc *, struct ieee80211_node *);*/
|
||
static int iwn_auth(struct iwn_softc *);
|
||
static int iwn_run(struct iwn_softc *);
|
||
static int iwn_scan(struct iwn_softc *, uint16_t);
|
||
static int iwn_config(struct iwn_softc *);
|
||
static void iwn_post_alive(struct iwn_softc *);
|
||
static void iwn_stop_master(struct iwn_softc *);
|
||
static int iwn_reset(struct iwn_softc *);
|
||
static void iwn_hw_config(struct iwn_softc *);
|
||
static int iwn_init(struct ifnet *);
|
||
static void iwn_stop(struct ifnet *, int);
|
||
static void iwn_fix_channel(struct ieee80211com *, struct mbuf *);
|
||
static bool iwn_resume(device_t PMF_FN_PROTO);
|
||
|
||
|
||
|
||
#define IWN_DEBUG
|
||
|
||
#ifdef IWN_DEBUG
|
||
#define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
|
||
#define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
|
||
int iwn_debug = 2;
|
||
#else
|
||
#define DPRINTF(x)
|
||
#define DPRINTFN(n, x)
|
||
#endif
|
||
|
||
CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
|
||
iwn_detach, NULL);
|
||
|
||
static int
|
||
iwn_match(device_t parent, struct cfdata *match __unused, void *aux)
|
||
{
|
||
struct pci_attach_args *pa = aux;
|
||
|
||
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
|
||
return 0;
|
||
|
||
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 ||
|
||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Base Address Register */
|
||
#define IWN_PCI_BAR0 0x10
|
||
|
||
static void
|
||
iwn_attach(device_t parent __unused, device_t self, void *aux)
|
||
{
|
||
struct iwn_softc *sc = device_private(self);
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
||
struct pci_attach_args *pa = aux;
|
||
const char *intrstr;
|
||
char devinfo[256];
|
||
pci_intr_handle_t ih;
|
||
pcireg_t memtype, data;
|
||
int i, error, revision;
|
||
|
||
sc->sc_dev = self;
|
||
sc->sc_pct = pa->pa_pc;
|
||
sc->sc_pcitag = pa->pa_tag;
|
||
|
||
callout_init(&sc->calib_to, 0);
|
||
callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
|
||
|
||
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
|
||
revision = PCI_REVISION(pa->pa_class);
|
||
aprint_normal(": %s (rev. 0x%2x)\n", devinfo, revision);
|
||
|
||
|
||
/* clear device specific PCI configuration register 0x41 */
|
||
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
|
||
data &= ~0x0000ff00;
|
||
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
|
||
|
||
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
||
data |= PCI_COMMAND_MASTER_ENABLE;
|
||
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
|
||
|
||
/* enable bus-mastering */
|
||
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
||
data |= PCI_COMMAND_MASTER_ENABLE;
|
||
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
|
||
|
||
/* map the register window */
|
||
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
|
||
error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
|
||
&sc->sc_sh, NULL, &sc->sc_sz);
|
||
if (error != 0) {
|
||
aprint_error_dev(self, "could not map memory space\n");
|
||
return;
|
||
}
|
||
|
||
sc->sc_dmat = pa->pa_dmat;
|
||
|
||
if (pci_intr_map(pa, &ih) != 0) {
|
||
aprint_error_dev(self, "could not map interrupt\n");
|
||
return;
|
||
}
|
||
|
||
intrstr = pci_intr_string(sc->sc_pct, ih);
|
||
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc);
|
||
|
||
if (sc->sc_ih == NULL) {
|
||
aprint_error_dev(self, "could not establish interrupt");
|
||
if (intrstr != NULL)
|
||
aprint_error(" at %s", intrstr);
|
||
aprint_error("\n");
|
||
return;
|
||
}
|
||
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
|
||
|
||
if (iwn_reset(sc) != 0) {
|
||
aprint_error_dev(self, "could not reset adapter\n");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Allocate DMA memory for firmware transfers.
|
||
*/
|
||
if ((error = iwn_alloc_fwmem(sc)) != 0) {
|
||
aprint_error_dev(self, "could not allocate firmware memory\n");
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Allocate a "keep warm" page.
|
||
*/
|
||
if ((error = iwn_alloc_kw(sc)) != 0) {
|
||
aprint_error_dev(self, "could not allocate keep warm page\n");
|
||
goto fail1;
|
||
}
|
||
|
||
/*
|
||
* Allocate shared area (communication area).
|
||
*/
|
||
if ((error = iwn_alloc_shared(sc)) != 0) {
|
||
aprint_error_dev(self, "could not allocate shared area\n");
|
||
goto fail2;
|
||
}
|
||
|
||
/*
|
||
* Allocate Rx buffers and Tx/Rx rings.
|
||
*/
|
||
if ((error = iwn_alloc_rpool(sc)) != 0) {
|
||
aprint_error_dev(self, "could not allocate Rx buffers\n");
|
||
goto fail3;
|
||
}
|
||
|
||
for (i = 0; i < IWN_NTXQUEUES; i++) {
|
||
struct iwn_tx_ring *txq = &sc->txq[i];
|
||
error = iwn_alloc_tx_ring(sc, txq, IWN_TX_RING_COUNT, i);
|
||
if (error != 0) {
|
||
aprint_error_dev(self, "could not allocate Tx ring %d\n", i);
|
||
goto fail4;
|
||
}
|
||
}
|
||
|
||
if (iwn_alloc_rx_ring(sc, &sc->rxq) != 0) {
|
||
aprint_error_dev(self, "could not allocate Rx ring\n");
|
||
goto fail4;
|
||
}
|
||
|
||
|
||
ic->ic_ifp = ifp;
|
||
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
||
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
||
ic->ic_state = IEEE80211_S_INIT;
|
||
|
||
/* set device capabilities */
|
||
ic->ic_caps =
|
||
IEEE80211_C_IBSS | /* IBSS mode support */
|
||
IEEE80211_C_WPA | /* 802.11i */
|
||
IEEE80211_C_MONITOR | /* monitor mode supported */
|
||
IEEE80211_C_TXPMGT | /* tx power management */
|
||
IEEE80211_C_SHSLOT | /* short slot time supported */
|
||
IEEE80211_C_SHPREAMBLE| /* short preamble supported */
|
||
IEEE80211_C_WME; /* 802.11e */
|
||
|
||
/* read supported channels and MAC address from EEPROM */
|
||
iwn_read_eeprom(sc);
|
||
|
||
/* set supported .11a, .11b and .11g rates */
|
||
ic->ic_sup_rates[IEEE80211_MODE_11A] = iwn_rateset_11a;
|
||
ic->ic_sup_rates[IEEE80211_MODE_11B] = iwn_rateset_11b;
|
||
ic->ic_sup_rates[IEEE80211_MODE_11G] = iwn_rateset_11g;
|
||
|
||
/* IBSS channel undefined for now */
|
||
ic->ic_ibss_chan = &ic->ic_channels[0];
|
||
|
||
ifp->if_softc = sc;
|
||
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
||
ifp->if_init = iwn_init;
|
||
ifp->if_stop = iwn_stop;
|
||
ifp->if_ioctl = iwn_ioctl;
|
||
ifp->if_start = iwn_start;
|
||
ifp->if_watchdog = iwn_watchdog;
|
||
IFQ_SET_READY(&ifp->if_snd);
|
||
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
|
||
|
||
if_attach(ifp);
|
||
ieee80211_ifattach(ic);
|
||
ic->ic_node_alloc = iwn_node_alloc;
|
||
ic->ic_newassoc = iwn_newassoc;
|
||
ic->ic_wme.wme_update = iwn_wme_update;
|
||
|
||
/* override state transition machine */
|
||
sc->sc_newstate = ic->ic_newstate;
|
||
ic->ic_newstate = iwn_newstate;
|
||
ieee80211_media_init(ic, iwn_media_change, ieee80211_media_status);
|
||
|
||
sc->amrr.amrr_min_success_threshold = 1;
|
||
sc->amrr.amrr_max_success_threshold = 15;
|
||
|
||
if (!pmf_device_register(self, NULL, iwn_resume))
|
||
aprint_error_dev(self, "couldn't establish power handler\n");
|
||
else
|
||
pmf_class_network_register(self, ifp);
|
||
|
||
iwn_radiotap_attach(sc);
|
||
|
||
ieee80211_announce(ic);
|
||
|
||
return;
|
||
|
||
/* free allocated memory if something failed during attachment */
|
||
fail4: while (--i >= 0)
|
||
iwn_free_tx_ring(sc, &sc->txq[i]);
|
||
iwn_free_rpool(sc);
|
||
fail3: iwn_free_shared(sc);
|
||
fail2: iwn_free_kw(sc);
|
||
fail1: iwn_free_fwmem(sc);
|
||
}
|
||
|
||
static int
|
||
iwn_detach(struct device* self, int flags __unused)
|
||
{
|
||
struct iwn_softc *sc = (struct iwn_softc *)self;
|
||
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
||
int ac;
|
||
|
||
iwn_stop(ifp, 1);
|
||
|
||
#if NBPFILTER > 0
|
||
if (ifp != NULL)
|
||
bpfdetach(ifp);
|
||
#endif
|
||
ieee80211_ifdetach(&sc->sc_ic);
|
||
if (ifp != NULL)
|
||
if_detach(ifp);
|
||
|
||
for (ac = 0; ac < IWN_NTXQUEUES; ac++)
|
||
iwn_free_tx_ring(sc, &sc->txq[ac]);
|
||
iwn_free_rx_ring(sc, &sc->rxq);
|
||
iwn_free_rpool(sc);
|
||
iwn_free_shared(sc);
|
||
|
||
if (sc->sc_ih != NULL) {
|
||
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
|
||
sc->sc_ih = NULL;
|
||
}
|
||
|
||
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Attach the interface to 802.11 radiotap.
|
||
*/
|
||
static void
|
||
iwn_radiotap_attach(struct iwn_softc *sc)
|
||
{
|
||
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
||
|
||
#if NBPFILTER > 0
|
||
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
|
||
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
|
||
&sc->sc_drvbpf);
|
||
|
||
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
|
||
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
||
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
|
||
|
||
sc->sc_txtap_len = sizeof sc->sc_txtapu;
|
||
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
||
sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
|
||
#endif
|
||
}
|
||
|
||
|
||
/*
|
||
* Build a beacon frame that the firmware will broadcast periodically in
|
||
* IBSS or HostAP modes.
|
||
*/
|
||
#if 0
|
||
static int
|
||
iwn_setup_beacon(struct iwn_softc *sc, struct ieee80211_node *ni)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_tx_ring *ring = &sc->txq[4];
|
||
struct iwn_tx_desc *desc;
|
||
struct iwn_tx_data *data;
|
||
struct iwn_tx_cmd *cmd;
|
||
struct iwn_cmd_beacon *bcn;
|
||
struct ieee80211_beacon_offsets bo;
|
||
struct mbuf *m0;
|
||
bus_addr_t paddr;
|
||
int error;
|
||
|
||
desc = &ring->desc[ring->cur];
|
||
data = &ring->data[ring->cur];
|
||
|
||
m0 = ieee80211_beacon_alloc(ic, ni, &bo);
|
||
if (m0 == NULL) {
|
||
aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
|
||
return ENOMEM;
|
||
}
|
||
|
||
cmd = &ring->cmd[ring->cur];
|
||
cmd->code = IWN_CMD_SET_BEACON;
|
||
cmd->flags = 0;
|
||
cmd->qid = ring->qid;
|
||
cmd->idx = ring->cur;
|
||
|
||
bcn = (struct iwn_cmd_beacon *)cmd->data;
|
||
memset(bcn, 0, sizeof (struct iwn_cmd_beacon));
|
||
bcn->id = IWN_ID_BROADCAST;
|
||
bcn->ofdm_mask = 0xff;
|
||
bcn->cck_mask = 0x0f;
|
||
bcn->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
||
bcn->len = htole16(m0->m_pkthdr.len);
|
||
bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
|
||
iwn_plcp_signal(12) : iwn_plcp_signal(2);
|
||
bcn->flags = htole32(IWN_TX_AUTO_SEQ | IWN_TX_INSERT_TSTAMP);
|
||
|
||
/* save and trim IEEE802.11 header */
|
||
m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
|
||
m_adj(m0, sizeof (struct ieee80211_frame));
|
||
|
||
/* assume beacon frame is contiguous */
|
||
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
||
BUS_DMA_READ | BUS_DMA_NOWAIT);
|
||
if (error) {
|
||
aprint_error_dev(sc->sc_dev, "could not map beacon\n");
|
||
m_freem(m0);
|
||
return error;
|
||
}
|
||
|
||
data->m = m0;
|
||
|
||
/* first scatter/gather segment is used by the beacon command */
|
||
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
|
||
|
||
IWN_SET_DESC_NSEGS(desc, 2);
|
||
IWN_SET_DESC_SEG(desc, 0, paddr , 4 + sizeof(struct iwn_cmd_beacon));
|
||
IWN_SET_DESC_SEG(desc, 1, data->map->dm_segs[0].ds_addr,
|
||
data->map->dm_segs[1].ds_len);
|
||
|
||
|
||
/* kick cmd ring */
|
||
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
||
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
static int
|
||
iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
|
||
bus_size_t size, bus_size_t alignment, int flags)
|
||
{
|
||
int nsegs, error;
|
||
|
||
dma->tag = tag;
|
||
dma->size = size;
|
||
|
||
error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
|
||
if (error != 0)
|
||
goto fail;
|
||
|
||
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
|
||
flags);
|
||
if (error != 0)
|
||
goto fail;
|
||
|
||
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
|
||
if (error != 0)
|
||
goto fail;
|
||
|
||
error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
|
||
if (error != 0)
|
||
goto fail;
|
||
|
||
memset(dma->vaddr, 0, size);
|
||
|
||
dma->paddr = dma->map->dm_segs[0].ds_addr;
|
||
if (kvap != NULL)
|
||
*kvap = dma->vaddr;
|
||
|
||
return 0;
|
||
|
||
fail: iwn_dma_contig_free(dma);
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
iwn_dma_contig_free(struct iwn_dma_info *dma)
|
||
{
|
||
if (dma->map != NULL) {
|
||
if (dma->vaddr != NULL) {
|
||
bus_dmamap_unload(dma->tag, dma->map);
|
||
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
|
||
bus_dmamem_free(dma->tag, &dma->seg, 1);
|
||
dma->vaddr = NULL;
|
||
}
|
||
bus_dmamap_destroy(dma->tag, dma->map);
|
||
dma->map = NULL;
|
||
}
|
||
}
|
||
|
||
static int
|
||
iwn_alloc_shared(struct iwn_softc *sc)
|
||
{
|
||
int error;
|
||
/* must be aligned on a 1KB boundary */
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
|
||
(void **)&sc->shared, sizeof (struct iwn_shared),
|
||
1024,BUS_DMA_NOWAIT);
|
||
if (error != 0)
|
||
aprint_error_dev(sc->sc_dev,
|
||
"could not allocate shared area DMA memory\n");
|
||
|
||
return error;
|
||
|
||
}
|
||
|
||
static void
|
||
iwn_free_shared(struct iwn_softc *sc)
|
||
{
|
||
iwn_dma_contig_free(&sc->shared_dma);
|
||
}
|
||
|
||
static int
|
||
iwn_alloc_kw(struct iwn_softc *sc)
|
||
{
|
||
/* must be aligned on a 16-byte boundary */
|
||
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL,
|
||
PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
|
||
}
|
||
|
||
static void
|
||
iwn_free_kw(struct iwn_softc *sc)
|
||
{
|
||
iwn_dma_contig_free(&sc->kw_dma);
|
||
}
|
||
|
||
static int
|
||
iwn_alloc_fwmem(struct iwn_softc *sc)
|
||
{
|
||
int error;
|
||
/* allocate enough contiguous space to store text and data */
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
|
||
IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
|
||
BUS_DMA_NOWAIT);
|
||
|
||
if (error != 0){
|
||
aprint_error_dev(sc->sc_dev,
|
||
"could not allocate firmware transfer area DMA memory\n" );
|
||
|
||
}
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
iwn_free_fwmem(struct iwn_softc *sc)
|
||
{
|
||
iwn_dma_contig_free(&sc->fw_dma);
|
||
}
|
||
|
||
static struct iwn_rbuf *
|
||
iwn_alloc_rbuf(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_rbuf *rbuf;
|
||
|
||
rbuf = SLIST_FIRST(&sc->rxq.freelist);
|
||
if (rbuf == NULL)
|
||
return NULL;
|
||
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
|
||
sc->rxq.nb_free_entries --;
|
||
return rbuf;
|
||
}
|
||
|
||
/*
|
||
* This is called automatically by the network stack when the mbuf to which
|
||
* our Rx buffer is attached is freed.
