4133a8eca8
The inline functions are more friendly for applying psz/psref; they consist of only simple interations.
1821 lines
43 KiB
C
1821 lines
43 KiB
C
/* $NetBSD: ip_output.c,v 1.259 2016/07/08 04:33:30 ozaki-r Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Public Access Networks Corporation ("Panix"). It was developed under
|
|
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.259 2016/07/08 04:33:30 ozaki-r Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_mrouting.h"
|
|
#include "opt_net_mpsafe.h"
|
|
#include "opt_mpls.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/kauth.h>
|
|
#ifdef IPSEC
|
|
#include <sys/domain.h>
|
|
#endif
|
|
#include <sys/systm.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/pfil.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_private.h>
|
|
#include <netinet/in_offload.h>
|
|
#include <netinet/portalgo.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#ifdef INET6
|
|
#include <netinet6/ip6_var.h>
|
|
#endif
|
|
|
|
#ifdef MROUTING
|
|
#include <netinet/ip_mroute.h>
|
|
#endif
|
|
|
|
#ifdef IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/key.h>
|
|
#endif
|
|
|
|
#ifdef MPLS
|
|
#include <netmpls/mpls.h>
|
|
#include <netmpls/mpls_var.h>
|
|
#endif
|
|
|
|
static int ip_pcbopts(struct inpcb *, const struct sockopt *);
|
|
static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
|
|
static struct ifnet *ip_multicast_if(struct in_addr *, int *);
|
|
static void ip_mloopback(struct ifnet *, struct mbuf *,
|
|
const struct sockaddr_in *);
|
|
|
|
extern pfil_head_t *inet_pfil_hook; /* XXX */
|
|
|
|
int ip_do_loopback_cksum = 0;
|
|
|
|
static int
|
|
ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
|
|
const struct rtentry *rt)
|
|
{
|
|
int error = 0;
|
|
#ifdef MPLS
|
|
union mpls_shim msh;
|
|
|
|
if (rt == NULL || rt_gettag(rt) == NULL ||
|
|
rt_gettag(rt)->sa_family != AF_MPLS ||
|
|
(m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
|
|
ifp->if_type != IFT_ETHER)
|
|
return 0;
|
|
|
|
msh.s_addr = MPLS_GETSADDR(rt);
|
|
if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
|
|
struct m_tag *mtag;
|
|
/*
|
|
* XXX tentative solution to tell ether_output
|
|
* it's MPLS. Need some more efficient solution.
|
|
*/
|
|
mtag = m_tag_get(PACKET_TAG_MPLS,
|
|
sizeof(int) /* dummy */,
|
|
M_NOWAIT);
|
|
if (mtag == NULL)
|
|
return ENOMEM;
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
#endif
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Send an IP packet to a host.
|
|
*/
|
|
int
|
|
ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
|
|
const struct sockaddr * const dst, const struct rtentry *rt)
|
|
{
|
|
int error = 0;
|
|
|
|
if (rt != NULL) {
|
|
error = rt_check_reject_route(rt, ifp);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
error = ip_mark_mpls(ifp, m, rt);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
|
|
error = if_output_lock(ifp, ifp, m, dst, rt);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* IP output. The