|
||
*/
|
||
static void
|
||
iwn_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
|
||
{
|
||
struct iwn_rbuf *rbuf = arg;
|
||
struct iwn_softc *sc = rbuf->sc;
|
||
|
||
/* put the buffer back in the free list */
|
||
SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
|
||
|
||
sc->rxq.nb_free_entries ++;
|
||
|
||
if (__predict_true(m != NULL))
|
||
pool_cache_put(mb_cache, m);
|
||
}
|
||
|
||
|
||
static int
|
||
iwn_alloc_rpool(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_rx_ring *ring = &sc->rxq;
|
||
struct iwn_rbuf *rbuf;
|
||
int i, error;
|
||
|
||
/* allocate a big chunk of DMA'able memory.. */
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
|
||
IWN_RBUF_COUNT * IWN_RBUF_SIZE, IWN_BUF_ALIGN, BUS_DMA_NOWAIT);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev,
|
||
"could not allocate Rx buffers DMA memory\n");
|
||
return error;
|
||
}
|
||
|
||
/* ..and split it into chunks of "rbufsz" bytes */
|
||
SLIST_INIT(&ring->freelist);
|
||
for (i = 0; i < IWN_RBUF_COUNT; i++) {
|
||
rbuf = &ring->rbuf[i];
|
||
|
||
rbuf->sc = sc; /* backpointer for callbacks */
|
||
rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE;
|
||
rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
|
||
|
||
SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
|
||
}
|
||
ring->nb_free_entries = IWN_RBUF_COUNT;
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
iwn_free_rpool(struct iwn_softc *sc)
|
||
{
|
||
iwn_dma_contig_free(&sc->rxq.buf_dma);
|
||
}
|
||
|
||
static int
|
||
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
||
{
|
||
struct iwn_rx_data *data;
|
||
struct iwn_rbuf *rbuf;
|
||
int i, error;
|
||
|
||
ring->cur = 0;
|
||
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
|
||
(void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (struct iwn_rx_desc),
|
||
IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev,
|
||
"could not allocate rx ring DMA memory\n");
|
||
goto fail;
|
||
}
|
||
|
||
/*
|
||
* Setup Rx buffers.
|
||
*/
|
||
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
|
||
data = &ring->data[i];
|
||
|
||
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
|
||
if (data->m == NULL) {
|
||
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
|
||
error = ENOMEM;
|
||
goto fail;
|
||
}
|
||
if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) {
|
||
m_freem(data->m);
|
||
data->m = NULL;
|
||
aprint_error_dev(sc->sc_dev, "could not allocate rx buffer\n");
|
||
error = ENOMEM;
|
||
goto fail;
|
||
}
|
||
/* attach Rx buffer to mbuf */
|
||
MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
|
||
rbuf);
|
||
|
||
data->m->m_flags |= M_EXT_RW;
|
||
/* Rx buffers are aligned on a 256-byte boundary */
|
||
ring->desc[i] = htole32(rbuf->paddr >> 8);
|
||
}
|
||
|
||
return 0;
|
||
|
||
fail: iwn_free_rx_ring(sc, ring);
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
||
{
|
||
int ntries;
|
||
|
||
iwn_mem_lock(sc);
|
||
|
||
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
|
||
for (ntries = 0; ntries < 100; ntries++) {
|
||
if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
#ifdef IWN_DEBUG
|
||
if (ntries == 100 && iwn_debug > 0)
|
||
aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
|
||
#endif
|
||
iwn_mem_unlock(sc);
|
||
|
||
ring->cur = 0;
|
||
}
|
||
|
||
static void
|
||
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
||
{
|
||
int i;
|
||
|
||
iwn_dma_contig_free(&ring->desc_dma);
|
||
|
||
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
|
||
if (ring->data[i].m != NULL)
|
||
m_freem(ring->data[i].m);
|
||
}
|
||
}
|
||
|
||
static int
|
||
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int count,
|
||
int qid)
|
||
{
|
||
struct iwn_tx_data *data;
|
||
int i, error;
|
||
|
||
ring->qid = qid;
|
||
ring->count = count;
|
||
ring->queued = 0;
|
||
ring->cur = 0;
|
||
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
|
||
(void **)&ring->desc, count * sizeof (struct iwn_tx_desc),
|
||
IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
|
||
goto fail;
|
||
}
|
||
|
||
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
|
||
(void **)&ring->cmd, count * sizeof (struct iwn_tx_cmd), 4,
|
||
BUS_DMA_NOWAIT);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
|
||
goto fail;
|
||
}
|
||
|
||
ring->data = malloc(count * sizeof (struct iwn_tx_data), M_DEVBUF, M_NOWAIT);
|
||
|
||
if (ring->data == NULL) {
|
||
aprint_error_dev(sc->sc_dev,"could not allocate tx data slots\n");
|
||
goto fail;
|
||
}
|
||
|
||
memset(ring->data, 0, count * sizeof (struct iwn_tx_data));
|
||
|
||
for (i = 0; i < count; i++) {
|
||
data = &ring->data[i];
|
||
|
||
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
||
IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
||
&data->map);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
|
||
goto fail;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
|
||
fail: iwn_free_tx_ring(sc, ring);
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
|
||
{
|
||
struct iwn_tx_data *data;
|
||
uint32_t tmp;
|
||
int i, ntries;
|
||
|
||
iwn_mem_lock(sc);
|
||
|
||
IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
|
||
for (ntries = 0; ntries < 100; ntries++) {
|
||
tmp = IWN_READ(sc, IWN_TX_STATUS);
|
||
if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
#ifdef IWN_DEBUG
|
||
if (ntries == 100 && iwn_debug > 1) {
|
||
aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n", ring->qid);
|
||
}
|
||
#endif
|
||
iwn_mem_unlock(sc);
|
||
|
||
for (i = 0; i < ring->count; i++) {
|
||
data = &ring->data[i];
|
||
|
||
if (data->m != NULL) {
|
||
bus_dmamap_unload(sc->sc_dmat, data->map);
|
||
m_freem(data->m);
|
||
data->m = NULL;
|
||
}
|
||
}
|
||
|
||
ring->queued = 0;
|
||
ring->cur = 0;
|
||
}
|
||
|
||
static void
|
||
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
|
||
{
|
||
struct iwn_tx_data *data;
|
||
int i;
|
||
|
||
iwn_dma_contig_free(&ring->desc_dma);
|
||
iwn_dma_contig_free(&ring->cmd_dma);
|
||
|
||
if (ring->data != NULL) {
|
||
for (i = 0; i < ring->count; i++) {
|
||
data = &ring->data[i];
|
||
|
||
if (data->m != NULL) {
|
||
bus_dmamap_unload(sc->sc_dmat, data->map);
|
||
m_freem(data->m);
|
||
}
|
||
}
|
||
free(ring->data, M_DEVBUF);
|
||
}
|
||
}
|
||
|
||
/*ARGUSED*/
|
||
struct ieee80211_node *
|
||
iwn_node_alloc(struct ieee80211_node_table *nt __unused)
|
||
{
|
||
struct iwn_node *wn;
|
||
|
||
wn = malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT);
|
||
|
||
if (wn != NULL)
|
||
memset(wn, 0, sizeof (struct iwn_node));
|
||
return (struct ieee80211_node *)wn;
|
||
|
||
}
|
||
|
||
static void
|
||
iwn_newassoc(struct ieee80211_node *ni, int isnew)
|
||
{
|
||
struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
|
||
int i;
|
||
|
||
ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn);
|
||
|
||
/* set rate to some reasonable initial value */
|
||
for (i = ni->ni_rates.rs_nrates - 1;
|
||
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
|
||
i--);
|
||
ni->ni_txrate = i;
|
||
}
|
||
|
||
static int
|
||
iwn_media_change(struct ifnet *ifp)
|
||
{
|
||
int error;
|
||
|
||
error = ieee80211_media_change(ifp);
|
||
if (error != ENETRESET)
|
||
return error;
|
||
|
||
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
|
||
iwn_init(ifp);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
||
{
|
||
struct ifnet *ifp = ic->ic_ifp;
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
int error;
|
||
|
||
callout_stop(&sc->calib_to);
|
||
|
||
switch (nstate) {
|
||
|
||
case IEEE80211_S_SCAN:
|
||
|
||
if (sc->is_scanning)
|
||
break;
|
||
|
||
sc->is_scanning = true;
|
||
ieee80211_node_table_reset(&ic->ic_scan);
|
||
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
|
||
|
||
/* make the link LED blink while we're scanning */
|
||
iwn_set_led(sc, IWN_LED_LINK, 20, 2);
|
||
|
||
if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
|
||
ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
|
||
return error;
|
||
}
|
||
ic->ic_state = nstate;
|
||
return 0;
|
||
|
||
case IEEE80211_S_ASSOC:
|
||
if (ic->ic_state != IEEE80211_S_RUN)
|
||
break;
|
||
/* FALLTHROUGH */
|
||
case IEEE80211_S_AUTH:
|
||
/* reset state to handle reassociations correctly */
|
||
sc->config.associd = 0;
|
||
sc->config.filter &= ~htole32(IWN_FILTER_BSS);
|
||
/*sc->calib.state = IWN_CALIB_STATE_INIT;*/
|
||
|
||
if ((error = iwn_auth(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not move to auth state\n");
|
||
return error;
|
||
}
|
||
break;
|
||
|
||
case IEEE80211_S_RUN:
|
||
if ((error = iwn_run(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not move to run state\n");
|
||
return error;
|
||
}
|
||
break;
|
||
|
||
case IEEE80211_S_INIT:
|
||
sc->is_scanning = false;
|
||
break;
|
||
}
|
||
|
||
return sc->sc_newstate(ic, nstate, arg);
|
||
}
|
||
|
||
/*
|
||
* Grab exclusive access to NIC memory.
|
||
*/
|
||
static void
|
||
iwn_mem_lock(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp;
|
||
int ntries;
|
||
|
||
tmp = IWN_READ(sc, IWN_GPIO_CTL);
|
||
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
|
||
|
||
/* spin until we actually get the lock */
|
||
for (ntries = 0; ntries < 1000; ntries++) {
|
||
if ((IWN_READ(sc, IWN_GPIO_CTL) &
|
||
(IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
if (ntries == 1000)
|
||
aprint_error_dev(sc->sc_dev, "could not lock memory\n");
|
||
}
|
||
|
||
/*
|
||
* Release lock on NIC memory.
|
||
*/
|
||
static void
|
||
iwn_mem_unlock(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
|
||
IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
|
||
}
|
||
|
||
static uint32_t
|
||
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
|
||
{
|
||
IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
|
||
return IWN_READ(sc, IWN_READ_MEM_DATA);
|
||
}
|
||
|
||
static void
|
||
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
|
||
{
|
||
IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
|
||
IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
|
||
}
|
||
|
||
static void
|
||
iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
|
||
const uint32_t *data, int wlen)
|
||
{
|
||
for (; wlen > 0; wlen--, data++, addr += 4)
|
||
iwn_mem_write(sc, addr, *data);
|
||
}
|
||
|
||
static int
|
||
iwn_eeprom_lock(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp;
|
||
int ntries;
|
||
|
||
tmp = IWN_READ(sc, IWN_HWCONFIG);
|
||
IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
|
||
|
||
/* spin until we actually get the lock */
|
||
for (ntries = 0; ntries < 100; ntries++) {
|
||
if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
|
||
return 0;
|
||
DELAY(10);
|
||
}
|
||
return ETIMEDOUT;
|
||
}
|
||
|
||
static void
|
||
iwn_eeprom_unlock(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
|
||
IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
|
||
}
|
||
|
||
/*
|
||
* Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
|
||
* instead of using the traditional bit-bang method.
|
||
*/
|
||
static int
|
||
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
|
||
{
|
||
uint8_t *out = data;
|
||
uint32_t val;
|
||
int ntries;
|
||
|
||
iwn_mem_lock(sc);
|
||
for (; len > 0; len -= 2, addr++) {
|
||
IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
|
||
IWN_WRITE(sc, IWN_EEPROM_CTL,
|
||
IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD);
|
||
|
||
for (ntries = 0; ntries < 10; ntries++) {
|
||
if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
|
||
IWN_EEPROM_READY)
|
||
break;
|
||
DELAY(5);
|
||
}
|
||
if (ntries == 10) {
|
||
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
|
||
return ETIMEDOUT;
|
||
}
|
||
*out++ = val >> 16;
|
||
if (len > 1)
|
||
*out++ = val >> 24;
|
||
}
|
||
iwn_mem_unlock(sc);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* The firmware boot code is small and is intended to be copied directly into
|
||
* the NIC internal memory.
|
||
*/
|
||
static int
|
||
iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
|
||
{
|
||
int ntries;
|
||
|
||
size /= sizeof (uint32_t);
|
||
|
||
iwn_mem_lock(sc);
|
||
|
||
/* copy microcode image into NIC memory */
|
||
iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
|
||
(const uint32_t *)ucode, size);
|
||
|
||
iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
|
||
iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
|
||
iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
|
||
|
||
/* run microcode */
|
||
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
|
||
|
||
/* wait for transfer to complete */
|
||
for (ntries = 0; ntries < 1000; ntries++) {
|
||
if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
if (ntries == 1000) {
|
||
iwn_mem_unlock(sc);
|
||
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
|
||
return ETIMEDOUT;
|
||
}
|
||
iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
|
||
|
||
iwn_mem_unlock(sc);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
iwn_load_firmware(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_dma_info *dma = &sc->fw_dma;
|
||
struct iwn_firmware_hdr hdr;
|
||
const uint8_t *init_text, *init_data, *main_text, *main_data;
|
||
const uint8_t *boot_text;
|
||
uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
|
||
uint32_t boot_textsz;
|
||
firmware_handle_t fw;
|
||
u_char *dfw;
|
||
size_t size;
|
||
int error;
|
||
|
||
/* load firmware image from disk */
|
||
if ((error = firmware_open("if_iwn","iwlwifi-4965.ucode", &fw) != 0)) {
|
||
aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
|
||
goto fail1;
|
||
}
|
||
|
||
size = firmware_get_size(fw);
|
||
|
||
/* extract firmware header information */
|
||
if (size < sizeof (struct iwn_firmware_hdr)) {
|
||
aprint_error_dev(sc->sc_dev, "truncated firmware header: %zu bytes\n", size);
|
||
|
||
error = EINVAL;
|
||
goto fail2;
|
||
}
|
||
|
||
|
||
if ((error = firmware_read(fw, 0, &hdr,
|
||
sizeof (struct iwn_firmware_hdr))) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "can't get firmware header\n");
|
||
goto fail2;
|
||
}
|
||
|
||
main_textsz = le32toh(hdr.main_textsz);
|
||
main_datasz = le32toh(hdr.main_datasz);
|
||
init_textsz = le32toh(hdr.init_textsz);
|
||
init_datasz = le32toh(hdr.init_datasz);
|
||
boot_textsz = le32toh(hdr.boot_textsz);
|
||
|
||
/* sanity-check firmware segments sizes */
|
||
if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
|
||
main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
|
||
init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
|
||
init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
|
||
boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
|
||
(boot_textsz & 3) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
|
||
error = EINVAL;
|
||
goto fail2;
|
||
}
|
||
|
||
/* check that all firmware segments are present */
|
||
if (size < sizeof (struct iwn_firmware_hdr) + main_textsz +
|
||
main_datasz + init_textsz + init_datasz + boot_textsz) {
|
||
aprint_error_dev(sc->sc_dev, "firmware file too short: %zu bytes\n", size);
|
||
error = EINVAL;
|
||
goto fail2;
|
||
}
|
||
|
||
dfw = firmware_malloc(size);
|
||
if (dfw == NULL) {
|
||
aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
|
||
error = ENOMEM;
|
||
goto fail2;
|
||
}
|
||
|
||
if ((error = firmware_read(fw, 0, dfw, size)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "can't get firmware\n");
|
||
goto fail2;
|
||
}
|
||
|
||
/* get pointers to firmware segments */
|
||
main_text = dfw + sizeof (struct iwn_firmware_hdr);
|
||
main_data = main_text + main_textsz;
|
||
init_text = main_data + main_datasz;
|
||
init_data = init_text + init_textsz;
|
||
boot_text = init_data + init_datasz;
|
||
|
||
/* copy initialization images into pre-allocated DMA-safe memory */
|
||
memcpy(dma->vaddr, init_data, init_datasz);
|
||
memcpy((char *)dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
|
||
|
||
/* tell adapter where to find initialization images */
|
||
iwn_mem_lock(sc);
|
||
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
|
||
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
|
||
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
|
||
(dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
|
||
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
|
||
iwn_mem_unlock(sc);
|
||
|
||
/* load firmware boot code */
|
||
if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
|
||
goto fail3;
|
||
}
|
||
|
||
/* now press "execute" ;-) */
|
||
IWN_WRITE(sc, IWN_RESET, 0);
|
||
|
||
/* ..and wait at most one second for adapter to initialize */
|
||
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
|
||
/* this isn't what was supposed to happen.. */
|
||
aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
|
||
}
|
||
|
||
/* copy runtime images into pre-allocated DMA-safe memory */
|
||
memcpy((char *)dma->vaddr, main_data, main_datasz);
|
||
memcpy((char *)dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
|
||
|
||
/* tell adapter where to find runtime images */
|
||
iwn_mem_lock(sc);
|
||
iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
|
||
iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
|
||
iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
|
||
(dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
|
||
iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
|
||
iwn_mem_unlock(sc);
|
||
|
||
/* wait at most one second for second alive notification */
|
||
if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
|
||
/* this isn't what was supposed to happen.. */
|
||
aprint_error_dev(sc->sc_dev, "timeout waiting for adapter to initialize\n");
|
||
}
|
||
|
||
fail3: firmware_free(dfw,size);
|
||
fail2: firmware_close(fw);
|
||
fail1: return error;
|
||
}
|
||
|
||
static void
|
||
iwn_calib_timeout(void *arg)
|
||
{
|
||
struct iwn_softc *sc = arg;
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
int s;
|
||
|
||
/* automatic rate control triggered every 500ms */
|
||
if (ic->ic_fixed_rate == -1) {
|
||
s = splnet();
|
||
if (ic->ic_opmode == IEEE80211_M_STA)
|
||
iwn_iter_func(sc, ic->ic_bss);
|
||
else
|
||
ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
|
||
splx(s);
|
||
}
|
||
|
||
/* automatic calibration every 60s */
|
||
if (++sc->calib_cnt >= 120) {
|
||
DPRINTF(("sending request for statistics\n"));
|
||
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
|
||
sc->calib_cnt = 0;
|
||
}
|
||
|
||
callout_schedule(&sc->calib_to, hz/2);
|
||
|
||
}
|
||
|
||
static void
|
||
iwn_iter_func(void *arg, struct ieee80211_node *ni)
|
||
{
|
||
struct iwn_softc *sc = arg;
|
||
struct iwn_node *wn = (struct iwn_node *)ni;
|
||
|
||
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
|
||
}
|
||
|
||
static void
|
||
iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
|
||
{
|
||
struct iwn_rx_stat *stat;
|
||
|
||
DPRINTFN(2, ("received AMPDU stats\n"));
|
||
/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
|
||
stat = (struct iwn_rx_stat *)(desc + 1);
|
||
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
|
||
sc->last_rx_valid = 1;
|
||
}
|
||
|
||
void
|
||
iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
||
struct iwn_rx_data *data)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ifnet *ifp = ic->ic_ifp;
|
||
struct iwn_rx_ring *ring = &sc->rxq;
|
||
struct iwn_rbuf *rbuf;
|
||
struct ieee80211_frame *wh;
|
||
struct ieee80211_node *ni;
|
||
struct mbuf *m, *mnew;
|
||
struct iwn_rx_stat *stat;
|
||
char *head;
|
||
uint32_t *tail;
|
||
int len, rssi;
|
||
|
||
if (desc->type == IWN_AMPDU_RX_DONE) {
|
||
/* check for prior AMPDU_RX_START */
|
||
if (!sc->last_rx_valid) {
|
||
DPRINTF(("missing AMPDU_RX_START\n"));
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
sc->last_rx_valid = 0;
|
||
stat = &sc->last_rx_stat;
|
||
} else
|
||
stat = (struct iwn_rx_stat *)(desc + 1);
|
||
|
||
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
|
||
aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
|
||
if (desc->type == IWN_AMPDU_RX_DONE) {
|
||
struct iwn_rx_ampdu *ampdu =
|
||
(struct iwn_rx_ampdu *)(desc + 1);
|
||
head = (char *)(ampdu + 1);
|
||
len = le16toh(ampdu->len);
|
||
} else {
|
||
head = (char *)(stat + 1) + stat->cfg_phy_len;
|
||
len = le16toh(stat->len);
|
||
}
|
||
|
||
/* discard Rx frames with bad CRC early */
|
||
tail = (uint32_t *)(head + len);
|
||
if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
|
||
DPRINTFN(2, ("rx flags error %x\n", le32toh(*tail)));
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
/* XXX for ieee80211_find_rxnode() */
|
||
if (len < sizeof (struct ieee80211_frame)) {
|
||
DPRINTF(("frame too short: %d\n", len));
|
||
ic->ic_stats.is_rx_tooshort++;
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
|
||
m = data->m;
|
||
|
||
/* finalize mbuf */
|
||
m->m_pkthdr.rcvif = ifp;
|
||
m->m_data = head;
|
||
m->m_pkthdr.len = m->m_len = len;
|
||
|
||
if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) {
|
||
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
|
||
if (mnew == NULL) {
|
||
ic->ic_stats.is_rx_nobuf++;
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
|
||
/* attach Rx buffer to mbuf */
|
||
MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf,
|
||
rbuf);
|
||
mnew->m_flags |= M_EXT_RW;
|
||
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
|
||
|
||
data->m = mnew;
|
||
|
||
/* update Rx descriptor */
|
||
ring->desc[ring->cur] = htole32(rbuf->paddr >> 8);
|
||
} else {
|
||
/* no free rbufs, copy frame */
|
||
m = m_dup(m, 0, M_COPYALL, M_DONTWAIT);
|
||
if (m == NULL) {
|
||
/* no free mbufs either, drop frame */
|
||
ic->ic_stats.is_rx_nobuf++;
|
||
ifp->if_ierrors++;
|
||
return;
|
||
}
|
||
}
|
||
|
||
rssi = iwn_get_rssi(stat);
|
||
|
||
if (ic->ic_state == IEEE80211_S_SCAN)
|
||
iwn_fix_channel(ic, m);
|
||
|
||
#if NBPFILTER > 0
|
||
if (sc->sc_drvbpf != NULL) {
|
||
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
|
||
|
||
tap->wr_flags = 0;
|
||
tap->wr_chan_freq =
|
||
htole16(ic->ic_channels[stat->chan].ic_freq);
|
||
tap->wr_chan_flags =
|
||
htole16(ic->ic_channels[stat->chan].ic_flags);
|
||
tap->wr_dbm_antsignal = (int8_t)rssi;
|
||
tap->wr_dbm_antnoise = (int8_t)sc->noise;
|
||
tap->wr_tsft = stat->tstamp;
|
||
switch (stat->rate) {
|
||
/* CCK rates */
|
||
case 10: tap->wr_rate = 2; break;
|
||
case 20: tap->wr_rate = 4; break;
|
||
case 55: tap->wr_rate = 11; break;
|
||
case 110: tap->wr_rate = 22; break;
|
||
/* OFDM rates */
|
||
case 0xd: tap->wr_rate = 12; break;
|
||
case 0xf: tap->wr_rate = 18; break;
|
||
case 0x5: tap->wr_rate = 24; break;
|
||
case 0x7: tap->wr_rate = 36; break;
|
||
case 0x9: tap->wr_rate = 48; break;
|
||
case 0xb: tap->wr_rate = 72; break;
|
||
case 0x1: tap->wr_rate = 96; break;
|
||
case 0x3: tap->wr_rate = 108; break;
|
||
/* unknown rate: should not happen */
|
||
default: tap->wr_rate = 0;
|
||
}
|
||
|
||
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
|
||
}
|
||
#endif
|
||
|
||
/* grab a reference to the source node */
|
||
wh = mtod(m, struct ieee80211_frame *);
|
||
ni = ieee80211_find_rxnode(ic,(struct ieee80211_frame_min *)wh);
|
||
|
||
/* send the frame to the 802.11 layer */
|
||
ieee80211_input(ic, m, ni, rssi, 0);
|
||
|
||
/* node is no longer needed */
|
||
ieee80211_free_node(ni);
|
||
}
|
||
|
||
|
||
/*
|
||
* XXX: Hack to set the current channel to the value advertised in beacons or
|
||
* probe responses. Only used during AP detection.
|
||
* XXX: Duplicated from if_iwi.c
|
||
*/
|
||
static void
|
||
iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m)
|
||
{
|
||
struct ieee80211_frame *wh;
|
||
uint8_t subtype;
|
||
uint8_t *frm, *efrm;
|
||
|
||
wh = mtod(m, struct ieee80211_frame *);
|
||
|
||
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
|
||
return;
|
||
|
||
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
||
|
||
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
|
||
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
||
return;
|
||
|
||
frm = (uint8_t *)(wh + 1);
|
||
efrm = mtod(m, uint8_t *) + m->m_len;
|
||
|
||
frm += 12; /* skip tstamp, bintval and capinfo fields */
|
||
while (frm < efrm) {
|
||
if (*frm == IEEE80211_ELEMID_DSPARMS)
|
||
#if IEEE80211_CHAN_MAX < 255
|
||
if (frm[2] <= IEEE80211_CHAN_MAX)
|
||
#endif
|
||
ic->ic_curchan = &ic->ic_channels[frm[2]];
|
||
|
||
frm += frm[1] + 2;
|
||
}
|
||
}
|
||
|
||
static void
|
||
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_calib_state *calib = &sc->calib;
|
||
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
|
||
|
||
/* ignore beacon statistics received during a scan */
|
||
if (ic->ic_state != IEEE80211_S_RUN)
|
||
return;
|
||
|
||
DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
|
||
sc->calib_cnt = 0; /* reset timeout */
|
||
|
||
/* test if temperature has changed */
|
||
if (stats->general.temp != sc->rawtemp) {
|
||
int temp;
|
||
|
||
sc->rawtemp = stats->general.temp;
|
||
temp = iwn_get_temperature(sc);
|
||
DPRINTFN(2, ("temperature=%d\n", temp));
|
||
|
||
/* update Tx power if need be */
|
||
iwn_power_calibration(sc, temp);
|
||
}
|
||
|
||
if (desc->type != IWN_BEACON_STATISTICS)
|
||
return; /* reply to a statistics request */
|
||
|
||
sc->noise = iwn_get_noise(&stats->rx.general);
|
||
DPRINTFN(3, ("noise=%d\n", sc->noise));
|
||
|
||
/* test that RSSI and noise are present in stats report */
|
||
if (le32toh(stats->rx.general.flags) != 1) {
|
||
DPRINTF(("received statistics without RSSI\n"));
|
||
return;
|
||
}
|
||
|
||
if (calib->state == IWN_CALIB_STATE_ASSOC)
|
||
iwn_compute_differential_gain(sc, &stats->rx.general);
|
||
else if (calib->state == IWN_CALIB_STATE_RUN)
|
||
iwn_tune_sensitivity(sc, &stats->rx);
|
||
}
|
||
|
||
static void
|
||
iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
|
||
{
|
||
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
||
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
|
||
struct iwn_tx_data *txdata = &ring->data[desc->idx];
|
||
struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
|
||
struct iwn_node *wn = (struct iwn_node *)txdata->ni;
|
||
uint32_t status;
|
||
|
||
DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
|
||
"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
|
||
stat->nkill, stat->rate, le16toh(stat->duration),
|
||
le32toh(stat->status)));
|
||
|
||
/*
|
||
* Update rate control statistics for the node.
|
||
*/
|
||
wn->amn.amn_txcnt++;
|
||
if (stat->ntries > 0) {
|
||
DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
|
||
wn->amn.amn_retrycnt++;
|
||
}
|
||
|
||
status = le32toh(stat->status) & 0xff;
|
||
if (status != 1 && status != 2)
|
||
ifp->if_oerrors++;
|
||
else
|
||
ifp->if_opackets++;
|
||
|
||
bus_dmamap_unload(sc->sc_dmat, txdata->map);
|
||
m_freem(txdata->m);
|
||
txdata->m = NULL;
|
||
ieee80211_free_node(txdata->ni);
|
||
txdata->ni = NULL;
|
||
|
||
ring->queued--;
|
||
|
||
sc->sc_tx_timer = 0;
|
||
ifp->if_flags &= ~IFF_OACTIVE;
|
||
iwn_start(ifp);
|
||
}
|
||
|
||
static void
|
||
iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
|
||
{
|
||
struct iwn_tx_ring *ring = &sc->txq[4];
|
||
struct iwn_tx_data *data;
|
||
|
||
if ((desc->qid & 0xf) != 4)
|
||
return; /* not a command ack */
|
||
|
||
data = &ring->data[desc->idx];
|
||
|
||
/* if the command was mapped in a mbuf, free it */
|
||
if (data->m != NULL) {
|
||
bus_dmamap_unload(sc->sc_dmat, data->map);
|
||
m_freem(data->m);
|
||
data->m = NULL;
|
||
}
|
||
|
||
wakeup(&ring->cmd[desc->idx]);
|
||
}
|
||
|
||
static void
|
||
iwn_notif_intr(struct iwn_softc *sc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ifnet *ifp = ic->ic_ifp;
|
||
uint16_t hw;
|
||
|
||
hw = le16toh(sc->shared->closed_count);
|
||
while (sc->rxq.cur != hw) {
|
||
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
|
||
struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
|
||
|
||
DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d "
|
||
"len=%d\n", desc->qid, desc->idx, desc->flags, desc->type,
|
||
le32toh(desc->len)));
|
||
|
||
if (!(desc->qid & 0x80)) /* reply to a command */
|
||
iwn_cmd_intr(sc, desc);
|
||
|
||
switch (desc->type) {
|
||
case IWN_RX_DONE:
|
||
case IWN_AMPDU_RX_DONE:
|
||
iwn_rx_intr(sc, desc, data);
|
||
break;
|
||
|
||
case IWN_AMPDU_RX_START:
|
||
iwn_ampdu_rx_start(sc, desc);
|
||
break;
|
||
|
||
case IWN_TX_DONE:
|
||
/* a 802.11 frame has been transmitted */
|
||
iwn_tx_intr(sc, desc);
|
||
break;
|
||
|
||
case IWN_RX_STATISTICS:
|
||
case IWN_BEACON_STATISTICS:
|
||
iwn_rx_statistics(sc, desc);
|
||
break;
|
||
|
||
case IWN_BEACON_MISSED:
|
||
{
|
||
struct iwn_beacon_missed *miss =
|
||
(struct iwn_beacon_missed *)(desc + 1);
|
||
/*
|
||
* If more than 5 consecutive beacons are missed,
|
||
* reinitialize the sensitivity state machine.
|
||
*/
|
||
DPRINTFN(2, ("beacons missed %d/%d\n",
|
||
le32toh(miss->consecutive), le32toh(miss->total)));
|
||
if (ic->ic_state == IEEE80211_S_RUN &&
|
||
le32toh(miss->consecutive) > 5)
|
||
(void)iwn_init_sensitivity(sc);
|
||
break;
|
||
}
|
||
|
||
case IWN_UC_READY:
|
||
{
|
||
struct iwn_ucode_info *uc =
|
||
(struct iwn_ucode_info *)(desc + 1);
|
||
|
||
/* the microcontroller is ready */
|
||
DPRINTF(("microcode alive notification version=%d.%d "
|
||
"subtype=%x alive=%x\n", uc->major, uc->minor,
|
||
uc->subtype, le32toh(uc->valid)));
|
||
|
||
if (le32toh(uc->valid) != 1) {
|
||
aprint_error_dev(sc->sc_dev, "microcontroller initialization "
|
||
"failed\n");
|
||
break;
|
||
}
|
||
if (uc->subtype == IWN_UCODE_INIT) {
|
||
/* save microcontroller's report */
|
||
memcpy(&sc->ucode_info, uc, sizeof (*uc));
|
||
}
|
||
break;
|
||
}
|
||
case IWN_STATE_CHANGED:
|
||
{
|
||
uint32_t *status = (uint32_t *)(desc + 1);
|
||
|
||
/* enabled/disabled notification */
|
||
DPRINTF(("state changed to %x\n", le32toh(*status)));
|
||
|
||
if (le32toh(*status) & 1) {
|
||
/* the radio button has to be pushed */
|
||
aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
|
||
/* turn the interface down */
|
||
ifp->if_flags &= ~IFF_UP;
|
||
iwn_stop(ifp, 1);
|
||
return; /* no further processing */
|
||
}
|
||
break;
|
||
}
|
||
case IWN_START_SCAN:
|
||
{
|
||
struct iwn_start_scan *scan =
|
||
(struct iwn_start_scan *)(desc + 1);
|
||
|
||
DPRINTFN(2, ("scanning channel %d status %x\n",
|
||
scan->chan, le32toh(scan->status)));
|
||
|
||
/* fix current channel */
|
||
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
|
||
break;
|
||
}
|
||
case IWN_STOP_SCAN:
|
||
{
|
||
struct iwn_stop_scan *scan =
|
||
(struct iwn_stop_scan *)(desc + 1);
|
||
|
||
DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
|
||
scan->nchan, scan->status, scan->chan));
|
||
|
||
if (scan->status == 1 && scan->chan <= 14) {
|
||
/*
|
||
* We just finished scanning 802.11g channels,
|
||
* start scanning 802.11a ones.
|
||
*/
|
||
if (iwn_scan(sc, IEEE80211_CHAN_A) == 0)
|
||
break;
|
||
}
|
||
sc->is_scanning = false;
|
||
ieee80211_end_scan(ic);
|
||
break;
|
||
}
|
||
}
|
||
|
||
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
|
||
}
|
||
|
||
/* tell the firmware what we have processed */
|
||
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
|
||
IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
|
||
}
|
||
|
||
static int
|
||
iwn_intr(void *arg)
|
||
{
|
||
struct iwn_softc *sc = arg;
|
||
struct ifnet *ifp = sc->sc_ic.ic_ifp;
|
||
uint32_t r1, r2;
|
||
|
||
/* disable interrupts */
|
||
IWN_WRITE(sc, IWN_MASK, 0);
|
||
|
||
r1 = IWN_READ(sc, IWN_INTR);
|
||
r2 = IWN_READ(sc, IWN_INTR_STATUS);
|
||
|
||
if (r1 == 0 && r2 == 0) {
|
||
if (ifp->if_flags & IFF_UP)
|
||
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
|
||
return 0; /* not for us */
|
||
}
|
||
|
||
if (r1 == 0xffffffff)
|
||
return 0; /* hardware gone */
|
||
|
||
/* ack interrupts */
|
||
IWN_WRITE(sc, IWN_INTR, r1);
|
||
IWN_WRITE(sc, IWN_INTR_STATUS, r2);
|
||
|
||
DPRINTFN(5, ("interrupt reg1=%x reg2=%x\n", r1, r2));
|
||
|
||
if (r1 & IWN_RF_TOGGLED) {
|
||
uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
|
||
aprint_error_dev(sc->sc_dev, "RF switch: radio %s\n",
|
||
(tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
|
||
}
|
||
if (r1 & IWN_CT_REACHED) {
|
||
aprint_error_dev(sc->sc_dev, "critical temperature reached!\n");
|
||
}
|
||
if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
|
||
aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
|
||
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
|
||
iwn_stop(sc->sc_ic.ic_ifp, 1);
|
||
return 1;
|
||
}
|
||
|
||
if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) ||
|
||
(r2 & IWN_RX_STATUS_INTR))
|
||
iwn_notif_intr(sc);
|
||
|
||
if (r1 & IWN_ALIVE_INTR)
|
||
wakeup(sc);
|
||
|
||
/* re-enable interrupts */
|
||
if (ifp->if_flags & IFF_UP)
|
||
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static uint8_t
|
||
iwn_plcp_signal(int rate)
|
||
{
|
||
switch (rate) {
|
||
/* CCK rates (returned values are device-dependent) */
|
||
case 2: return 10;
|
||
case 4: return 20;
|
||
case 11: return 55;
|
||
case 22: return 110;
|
||
|
||
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
|
||
/* R1-R4, (u)ral is R4-R1 */
|
||
case 12: return 0xd;
|
||
case 18: return 0xf;
|
||
case 24: return 0x5;
|
||
case 36: return 0x7;
|
||
case 48: return 0x9;
|
||
case 72: return 0xb;
|
||
case 96: return 0x1;
|
||
case 108: return 0x3;
|
||
case 120: return 0x3;
|
||
}
|
||
/* unknown rate (should not get there) */
|
||
return 0;
|
||
}
|
||
|
||
/* determine if a given rate is CCK or OFDM */
|
||
#define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
|
||
|
||
static int
|
||
iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
|
||
int ac)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_tx_ring *ring = &sc->txq[ac];
|
||
struct iwn_tx_desc *desc;
|
||
struct iwn_tx_data *data;
|
||
struct iwn_tx_cmd *cmd;
|
||
struct iwn_cmd_data *tx;
|
||
struct ieee80211_frame *wh;
|
||
struct ieee80211_key *k;
|
||
const struct chanAccParams *cap;
|
||
struct mbuf *mnew;
|
||
bus_addr_t paddr;
|
||
uint32_t flags;
|
||
uint8_t type;
|
||
int i, error, pad, rate, hdrlen, noack = 0;
|
||
|
||
desc = &ring->desc[ring->cur];
|
||
data = &ring->data[ring->cur];
|
||
|
||
wh = mtod(m0, struct ieee80211_frame *);
|
||
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
||
|
||
if (IEEE80211_QOS_HAS_SEQ(wh)) {
|
||
hdrlen = sizeof (struct ieee80211_qosframe);
|
||
cap = &ic->ic_wme.wme_chanParams;
|
||
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
|
||
} else
|
||
hdrlen = sizeof (struct ieee80211_frame);
|
||
|
||
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
||
k = ieee80211_crypto_encap(ic, ni, m0);
|
||
if (k == NULL) {
|
||
m_freem(m0);
|
||
return ENOBUFS;
|
||
}
|
||
/* packet header may have moved, reset our local pointer */
|
||
wh = mtod(m0, struct ieee80211_frame *);
|
||
}
|
||
|
||
/* pickup a rate */
|
||
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
|
||
IEEE80211_FC0_TYPE_MGT) {
|
||
/* mgmt frames are sent at the lowest available bit-rate */
|
||
rate = ni->ni_rates.rs_rates[0];
|
||
} else {
|
||
if (ic->ic_fixed_rate != -1) {
|
||
rate = ic->ic_sup_rates[ic->ic_curmode].
|
||
rs_rates[ic->ic_fixed_rate];
|
||
} else
|
||
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
|
||
}
|
||
rate &= IEEE80211_RATE_VAL;
|
||
|
||
#if NBPFILTER > 0
|
||
if (sc->sc_drvbpf != NULL) {
|
||
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
|
||
|
||
tap->wt_flags = 0;
|
||
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
|
||
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
|
||
tap->wt_rate = rate;
|
||
tap->wt_hwqueue = ac;
|
||
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
|
||
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
||
|
||
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
|
||
}
|
||
#endif
|
||
|
||
cmd = &ring->cmd[ring->cur];
|
||
cmd->code = IWN_CMD_TX_DATA;
|
||
cmd->flags = 0;
|
||
cmd->qid = ring->qid;
|
||
cmd->idx = ring->cur;
|
||
|
||
tx = (struct iwn_cmd_data *)cmd->data;
|
||
|
||
flags = IWN_TX_AUTO_SEQ;
|
||
if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)){
|
||
flags |= IWN_TX_NEED_ACK;
|
||
}else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
|
||
flags |= htole32(IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP);
|
||
|
||
tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? IWN_ID_BROADCAST : IWN_ID_BSS;
|
||
|
||
if (type == IEEE80211_FC0_TYPE_MGT) {
|
||
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
||
|
||
/* tell h/w to set timestamp in probe responses */
|
||
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
||
flags |= IWN_TX_INSERT_TSTAMP;
|
||
|
||
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
||
tx->timeout = htole16(3);
|
||
else
|
||
tx->timeout = htole16(2);
|
||
} else
|
||
tx->timeout = htole16(0);
|
||
|
||
if (hdrlen & 3) {
|
||
/* first segment's length must be a multiple of 4 */
|
||
flags |= IWN_TX_NEED_PADDING;
|
||
pad = 4 - (hdrlen & 3);
|
||
} else
|
||
pad = 0;
|
||
|
||
tx->flags = htole32(flags);
|
||
tx->len = htole16(m0->m_pkthdr.len);
|
||
tx->rate = iwn_plcp_signal(rate);
|
||
tx->rts_ntries = 60;
|
||
tx->data_ntries = 15;
|
||
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
||
|
||
/* XXX alternate between Ant A and Ant B ? */
|
||
tx->rflags = IWN_RFLAG_ANT_B;
|
||
if (tx->id == IWN_ID_BROADCAST) {
|
||
tx->ridx = IWN_MAX_TX_RETRIES - 1;
|
||
if (!IWN_RATE_IS_OFDM(rate))
|
||
tx->rflags |= IWN_RFLAG_CCK;
|
||
} else {
|
||
tx->ridx = 0;
|
||
/* tell adapter to ignore rflags */
|
||
tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
|
||
}
|
||
|
||
/* copy and trim IEEE802.11 header */
|
||
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
|
||
m_adj(m0, hdrlen);
|
||
|
||
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
||
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
|
||
if (error != 0 && error != EFBIG) {
|
||
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
|
||
m_freem(m0);
|
||
return error;
|
||
}
|
||
if (error != 0) {
|
||
/* too many fragments, linearize */
|
||
|
||
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
|
||
if (mnew == NULL) {
|
||
m_freem(m0);
|
||
return ENOMEM;
|
||
}
|
||
M_COPY_PKTHDR(mnew, m0);
|
||
if (m0->m_pkthdr.len > MHLEN) {
|
||
MCLGET(mnew, M_DONTWAIT);
|
||
if (!(mnew->m_flags & M_EXT)) {
|
||
m_freem(m0);
|
||
m_freem(mnew);
|
||
return ENOMEM;
|
||
}
|
||
}
|
||
|
||
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
|
||
m_freem(m0);
|
||
mnew->m_len = mnew->m_pkthdr.len;
|
||
m0 = mnew;
|
||
|
||
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
|
||
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
|
||
m_freem(m0);
|
||
return error;
|
||
}
|
||
}
|
||
|
||
data->m = m0;
|
||
data->ni = ni;
|
||
|
||
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
|
||
ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
|
||
|
||
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
|
||
tx->loaddr = htole32(paddr + 4 +
|
||
offsetof(struct iwn_cmd_data, ntries));
|
||
tx->hiaddr = 0; /* limit to 32-bit physical addresses */
|
||
|
||
/* first scatter/gather segment is used by the tx data command */
|
||
IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs);
|
||
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
|
||
for (i = 1; i <= data->map->dm_nsegs; i++) {
|
||
IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr,
|
||
data->map->dm_segs[i - 1].ds_len);
|
||
}
|
||
sc->shared->len[ring->qid][ring->cur] =
|
||
htole16(hdrlen + m0->m_pkthdr.len + 8);
|
||
if (ring->cur < IWN_TX_WINDOW) {
|
||
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
|
||
htole16(hdrlen + m0->m_pkthdr.len + 8);
|
||
}
|
||
|
||
ring->queued++;
|
||
|
||
/* kick ring */
|
||
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
||
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
iwn_start(struct ifnet *ifp)
|
||
{
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ieee80211_node *ni;
|
||
struct ether_header *eh;
|
||
struct mbuf *m0;
|
||
int ac;
|
||
|
||
/*
|
||
* net80211 may still try to send management frames even if the
|
||
* IFF_RUNNING flag is not set...
|
||
*/
|
||
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
||
return;
|
||
|
||
for (;;) {
|
||
IF_DEQUEUE(&ic->ic_mgtq, m0);
|
||
if (m0 != NULL) {
|
||
/* management frames go into ring 0 */
|
||
|
||
|
||
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
|
||
m0->m_pkthdr.rcvif = NULL;
|
||
|
||
/* management goes into ring 0 */
|
||
if (sc->txq[0].queued > sc->txq[0].count - 8) {
|
||
ifp->if_oerrors++;
|
||
continue;
|
||
}
|
||
|
||
#if NBPFILTER > 0
|
||
if (ic->ic_rawbpf != NULL)
|
||
bpf_mtap(ic->ic_rawbpf, m0);
|
||
#endif
|
||
if (iwn_tx_data(sc, m0, ni, 0) != 0) {
|
||
ifp->if_oerrors++;
|
||
break;
|
||
}
|
||
} else {
|
||
if (ic->ic_state != IEEE80211_S_RUN)
|
||
break;
|
||
IFQ_POLL(&ifp->if_snd, m0);
|
||
if (m0 == NULL)
|
||
break;
|
||
|
||
if (m0->m_len < sizeof (*eh) &&
|
||
(m0 = m_pullup(m0, sizeof (*eh))) != NULL) {
|
||
ifp->if_oerrors++;
|
||
continue;
|
||
}
|
||
eh = mtod(m0, struct ether_header *);
|
||
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
|
||
if (ni == NULL) {
|
||
m_freem(m0);
|
||
ifp->if_oerrors++;
|
||
continue;
|
||
}
|
||
/* classify mbuf so we can find which tx ring to use */
|
||
if (ieee80211_classify(ic, m0, ni) != 0) {
|
||
m_freem(m0);
|
||
ieee80211_free_node(ni);
|
||
ifp->if_oerrors++;
|
||
continue;
|
||
}
|
||
|
||
/* no QoS encapsulation for EAPOL frames */
|
||
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
|
||
M_WME_GETAC(m0) : WME_AC_BE;
|
||
|
||
if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
|
||
|
||
/* there is no place left in this ring */
|
||
ifp->if_flags |= IFF_OACTIVE;
|
||
break;
|
||
}
|
||
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
||
#if NBPFILTER > 0
|
||
if (ifp->if_bpf != NULL)
|
||
bpf_mtap(ifp->if_bpf, m0);
|
||
#endif
|
||
m0 = ieee80211_encap(ic, m0, ni);
|
||
if (m0 == NULL) {
|
||
ieee80211_free_node(ni);
|
||
ifp->if_oerrors++;
|
||
continue;
|
||
}
|
||
#if NBPFILTER > 0
|
||
if (ic->ic_rawbpf != NULL)
|
||
bpf_mtap(ic->ic_rawbpf, m0);
|
||
#endif
|
||
if (iwn_tx_data(sc, m0, ni, ac) != 0) {
|
||
ieee80211_free_node(ni);
|
||
ifp->if_oerrors++;
|
||
break;
|
||
}
|
||
}
|
||
|
||
sc->sc_tx_timer = 5;
|
||
ifp->if_timer = 1;
|
||
}
|
||
}
|
||
|
||
static void
|
||
iwn_watchdog(struct ifnet *ifp)
|
||
{
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
|
||
ifp->if_timer = 0;
|
||
|
||
if (sc->sc_tx_timer > 0) {
|
||
if (--sc->sc_tx_timer == 0) {
|
||
aprint_error_dev(sc->sc_dev, "device timeout\n");
|
||
ifp->if_flags &= ~IFF_UP;
|
||
iwn_stop(ifp, 1);
|
||
ifp->if_oerrors++;
|
||
return;
|
||
}
|
||
ifp->if_timer = 1;
|
||
}
|
||
|
||
ieee80211_watchdog(&sc->sc_ic);
|
||
}
|
||
|
||
static int
|
||
iwn_ioctl(struct ifnet *ifp, u_long cmd, void * data)
|
||
{
|
||
|
||
#define IS_RUNNING(ifp) \
|
||
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
|
||
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
int s, error = 0;
|
||
|
||
s = splnet();
|
||
|
||
switch (cmd) {
|
||
case SIOCSIFFLAGS:
|
||
if (ifp->if_flags & IFF_UP) {
|
||
if (!(ifp->if_flags & IFF_RUNNING))
|
||
iwn_init(ifp);
|
||
} else {
|
||
if (ifp->if_flags & IFF_RUNNING)
|
||
iwn_stop(ifp, 1);
|
||
}
|
||
break;
|
||
|
||
case SIOCADDMULTI:
|
||
case SIOCDELMULTI:
|
||
/* XXX no h/w multicast filter? --dyoung */
|
||
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
|
||
/* setup multicast filter, etc */
|
||
error = 0;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error = ieee80211_ioctl(ic, cmd, data);
|
||
}
|
||
|
||
if (error == ENETRESET) {
|
||
if (IS_RUNNING(ifp) &&
|
||
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
|
||
iwn_init(ifp);
|
||
error = 0;
|
||
}
|
||
|
||
splx(s);
|
||
return error;
|
||
|
||
#undef IS_RUNNING
|
||
}
|
||
|
||
static void
|
||
iwn_read_eeprom(struct iwn_softc *sc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
char domain[4];
|
||
uint16_t val;
|
||
int i, error;
|
||
|
||
if ((error = iwn_eeprom_lock(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not lock EEPROM (error=%d)\n", error);
|
||
return;
|
||
}
|
||
/* read and print regulatory domain */
|
||
iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
|
||
aprint_error_dev(sc->sc_dev, "%.4s", domain);
|
||
|
||
/* read and print MAC address */
|
||
iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
|
||
aprint_error(", address %s\n", ether_sprintf(ic->ic_myaddr));
|
||
|
||
/* read the list of authorized channels */
|
||
for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++)
|
||
iwn_read_eeprom_channels(sc, i);
|
||
|
||
/* read maximum allowed Tx power for 2GHz and 5GHz bands */
|
||
iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
|
||
sc->maxpwr2GHz = val & 0xff;
|
||
sc->maxpwr5GHz = val >> 8;
|
||
/* check that EEPROM values are correct */
|
||
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
|
||
sc->maxpwr5GHz = 38;
|
||
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
|
||
sc->maxpwr2GHz = 38;
|
||
DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
|
||
|
||
/* read voltage at which samples were taken */
|
||
iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
|
||
sc->eeprom_voltage = (int16_t)le16toh(val);
|
||
DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
|
||
|
||
/* read power groups */
|
||
iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
|
||
#ifdef IWN_DEBUG
|
||
if (iwn_debug > 0) {
|
||
for (i = 0; i < IWN_NBANDS; i++)
|
||
iwn_print_power_group(sc, i);
|
||
}
|
||
#endif
|
||
iwn_eeprom_unlock(sc);
|
||
}
|
||
|
||
static void
|
||
iwn_read_eeprom_channels(struct iwn_softc *sc, int n)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
const struct iwn_chan_band *band = &iwn_bands[n];
|
||
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
|
||
int chan, i;
|
||
|
||
iwn_read_prom_data(sc, band->addr, channels,
|
||
band->nchan * sizeof (struct iwn_eeprom_chan));
|
||
|
||
for (i = 0; i < band->nchan; i++) {
|
||
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
|
||
continue;
|
||
|
||
chan = band->chan[i];
|
||
|
||
if (n == 0) { /* 2GHz band */
|
||
ic->ic_channels[chan].ic_freq =
|
||
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
|
||
ic->ic_channels[chan].ic_flags =
|
||
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
|
||
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
|
||
|
||
} else { /* 5GHz band */
|
||
/*
|
||
* Some adapters support channels 7, 8, 11 and 12
|
||
* both in the 2GHz *and* 5GHz bands.
|
||
* Because of limitations in our net80211(9) stack,
|
||
* we can't support these channels in 5GHz band.
|
||
*/
|
||
if (chan <= 14)
|
||
continue;
|
||
|
||
ic->ic_channels[chan].ic_freq =
|
||
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
|
||
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
|
||
}
|
||
|
||
/* is active scan allowed on this channel? */
|
||
if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
|
||
ic->ic_channels[chan].ic_flags |=
|
||
IEEE80211_CHAN_PASSIVE;
|
||
}
|
||
|
||
/* save maximum allowed power for this channel */
|
||
sc->maxpwr[chan] = channels[i].maxpwr;
|
||
|
||
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
|
||
chan, channels[i].flags, sc->maxpwr[chan]));
|
||
}
|
||
}
|
||
|
||
#ifdef IWN_DEBUG
|
||
static void
|
||
iwn_print_power_group(struct iwn_softc *sc, int i)
|
||
{
|
||
struct iwn_eeprom_band *band = &sc->bands[i];
|
||
struct iwn_eeprom_chan_samples *chans = band->chans;
|
||
int j, c;
|
||
|
||
DPRINTF(("===band %d===\n", i));
|
||
DPRINTF(("chan lo=%d, chan hi=%d\n", band->lo, band->hi));
|
||
DPRINTF(("chan1 num=%d\n", chans[0].num));
|
||
for (c = 0; c < IWN_NTXCHAINS; c++) {
|
||
for (j = 0; j < IWN_NSAMPLES; j++) {
|
||
DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
|
||
"power=%d pa_det=%d\n", c, j,
|
||
chans[0].samples[c][j].temp,
|
||
chans[0].samples[c][j].gain,
|
||
chans[0].samples[c][j].power,
|
||
chans[0].samples[c][j].pa_det));
|
||
}
|
||
}
|
||
DPRINTF(("chan2 num=%d\n", chans[1].num));
|
||
for (c = 0; c < IWN_NTXCHAINS; c++) {
|
||
for (j = 0; j < IWN_NSAMPLES; j++) {
|
||
DPRINTF(("chain %d, sample %d: temp=%d gain=%d "
|
||
"power=%d pa_det=%d\n", c, j,
|
||
chans[1].samples[c][j].temp,
|
||
chans[1].samples[c][j].gain,
|
||
chans[1].samples[c][j].power,
|
||
chans[1].samples[c][j].pa_det));
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Send a command to the firmware.
|
||
*/
|
||
static int
|
||
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
|
||
{
|
||
struct iwn_tx_ring *ring = &sc->txq[4];
|
||
struct iwn_tx_desc *desc;
|
||
struct iwn_tx_cmd *cmd;
|
||
bus_addr_t paddr;
|
||
|
||
KASSERT(size <= sizeof cmd->data);
|
||
|
||
desc = &ring->desc[ring->cur];
|
||
cmd = &ring->cmd[ring->cur];
|
||
|
||
cmd->code = code;
|
||
cmd->flags = 0;
|
||
cmd->qid = ring->qid;
|
||
cmd->idx = ring->cur;
|
||
memcpy(cmd->data, buf, size);
|
||
|
||
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
|
||
|
||
IWN_SET_DESC_NSEGS(desc, 1);
|
||
IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
|
||
sc->shared->len[ring->qid][ring->cur] = htole16(8);
|
||
if (ring->cur < IWN_TX_WINDOW) {
|
||
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
|
||
htole16(8);
|
||
}
|
||
|
||
/* kick cmd ring */
|
||
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
||
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
|
||
|
||
return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz);
|
||
}
|
||
|
||
/*
|
||
* Configure hardware multi-rate retries for one node.
|
||
*/
|
||
static int
|
||
iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_cmd_mrr mrr;
|
||
int i, ridx;
|
||
|
||
memset(&mrr, 0, sizeof mrr);
|
||
mrr.id = id;
|
||
mrr.ssmask = 2;
|
||
mrr.dsmask = 3;
|
||
mrr.ampdu_disable = 3;
|
||
mrr.ampdu_limit = 4000;
|
||
|
||
if (id == IWN_ID_BSS)
|
||
ridx = IWN_OFDM54;
|
||
else if (ic->ic_curmode == IEEE80211_MODE_11A)
|
||
ridx = IWN_OFDM6;
|
||
else
|
||
ridx = IWN_CCK1;
|
||
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
|
||
mrr.table[i].rate = iwn_ridx_to_plcp[ridx];
|
||
mrr.table[i].rflags = IWN_RFLAG_ANT_B;
|
||
if (ridx <= IWN_CCK11)
|
||
mrr.table[i].rflags |= IWN_RFLAG_CCK;
|
||
ridx = iwn_prev_ridx[ridx];
|
||
}
|
||
return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async);
|
||
}
|
||
|
||
static int
|
||
iwn_wme_update(struct ieee80211com *ic)
|
||
{
|
||
#define IWN_EXP2(v) htole16((1 << (v)) - 1)
|
||
#define IWN_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
|
||
struct iwn_softc *sc = ic->ic_ifp->if_softc;
|
||
const struct wmeParams *wmep;
|
||
struct iwn_wme_setup wme;
|
||
int ac;
|
||
|
||
/* don't override default WME values if WME is not actually enabled */
|
||
if (!(ic->ic_flags & IEEE80211_F_WME))
|
||
return 0;
|
||
|
||
wme.flags = 0;
|
||
for (ac = 0; ac < WME_NUM_AC; ac++) {
|
||
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
|
||
wme.ac[ac].aifsn = wmep->wmep_aifsn;
|
||
wme.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
|
||
wme.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
|
||
wme.ac[ac].txop = IWN_USEC(wmep->wmep_txopLimit);
|
||
|
||
DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
|
||
"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
|
||
wme.ac[ac].cwmax, wme.ac[ac].txop));
|
||
}
|
||
|
||
return iwn_cmd(sc, IWN_CMD_SET_WME, &wme, sizeof wme, 1);
|
||
#undef IWN_USEC
|
||
#undef IWN_EXP2
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
|
||
{
|
||
struct iwn_cmd_led led;
|
||
|
||
led.which = which;
|
||
led.unit = htole32(100000); /* on/off in unit of 100ms */
|
||
led.off = off;
|
||
led.on = on;
|
||
|
||
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
|
||
}
|
||
|
||
/*
|
||
* Set the critical temperature at which the firmware will automatically stop
|
||
* the radio transmitter.
|
||
*/
|
||
static int
|
||
iwn_set_critical_temp(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_ucode_info *uc = &sc->ucode_info;
|
||
struct iwn_critical_temp crit;
|
||
uint32_t r1, r2, r3, temp;
|
||
|
||
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
|
||
|
||
r1 = le32toh(uc->temp[0].chan20MHz);
|
||
r2 = le32toh(uc->temp[1].chan20MHz);
|
||
r3 = le32toh(uc->temp[2].chan20MHz);
|
||
/* inverse function of iwn_get_temperature() */
|
||
|
||
temp = r2 + ((IWN_CTOK(110) * (r3 - r1)) / 259);
|
||
|
||
memset(&crit, 0, sizeof crit);
|
||
crit.tempR = htole32(temp);
|
||
DPRINTF(("setting critical temperature to %u\n", temp));
|
||
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
|
||
}
|
||
|
||
static void
|
||
iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
|
||
{
|
||
struct iwn_cmd_tsf tsf;
|
||
uint64_t val, mod;
|
||
|
||
memset(&tsf, 0, sizeof tsf);
|
||
memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
|
||
tsf.bintval = htole16(ni->ni_intval);
|
||
tsf.lintval = htole16(10);
|
||
|
||
/* compute remaining time until next beacon */
|
||
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
|
||
mod = le64toh(tsf.tstamp) % val;
|
||
tsf.binitval = htole32((uint32_t)(val - mod));
|
||
|
||
DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%" PRIu64 "\n",
|
||
ni->ni_intval, le64toh(tsf.tstamp), val - mod));
|
||
|
||
if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
|
||
aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
|
||
}
|
||
|
||
static void
|
||
iwn_power_calibration(struct iwn_softc *sc, int temp)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
|
||
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
|
||
|
||
/* adjust Tx power if need be (delta >= 3<>C) */
|
||
if (abs(temp - sc->temp) < 3)
|
||
return;
|
||
|
||
sc->temp = temp;
|
||
|
||
DPRINTF(("setting Tx power for channel %d\n",
|
||
ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan)));
|
||
if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) {
|
||
/* just warn, too bad for the automatic calibration... */
|
||
aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Set Tx power for a given channel (each rate has its own power settings).
|
||
* This function takes into account the regulatory information from EEPROM,
|
||
* the current temperature and the current voltage.
|
||
*/
|
||
static int
|
||
iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
|
||
{
|
||
/* fixed-point arithmetic division using a n-bit fractional part */
|
||
#define fdivround(a, b, n) \
|
||
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
|
||
/* linear interpolation */
|
||
#define interpolate(x, x1, y1, x2, y2, n) \
|
||
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
|
||
|
||
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_ucode_info *uc = &sc->ucode_info;
|
||
struct iwn_cmd_txpower cmd;
|
||
struct iwn_eeprom_chan_samples *chans;
|
||
const uint8_t *rf_gain, *dsp_gain;
|
||
int32_t vdiff, tdiff;
|
||
int i, c, grp, maxpwr;
|
||
u_int chan;
|
||
|
||
/* get channel number */
|
||
chan = ieee80211_chan2ieee(ic, ch);
|
||
|
||
memset(&cmd, 0, sizeof cmd);
|
||
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
|
||
cmd.chan = chan;
|
||
|
||
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
|
||
maxpwr = sc->maxpwr5GHz;
|
||
rf_gain = iwn_rf_gain_5ghz;
|
||
dsp_gain = iwn_dsp_gain_5ghz;
|
||
} else {
|
||
maxpwr = sc->maxpwr2GHz;
|
||
rf_gain = iwn_rf_gain_2ghz;
|
||
dsp_gain = iwn_dsp_gain_2ghz;
|
||
}
|
||
|
||
/* compute voltage compensation */
|
||
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
|
||
if (vdiff > 0)
|
||
vdiff *= 2;
|
||
if (abs(vdiff) > 2)
|
||
vdiff = 0;
|
||
DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
|
||
vdiff, le32toh(uc->volt), sc->eeprom_voltage));
|
||
|
||
/* get channel's attenuation group */
|
||
if (chan <= 20) /* 1-20 */
|
||
grp = 4;
|
||
else if (chan <= 43) /* 34-43 */
|
||
grp = 0;
|
||
else if (chan <= 70) /* 44-70 */
|
||
grp = 1;
|
||
else if (chan <= 124) /* 71-124 */
|
||
grp = 2;
|
||
else /* 125-200 */
|
||
grp = 3;
|
||
DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
|
||
|
||
/* get channel's sub-band */
|
||
for (i = 0; i < IWN_NBANDS; i++)
|
||
if (sc->bands[i].lo != 0 &&
|
||
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
|
||
break;
|
||
chans = sc->bands[i].chans;
|
||
DPRINTF(("chan %d sub-band=%d\n", chan, i));
|
||
|
||
for (c = 0; c < IWN_NTXCHAINS; c++) {
|
||
uint8_t power, gain, temp;
|
||
int maxchpwr, pwr, ridx, idx;
|
||
|
||
power = interpolate(chan,
|
||
chans[0].num, chans[0].samples[c][1].power,
|
||
chans[1].num, chans[1].samples[c][1].power, 1);
|
||
gain = interpolate(chan,
|
||
chans[0].num, chans[0].samples[c][1].gain,
|
||
chans[1].num, chans[1].samples[c][1].gain, 1);
|
||
temp = interpolate(chan,
|
||
chans[0].num, chans[0].samples[c][1].temp,
|
||
chans[1].num, chans[1].samples[c][1].temp, 1);
|
||
DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n",
|
||
c, power, gain, temp));
|
||
|
||
/* compute temperature compensation */
|
||
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
|
||
DPRINTF(("temperature compensation=%d (current=%d, "
|
||
"EEPROM=%d)\n", tdiff, sc->temp, temp));
|
||
|
||
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
|
||
maxchpwr = sc->maxpwr[chan] * 2;
|
||
if ((ridx / 8) & 1) {
|
||
/* MIMO: decrease Tx power (-3dB) */
|
||
maxchpwr -= 6;
|
||
}
|
||
|
||
pwr = maxpwr - 10;
|
||
|
||
/* decrease power for highest OFDM rates */
|
||
if ((ridx % 8) == 5) /* 48Mbit/s */
|
||
pwr -= 5;
|
||
else if ((ridx % 8) == 6) /* 54Mbit/s */
|
||
pwr -= 7;
|
||
else if ((ridx % 8) == 7) /* 60Mbit/s */
|
||
pwr -= 10;
|
||
|
||
if (pwr > maxchpwr)
|
||
pwr = maxchpwr;
|
||
|
||
idx = gain - (pwr - power) - tdiff - vdiff;
|
||
if ((ridx / 8) & 1) /* MIMO */
|
||
idx += (int32_t)le32toh(uc->atten[grp][c]);
|
||
|
||
if (cmd.band == 0)
|
||
idx += 9; /* 5GHz */
|
||
if (ridx == IWN_RIDX_MAX)
|
||
idx += 5; /* CCK */
|
||
|
||
/* make sure idx stays in a valid range */
|
||
if (idx < 0)
|
||
idx = 0;
|
||
else if (idx > IWN_MAX_PWR_INDEX)
|
||
idx = IWN_MAX_PWR_INDEX;
|
||
|
||
DPRINTF(("Tx chain %d, rate idx %d: power=%d\n",
|
||
c, ridx, idx));
|
||
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
|
||
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
|
||
}
|
||
}
|
||
|
||
DPRINTF(("setting tx power for chan %d\n", chan));
|
||
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
|
||
|
||
#undef interpolate
|
||
#undef fdivround
|
||
}
|
||
|
||
/*
|
||
* Get the best (maximum) RSSI among Rx antennas (in dBm).
|
||
*/
|
||
static int
|
||
iwn_get_rssi(const struct iwn_rx_stat *stat)
|
||
{
|
||
uint8_t mask, agc;
|
||
int rssi;
|
||
|
||
mask = (le16toh(stat->antenna) >> 4) & 0x7;
|
||
agc = (le16toh(stat->agc) >> 7) & 0x7f;
|
||
|
||
rssi = 0;
|
||
if (mask & (1 << 0)) /* Ant A */
|
||
rssi = max(rssi, stat->rssi[0]);
|
||
if (mask & (1 << 1)) /* Ant B */
|
||
rssi = max(rssi, stat->rssi[2]);
|
||
if (mask & (1 << 2)) /* Ant C */
|
||
rssi = max(rssi, stat->rssi[4]);
|
||
|
||
return rssi - agc - IWN_RSSI_TO_DBM;
|
||
}
|
||
|
||
/*
|
||
* Get the average noise among Rx antennas (in dBm).
|
||
*/
|
||
static int
|
||
iwn_get_noise(const struct iwn_rx_general_stats *stats)
|
||
{
|
||
int i, total, nbant, noise;
|
||
|
||
total = nbant = 0;
|
||
for (i = 0; i < 3; i++) {
|
||
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
|
||
continue;
|
||
total += noise;
|
||
nbant++;
|
||
}
|
||
/* there should be at least one antenna but check anyway */
|
||
return (nbant == 0) ? -127 : (total / nbant) - 107;
|
||
}
|
||
|
||
/*
|
||
* Read temperature (in degC) from the on-board thermal sensor.
|
||
*/
|
||
static int
|
||
iwn_get_temperature(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_ucode_info *uc = &sc->ucode_info;
|
||
int32_t r1, r2, r3, r4, temp;
|
||
|
||
r1 = le32toh(uc->temp[0].chan20MHz);
|
||
r2 = le32toh(uc->temp[1].chan20MHz);
|
||
r3 = le32toh(uc->temp[2].chan20MHz);
|
||
r4 = le32toh(sc->rawtemp);
|
||
|
||
if (r1 == r3) /* prevents division by 0 (should not happen) */
|
||
return 0;
|
||
|
||
/* sign-extend 23-bit R4 value to 32-bit */
|
||
r4 = (r4 << 8) >> 8;
|
||
/* compute temperature */
|
||
temp = (259 * (r4 - r2)) / (r3 - r1);
|
||
temp = (temp * 97) / 100 + 8;
|
||
|
||
DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
|
||
return IWN_KTOC(temp);
|
||
}
|
||
|
||
/*
|
||
* Initialize sensitivity calibration state machine.
|
||
*/
|
||
static int
|
||
iwn_init_sensitivity(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_calib_state *calib = &sc->calib;
|
||
struct iwn_phy_calib_cmd cmd;
|
||
int error;
|
||
|
||
/* reset calibration state */
|
||
memset(calib, 0, sizeof (*calib));
|
||
calib->state = IWN_CALIB_STATE_INIT;
|
||
calib->cck_state = IWN_CCK_STATE_HIFA;
|
||
/* initial values taken from the reference driver */
|
||
calib->corr_ofdm_x1 = 105;
|
||
calib->corr_ofdm_mrc_x1 = 220;
|
||
calib->corr_ofdm_x4 = 90;
|
||
calib->corr_ofdm_mrc_x4 = 170;
|
||
calib->corr_cck_x4 = 125;
|
||
calib->corr_cck_mrc_x4 = 200;
|
||
calib->energy_cck = 100;
|
||
|
||
/* write initial sensitivity values */
|
||
if ((error = iwn_send_sensitivity(sc)) != 0)
|
||
return error;
|
||
|
||
memset(&cmd, 0, sizeof cmd);
|
||
cmd.code = IWN_SET_DIFF_GAIN;
|
||
/* differential gains initially set to 0 for all 3 antennas */
|
||
DPRINTF(("setting differential gains\n"));
|
||
return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
|
||
}
|
||
|
||
/*
|
||
* Collect noise and RSSI statistics for the first 20 beacons received
|
||
* after association and use them to determine connected antennas and
|
||
* set differential gains.
|
||
*/
|
||
static void
|
||
iwn_compute_differential_gain(struct iwn_softc *sc,
|
||
const struct iwn_rx_general_stats *stats)
|
||
{
|
||
struct iwn_calib_state *calib = &sc->calib;
|
||
struct iwn_phy_calib_cmd cmd;
|
||
int i, val;
|
||
|
||
/* accumulate RSSI and noise for all 3 antennas */
|
||
for (i = 0; i < 3; i++) {
|
||
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
|
||
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
|
||
}
|
||
|
||
/* we update differential gain only once after 20 beacons */
|
||
if (++calib->nbeacons < 20)
|
||
return;
|
||
|
||
/* determine antenna with highest average RSSI */
|
||
val = max(calib->rssi[0], calib->rssi[1]);
|
||
val = max(calib->rssi[2], val);
|
||
|
||
/* determine which antennas are connected */
|
||
sc->antmsk = 0;
|
||
for (i = 0; i < 3; i++)
|
||
if (val - calib->rssi[i] <= 15 * 20)
|
||
sc->antmsk |= 1 << i;
|
||
/* if neither Ant A and Ant B are connected.. */
|
||
if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
|
||
sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */
|
||
|
||
/* get minimal noise among connected antennas */
|
||
val = INT_MAX; /* ok, there's at least one */
|
||
for (i = 0; i < 3; i++)
|
||
if (sc->antmsk & (1 << i))
|
||
val = min(calib->noise[i], val);
|
||
|
||
memset(&cmd, 0, sizeof cmd);
|
||
cmd.code = IWN_SET_DIFF_GAIN;
|
||
/* set differential gains for connected antennas */
|
||
for (i = 0; i < 3; i++) {
|
||
if (sc->antmsk & (1 << i)) {
|
||
cmd.gain[i] = (calib->noise[i] - val) / 30;
|
||
/* limit differential gain to 3 */
|
||
cmd.gain[i] = min(cmd.gain[i], 3);
|
||
cmd.gain[i] |= IWN_GAIN_SET;
|
||
}
|
||
}
|
||
DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
|
||
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk));
|
||
if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
|
||
calib->state = IWN_CALIB_STATE_RUN;
|
||
}
|
||
|
||
/*
|
||
* Tune RF Rx sensitivity based on the number of false alarms detected
|
||
* during the last beacon period.
|
||
*/
|
||
static void
|
||
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
|
||
{
|
||
#define inc_clip(val, inc, max) \
|
||
if ((val) < (max)) { \
|
||
if ((val) < (max) - (inc)) \
|
||
(val) += (inc); \
|
||
else \
|
||
(val) = (max); \
|
||
needs_update = 1; \
|
||
}
|
||
#define dec_clip(val, dec, min) \
|
||
if ((val) > (min)) { \
|
||
if ((val) > (min) + (dec)) \
|
||
(val) -= (dec); \
|
||
else \
|
||
(val) = (min); \
|
||
needs_update = 1; \
|
||
}
|
||
|
||
struct iwn_calib_state *calib = &sc->calib;
|
||
uint32_t val, rxena, fa;
|
||
uint32_t energy[3], energy_min;
|
||
uint8_t noise[3], noise_ref;
|
||
int i, needs_update = 0;
|
||
|
||
/* check that we've been enabled long enough */
|
||
if ((rxena = le32toh(stats->general.load)) == 0)
|
||
return;
|
||
|
||
/* compute number of false alarms since last call for OFDM */
|
||
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
|
||
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
|
||
fa *= 200 * 1024; /* 200TU */
|
||
|
||
/* save counters values for next call */
|
||
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
|
||
calib->fa_ofdm = le32toh(stats->ofdm.fa);
|
||
|
||
if (fa > 50 * rxena) {
|
||
/* high false alarm count, decrease sensitivity */
|
||
DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
|
||
inc_clip(calib->corr_ofdm_x1, 1, 140);
|
||
inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
|
||
inc_clip(calib->corr_ofdm_x4, 1, 120);
|
||
inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
|
||
|
||
} else if (fa < 5 * rxena) {
|
||
/* low false alarm count, increase sensitivity */
|
||
DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
|
||
dec_clip(calib->corr_ofdm_x1, 1, 105);
|
||
dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
|
||
dec_clip(calib->corr_ofdm_x4, 1, 85);
|
||
dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
|
||
}
|
||
|
||
/* compute maximum noise among 3 antennas */
|
||
for (i = 0; i < 3; i++)
|
||
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
|
||
val = max(noise[0], noise[1]);
|
||
val = max(noise[2], val);
|
||
/* insert it into our samples table */
|
||
calib->noise_samples[calib->cur_noise_sample] = val;
|
||
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
|
||
|
||
/* compute maximum noise among last 20 samples */
|
||
noise_ref = calib->noise_samples[0];
|
||
for (i = 1; i < 20; i++)
|
||
noise_ref = max(noise_ref, calib->noise_samples[i]);
|
||
|
||
/* compute maximum energy among 3 antennas */
|
||
for (i = 0; i < 3; i++)
|
||
energy[i] = le32toh(stats->general.energy[i]);
|
||
val = min(energy[0], energy[1]);
|
||
val = min(energy[2], val);
|
||
/* insert it into our samples table */
|
||
calib->energy_samples[calib->cur_energy_sample] = val;
|
||
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
|
||
|
||
/* compute minimum energy among last 10 samples */
|
||
energy_min = calib->energy_samples[0];
|
||
for (i = 1; i < 10; i++)
|
||
energy_min = max(energy_min, calib->energy_samples[i]);
|
||
energy_min += 6;
|
||
|
||
/* compute number of false alarms since last call for CCK */
|
||
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
|
||
fa += le32toh(stats->cck.fa) - calib->fa_cck;
|
||
fa *= 200 * 1024; /* 200TU */
|
||
|
||
/* save counters values for next call */
|
||
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
|
||
calib->fa_cck = le32toh(stats->cck.fa);
|
||
|
||
if (fa > 50 * rxena) {
|
||
/* high false alarm count, decrease sensitivity */
|
||
DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
|
||
calib->cck_state = IWN_CCK_STATE_HIFA;
|
||
calib->low_fa = 0;
|
||
|
||
if (calib->corr_cck_x4 > 160) {
|
||
calib->noise_ref = noise_ref;
|
||
if (calib->energy_cck > 2)
|
||
dec_clip(calib->energy_cck, 2, energy_min);
|
||
}
|
||
if (calib->corr_cck_x4 < 160) {
|
||
calib->corr_cck_x4 = 161;
|
||
needs_update = 1;
|
||
} else
|
||
inc_clip(calib->corr_cck_x4, 3, 200);
|
||
|
||
inc_clip(calib->corr_cck_mrc_x4, 3, 400);
|
||
|
||
} else if (fa < 5 * rxena) {
|
||
/* low false alarm count, increase sensitivity */
|
||
DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
|
||
calib->cck_state = IWN_CCK_STATE_LOFA;
|
||
calib->low_fa++;
|
||
|
||
if (calib->cck_state != 0 &&
|
||
((calib->noise_ref - noise_ref) > 2 ||
|
||
calib->low_fa > 100)) {
|
||
inc_clip(calib->energy_cck, 2, 97);
|
||
dec_clip(calib->corr_cck_x4, 3, 125);
|
||
dec_clip(calib->corr_cck_mrc_x4, 3, 200);
|
||
}
|
||
} else {
|
||
/* not worth to increase or decrease sensitivity */
|
||
DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
|
||
calib->low_fa = 0;
|
||
calib->noise_ref = noise_ref;
|
||
|
||
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
|
||
/* previous interval had many false alarms */
|
||
dec_clip(calib->energy_cck, 8, energy_min);
|
||
}
|
||
calib->cck_state = IWN_CCK_STATE_INIT;
|
||
}
|
||
|
||
if (needs_update)
|
||
(void)iwn_send_sensitivity(sc);
|
||
#undef dec_clip
|
||
#undef inc_clip
|
||
}
|
||
|
||
static int
|
||
iwn_send_sensitivity(struct iwn_softc *sc)
|
||
{
|
||
struct iwn_calib_state *calib = &sc->calib;
|
||
struct iwn_sensitivity_cmd cmd;
|
||
|
||
memset(&cmd, 0, sizeof cmd);
|
||
cmd.which = IWN_SENSITIVITY_WORKTBL;
|
||
/* OFDM modulation */
|
||
cmd.corr_ofdm_x1 = le16toh(calib->corr_ofdm_x1);
|
||
cmd.corr_ofdm_mrc_x1 = le16toh(calib->corr_ofdm_mrc_x1);
|
||
cmd.corr_ofdm_x4 = le16toh(calib->corr_ofdm_x4);
|
||
cmd.corr_ofdm_mrc_x4 = le16toh(calib->corr_ofdm_mrc_x4);
|
||
cmd.energy_ofdm = le16toh(100);
|
||
cmd.energy_ofdm_th = le16toh(62);
|
||
/* CCK modulation */
|
||
cmd.corr_cck_x4 = le16toh(calib->corr_cck_x4);
|
||
cmd.corr_cck_mrc_x4 = le16toh(calib->corr_cck_mrc_x4);
|
||
cmd.energy_cck = le16toh(calib->energy_cck);
|
||
/* Barker modulation: use default values */
|
||
cmd.corr_barker = le16toh(190);
|
||
cmd.corr_barker_mrc = le16toh(390);
|
||
|
||
DPRINTFN(2, ("setting sensitivity\n"));
|
||
return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
|
||
}
|
||
|
||
static int
|
||
iwn_auth(struct iwn_softc *sc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ieee80211_node *ni = ic->ic_bss;
|
||
struct iwn_node_info node;
|
||
int error;
|
||
|
||
/* update adapter's configuration */
|
||
IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
|
||
sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
|
||
sc->config.flags = htole32(IWN_CONFIG_TSF);
|
||
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
|
||
sc->config.flags |= htole32(IWN_CONFIG_AUTO |
|
||
IWN_CONFIG_24GHZ);
|
||
}
|
||
switch (ic->ic_curmode) {
|
||
case IEEE80211_MODE_11A:
|
||
sc->config.cck_mask = 0;
|
||
sc->config.ofdm_mask = 0x15;
|
||
break;
|
||
case IEEE80211_MODE_11B:
|
||
sc->config.cck_mask = 0x03;
|
||
sc->config.ofdm_mask = 0;
|
||
break;
|
||
default: /* assume 802.11b/g */
|
||
sc->config.cck_mask = 0xf;
|
||
sc->config.ofdm_mask = 0x15;
|
||
}
|
||
DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
|
||
sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
|
||
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
|
||
sizeof (struct iwn_config), 1);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not configure\n");
|
||
return error;
|
||
}
|
||
|
||
/* configuration has changed, set Tx power accordingly */
|
||
if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* Reconfiguring clears the adapter's nodes table so we must
|
||
* add the broadcast node again.
|
||
*/
|
||
memset(&node, 0, sizeof node);
|
||
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
|
||
node.id = IWN_ID_BROADCAST;
|
||
DPRINTF(("adding broadcast node\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
|
||
return error;
|
||
}
|
||
DPRINTF(("setting MRR for node %d\n", node.id));
|
||
if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not setup MRR for broadcast node\n");
|
||
return error;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Configure the adapter for associated state.
|
||
*/
|
||
static int
|
||
iwn_run(struct iwn_softc *sc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ieee80211_node *ni = ic->ic_bss;
|
||
struct iwn_node_info node;
|
||
int error;
|
||
|
||
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
||
/* link LED blinks while monitoring */
|
||
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
|
||
return 0;
|
||
}
|
||
|
||
iwn_enable_tsf(sc, ni);
|
||
|
||
/* update adapter's configuration */
|
||
sc->config.associd = htole16(ni->ni_associd & ~0xc000);
|
||
/* short preamble/slot time are negotiated when associating */
|
||
sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE |
|
||
IWN_CONFIG_SHSLOT);
|
||
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
||
sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
|
||
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
||
sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
|
||
sc->config.filter |= htole32(IWN_FILTER_BSS);
|
||
|
||
DPRINTF(("config chan %d flags %x\n", sc->config.chan,
|
||
sc->config.flags));
|
||
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
|
||
sizeof (struct iwn_config), 1);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not update configuration\n");
|
||
return error;
|
||
}
|
||
|
||
/* configuration has changed, set Tx power accordingly */
|
||
if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
|
||
return error;
|
||
}
|
||
|
||
/* add BSS node */
|
||
memset(&node, 0, sizeof node);
|
||
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
|
||
node.id = IWN_ID_BSS;
|
||
node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT |
|
||
5 << IWN_AMDPU_DENSITY_SHIFT);
|
||
DPRINTF(("adding BSS node\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
|
||
return error;
|
||
}
|
||
DPRINTF(("setting MRR for node %d\n", node.id));
|
||
if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
|
||
return error;
|
||
}
|
||
|
||
if (ic->ic_opmode == IEEE80211_M_STA) {
|
||
/* fake a join to init the tx rate */
|
||
iwn_newassoc(ni, 1);
|
||
}
|
||
|
||
if ((error = iwn_init_sensitivity(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set sensitivity\n");
|
||
return error;
|
||
}
|
||
|
||
/* start periodic calibration timer */
|
||
sc->calib.state = IWN_CALIB_STATE_ASSOC;
|
||
sc->calib_cnt = 0;
|
||
callout_schedule(&sc->calib_to, hz / 2);
|
||
|
||
/* link LED always on while associated */
|
||
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Send a scan request to the firmware. Since this command is huge, we map it
|
||
* into a mbuf instead of using the pre-allocated set of commands.
|
||
*/
|
||
static int
|
||
iwn_scan(struct iwn_softc *sc, uint16_t flags)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct iwn_tx_ring *ring = &sc->txq[4];
|
||
struct iwn_tx_desc *desc;
|
||
struct iwn_tx_data *data;
|
||
struct iwn_tx_cmd *cmd;
|
||
struct iwn_cmd_data *tx;
|
||
struct iwn_scan_hdr *hdr;
|
||
struct iwn_scan_essid *essid;
|
||
struct iwn_scan_chan *chan;
|
||
struct ieee80211_frame *wh;
|
||
struct ieee80211_rateset *rs;
|
||
struct ieee80211_channel *c;
|
||
enum ieee80211_phymode mode;
|
||
uint8_t *frm;
|
||
int pktlen, error, nrates;
|
||
|
||
desc = &ring->desc[ring->cur];
|
||
data = &ring->data[ring->cur];
|
||
|
||
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
|
||
if (data->m == NULL) {
|
||
aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
|
||
return ENOMEM;
|
||
}
|
||
MCLGET(data->m, M_DONTWAIT);
|
||
if (!(data->m->m_flags & M_EXT)) {
|
||
m_freem(data->m);
|
||
data->m = NULL;
|
||
aprint_error_dev(sc->sc_dev, "could not allocate mbuf for scan command\n");
|
||
return ENOMEM;
|
||
}
|
||
|
||
cmd = mtod(data->m, struct iwn_tx_cmd *);
|
||
cmd->code = IWN_CMD_SCAN;
|
||
cmd->flags = 0;
|
||
cmd->qid = ring->qid;
|
||
cmd->idx = ring->cur;
|
||
|
||
hdr = (struct iwn_scan_hdr *)cmd->data;
|
||
memset(hdr, 0, sizeof (struct iwn_scan_hdr));
|
||
/*
|
||
* Move to the next channel if no packets are received within 5 msecs
|
||
* after sending the probe request (this helps to reduce the duration
|
||
* of active scans).
|
||
*/
|
||
hdr->quiet = htole16(5); /* timeout in milliseconds */
|
||
hdr->plcp_threshold = htole16(1); /* min # of packets */
|
||
|
||
/* select Ant B and Ant C for scanning */
|
||
hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
|
||
|
||
tx = (struct iwn_cmd_data *)(hdr + 1);
|
||
memset(tx, 0, sizeof (struct iwn_cmd_data));
|
||
tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); // XXX
|
||
tx->id = IWN_ID_BROADCAST;
|
||
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
||
tx->rflags = IWN_RFLAG_ANT_B;
|
||
|
||
if (flags & IEEE80211_CHAN_A) {
|
||
hdr->crc_threshold = htole16(1);
|
||
/* send probe requests at 6Mbps */
|
||
tx->rate = iwn_ridx_to_plcp[IWN_OFDM6];
|
||
} else {
|
||
hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
|
||
/* send probe requests at 1Mbps */
|
||
tx->rate = iwn_ridx_to_plcp[IWN_CCK1];
|
||
tx->rflags |= IWN_RFLAG_CCK;
|
||
}
|
||
|
||
essid = (struct iwn_scan_essid *)(tx + 1);
|
||
memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
|
||
essid[0].id = IEEE80211_ELEMID_SSID;
|
||
essid[0].len = ic->ic_des_esslen;
|
||
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
|
||
|
||
/*
|
||
* Build a probe request frame. Most of the following code is a
|
||
* copy & paste of what is done in net80211.
|
||
*/
|
||
wh = (struct ieee80211_frame *)&essid[4];
|
||
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
||
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
|
||
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
||
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
|
||
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
|
||
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
|
||
*(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
|
||
*(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
|
||
|
||
frm = (uint8_t *)(wh + 1);
|
||
|
||
/* add empty SSID IE (firmware generates it for directed scans) */
|
||
*frm++ = IEEE80211_ELEMID_SSID;
|
||
*frm++ = 0;
|
||
|
||
mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
|
||
rs = &ic->ic_sup_rates[mode];
|
||
|
||
/* add supported rates IE */
|
||
|
||
*frm++ = IEEE80211_ELEMID_RATES;
|
||
nrates = rs->rs_nrates;
|
||
if (nrates > IEEE80211_RATE_SIZE)
|
||
nrates = IEEE80211_RATE_SIZE;
|
||
*frm++ = nrates;
|
||
memcpy(frm, rs->rs_rates, nrates);
|
||
frm += nrates;
|
||
|
||
/* add supported xrates IE */
|
||
|
||
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
||
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
|
||
*frm++ = IEEE80211_ELEMID_XRATES;
|
||
*frm++ = nrates;
|
||
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
|
||
frm += nrates;
|
||
}
|
||
|
||
/* setup length of probe request */
|
||
tx->len = htole16(frm - (uint8_t *)wh);
|
||
|
||
chan = (struct iwn_scan_chan *)frm;
|
||
for (c = &ic->ic_channels[1];
|
||
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
|
||
if ((c->ic_flags & flags) != flags)
|
||
continue;
|
||
|
||
chan->chan = ieee80211_chan2ieee(ic, c);
|
||
chan->flags = 0;
|
||
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
|
||
chan->flags |= IWN_CHAN_ACTIVE;
|
||
if (ic->ic_des_esslen != 0)
|
||
chan->flags |= IWN_CHAN_DIRECT;
|
||
}
|
||
chan->dsp_gain = 0x6e;
|
||
if (IEEE80211_IS_CHAN_5GHZ(c)) {
|
||
chan->rf_gain = 0x3b;
|
||
chan->active = htole16(10);
|
||
chan->passive = htole16(110);
|
||
} else {
|
||
chan->rf_gain = 0x28;
|
||
chan->active = htole16(20);
|
||
chan->passive = htole16(120);
|
||
}
|
||
hdr->nchan++;
|
||
chan++;
|
||
|
||
frm += sizeof (struct iwn_scan_chan);
|
||
}
|
||
|
||
hdr->len = htole16(frm - (uint8_t *)hdr);
|
||
pktlen = frm - (uint8_t *)cmd;
|
||
|
||
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
|
||
BUS_DMA_NOWAIT);
|
||
if (error) {
|
||
aprint_error_dev(sc->sc_dev, "could not map scan command\n");
|
||
m_freem(data->m);
|
||
data->m = NULL;
|
||
return error;
|
||
}
|
||
|
||
IWN_SET_DESC_NSEGS(desc, 1);
|
||
IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr,
|
||
data->map->dm_segs[0].ds_len);
|
||
sc->shared->len[ring->qid][ring->cur] = htole16(8);
|
||
if (ring->cur < IWN_TX_WINDOW) {
|
||
sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
|
||
htole16(8);
|
||
}
|
||
|
||
/* kick cmd ring */
|
||
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
||
IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
|
||
|
||
return 0; /* will be notified async. of failure/success */
|
||
}
|
||
|
||
static int
|
||
iwn_config(struct iwn_softc *sc)
|
||
{
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
struct ifnet *ifp = ic->ic_ifp;
|
||
struct iwn_power power;
|
||
struct iwn_bluetooth bluetooth;
|
||
struct iwn_node_info node;
|
||
int error;
|
||
|
||
/* set power mode */
|
||
memset(&power, 0, sizeof power);
|
||
power.flags = htole16(IWN_POWER_CAM | 0x8);
|
||
DPRINTF(("setting power mode\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set power mode\n");
|
||
return error;
|
||
}
|
||
|
||
/* configure bluetooth coexistence */
|
||
memset(&bluetooth, 0, sizeof bluetooth);
|
||
bluetooth.flags = 3;
|
||
bluetooth.lead = 0xaa;
|
||
bluetooth.kill = 1;
|
||
DPRINTF(("configuring bluetooth coexistence\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
|
||
0);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not configure bluetooth coexistence\n");
|
||
return error;
|
||
}
|
||
|
||
/* configure adapter */
|
||
memset(&sc->config, 0, sizeof (struct iwn_config));
|
||
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
|
||
IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
|
||
IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
|
||
/* set default channel */
|
||
sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
|
||
sc->config.flags = htole32(IWN_CONFIG_TSF);
|
||
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
|
||
sc->config.flags |= htole32(IWN_CONFIG_AUTO |
|
||
IWN_CONFIG_24GHZ);
|
||
}
|
||
sc->config.filter = 0;
|
||
switch (ic->ic_opmode) {
|
||
case IEEE80211_M_STA:
|
||
sc->config.mode = IWN_MODE_STA;
|
||
sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
|
||
break;
|
||
case IEEE80211_M_IBSS:
|
||
case IEEE80211_M_AHDEMO:
|
||
sc->config.mode = IWN_MODE_IBSS;
|
||
break;
|
||
case IEEE80211_M_HOSTAP:
|
||
sc->config.mode = IWN_MODE_HOSTAP;
|
||
break;
|
||
case IEEE80211_M_MONITOR:
|
||
sc->config.mode = IWN_MODE_MONITOR;
|
||
sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
|
||
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
|
||
break;
|
||
}
|
||
sc->config.cck_mask = 0x0f; /* not yet negotiated */
|
||
sc->config.ofdm_mask = 0xff; /* not yet negotiated */
|
||
sc->config.ht_single_mask = 0xff;
|
||
sc->config.ht_dual_mask = 0xff;
|
||
sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT);
|
||
DPRINTF(("setting configuration\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
|
||
sizeof (struct iwn_config), 0);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "configure command failed\n");
|
||
return error;
|
||
}
|
||
|
||
/* configuration has changed, set Tx power accordingly */
|
||
if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
|
||
return error;
|
||
}
|
||
|
||
/* add broadcast node */
|
||
memset(&node, 0, sizeof node);
|
||
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
|
||
node.id = IWN_ID_BROADCAST;
|
||
DPRINTF(("adding broadcast node\n"));
|
||
error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
|
||
if (error != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
|
||
return error;
|
||
}
|
||
DPRINTF(("setting MRR for node %d\n", node.id));
|
||
if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not setup MRR for node %d\n", node.id);
|
||
return error;
|
||
}
|
||
|
||
if ((error = iwn_set_critical_temp(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not set critical temperature\n");
|
||
return error;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Do post-alive initialization of the NIC (after firmware upload).
|
||
*/
|
||
static void
|
||
iwn_post_alive(struct iwn_softc *sc)
|
||
{
|
||
uint32_t base;
|
||
uint16_t offset;
|
||
int qid;
|
||
|
||
iwn_mem_lock(sc);
|
||
|
||
/* clear SRAM */
|
||
base = iwn_mem_read(sc, IWN_SRAM_BASE);
|
||
for (offset = 0x380; offset < 0x520; offset += 4) {
|
||
IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
|
||
IWN_WRITE(sc, IWN_MEM_WDATA, 0);
|
||
}
|
||
|
||
/* shared area is aligned on a 1K boundary */
|
||
iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
|
||
iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
|
||
|
||
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
|
||
iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
|
||
IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
|
||
|
||
/* set sched. window size */
|
||
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
|
||
IWN_WRITE(sc, IWN_MEM_WDATA, 64);
|
||
/* set sched. frame limit */
|
||
IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
|
||
IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16);
|
||
}
|
||
|
||
/* enable interrupts for all 16 queues */
|
||
iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
|
||
|
||
/* identify active Tx rings (0-7) */
|
||
iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
|
||
|
||
/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
|
||
for (qid = 0; qid < 7; qid++) {
|
||
iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
|
||
IWN_TXQ_STATUS_ACTIVE | qid << 1);
|
||
}
|
||
|
||
iwn_mem_unlock(sc);
|
||
}
|
||
|
||
static void
|
||
iwn_stop_master(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp;
|
||
int ntries;
|
||
|
||
tmp = IWN_READ(sc, IWN_RESET);
|
||
IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
|
||
|
||
tmp = IWN_READ(sc, IWN_GPIO_CTL);
|
||
if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
|
||
return; /* already asleep */
|
||
|
||
for (ntries = 0; ntries < 100; ntries++) {
|
||
if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
if (ntries == 100) {
|
||
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
|
||
}
|
||
}
|
||
|
||
static int
|
||
iwn_reset(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp;
|
||
int ntries;
|
||
|
||
/* clear any pending interrupts */
|
||
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
|
||
|
||
tmp = IWN_READ(sc, IWN_CHICKEN);
|
||
IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
|
||
|
||
tmp = IWN_READ(sc, IWN_GPIO_CTL);
|
||
IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
|
||
|
||
/* wait for clock stabilization */
|
||
for (ntries = 0; ntries < 1000; ntries++) {
|
||
if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
|
||
break;
|
||
DELAY(10);
|
||
}
|
||
if (ntries == 1000) {
|
||
aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n");
|
||
return ETIMEDOUT;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
iwn_hw_config(struct iwn_softc *sc)
|
||
{
|
||
uint32_t tmp, hw;
|
||
|
||
/* enable interrupts mitigation */
|
||
IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
|
||
|
||
/* voodoo from the reference driver */
|
||
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
|
||
tmp = PCI_REVISION(tmp);
|
||
if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
|
||
/* enable "no snoop" field */
|
||
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8);
|
||
tmp &= ~IWN_DIS_NOSNOOP;
|
||
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp);
|
||
}
|
||
|
||
/* disable L1 entry to work around a hardware bug */
|
||
tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0);
|
||
tmp &= ~IWN_ENA_L1;
|
||
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp);
|
||
|
||
hw = IWN_READ(sc, IWN_HWCONFIG);
|
||
IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
|
||
|
||
iwn_mem_lock(sc);
|
||
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
|
||
iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
|
||
DELAY(5);
|
||
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
|
||
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
|
||
iwn_mem_unlock(sc);
|
||
}
|
||
|
||
static int
|
||
iwn_init(struct ifnet *ifp)
|
||
{
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
uint32_t tmp;
|
||
int error, qid;
|
||
|
||
iwn_stop(ifp, 1);
|
||
if ((error = iwn_reset(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not reset adapter\n");
|
||
goto fail1;
|
||
}
|
||
|
||
iwn_mem_lock(sc);
|
||
iwn_mem_read(sc, IWN_CLOCK_CTL);
|
||
iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
|
||
iwn_mem_read(sc, IWN_CLOCK_CTL);
|
||
iwn_mem_unlock(sc);
|
||
|
||
DELAY(20);
|
||
|
||
iwn_mem_lock(sc);
|
||
tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
|
||
iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
|
||
iwn_mem_unlock(sc);
|
||
|
||
iwn_mem_lock(sc);
|
||
tmp = iwn_mem_read(sc, IWN_MEM_POWER);
|
||
iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
|
||
iwn_mem_unlock(sc);
|
||
|
||
iwn_hw_config(sc);
|
||
|
||
/* init Rx ring */
|
||
iwn_mem_lock(sc);
|
||
IWN_WRITE(sc, IWN_RX_CONFIG, 0);
|
||
IWN_WRITE(sc, IWN_RX_WIDX, 0);
|
||
/* Rx ring is aligned on a 256-byte boundary */
|
||
IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
|
||
/* shared area is aligned on a 16-byte boundary */
|
||
IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
|
||
offsetof(struct iwn_shared, closed_count)) >> 4);
|
||
IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
|
||
iwn_mem_unlock(sc);
|
||
|
||
IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
|
||
|
||
iwn_mem_lock(sc);
|
||
iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
|
||
|
||
/* set physical address of "keep warm" page */
|
||
IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
|
||
|
||
/* init Tx rings */
|
||
for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
|
||
struct iwn_tx_ring *txq = &sc->txq[qid];
|
||
IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
|
||
IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
|
||
}
|
||
iwn_mem_unlock(sc);
|
||
|
||
/* clear "radio off" and "disable command" bits (reversed logic) */
|
||
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
|
||
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
|
||
|
||
/* clear any pending interrupts */
|
||
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
|
||
/* enable interrupts */
|
||
IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
|
||
|
||
/* not sure why/if this is necessary... */
|
||
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
|
||
IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
|
||
|
||
/* check that the radio is not disabled by RF switch */
|
||
if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
|
||
aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n");
|
||
error = EBUSY; /* XXX ;-) */
|
||
goto fail1;
|
||
}
|
||
|
||
if ((error = iwn_load_firmware(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not load firmware\n");
|
||
goto fail1;
|
||
}
|
||
|
||
/* firmware has notified us that it is alive.. */
|
||
iwn_post_alive(sc); /* ..do post alive initialization */
|
||
|
||
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
|
||
sc->temp = iwn_get_temperature(sc);
|
||
DPRINTF(("temperature=%d\n", sc->temp));
|
||
|
||
if ((error = iwn_config(sc)) != 0) {
|
||
aprint_error_dev(sc->sc_dev, "could not configure device\n");
|
||
goto fail1;
|
||
}
|
||
|
||
DPRINTF(("iwn_config end\n"));
|
||
|
||
ifp->if_flags &= ~IFF_OACTIVE;
|
||
ifp->if_flags |= IFF_RUNNING;
|
||
|
||
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
||
if (ic->ic_opmode != IEEE80211_ROAMING_MANUAL)
|
||
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
||
}
|
||
else
|
||
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
||
|
||
DPRINTF(("iwn_init ok\n"));
|
||
return 0;
|
||
|
||
fail1:
|
||
DPRINTF(("iwn_init error\n"));
|
||
iwn_stop(ifp, 1);
|
||
return error;
|
||
}
|
||
|
||
static void
|
||
iwn_stop(struct ifnet *ifp, int disable)
|
||
{
|
||
struct iwn_softc *sc = ifp->if_softc;
|
||
struct ieee80211com *ic = &sc->sc_ic;
|
||
uint32_t tmp;
|
||
int i;
|
||
|
||
ifp->if_timer = sc->sc_tx_timer = 0;
|
||
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
||
|
||
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
||
|
||
IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
|
||
|
||
/* disable interrupts */
|
||
IWN_WRITE(sc, IWN_MASK, 0);
|
||
IWN_WRITE(sc, IWN_INTR, 0xffffffff);
|
||
IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
|
||
|
||
/* make sure we no longer hold the memory lock */
|
||
iwn_mem_unlock(sc);
|
||
|
||
/* reset all Tx rings */
|
||
for (i = 0; i < IWN_NTXQUEUES; i++)
|
||
iwn_reset_tx_ring(sc, &sc->txq[i]);
|
||
|
||
/* reset Rx ring */
|
||
iwn_reset_rx_ring(sc, &sc->rxq);
|
||
|
||
iwn_mem_lock(sc);
|
||
iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
|
||
iwn_mem_unlock(sc);
|
||
|
||
DELAY(5);
|
||
|
||
iwn_stop_master(sc);
|
||
tmp = IWN_READ(sc, IWN_RESET);
|
||
IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
|
||
}
|
||
|
||
static bool
|
||
iwn_resume(device_t dv PMF_FN_ARGS)
|
||
{
|
||
struct iwn_softc *sc = device_private(dv);
|
||
|
||
(void)iwn_reset(sc);
|
||
|
||
return true;
|
||
}
|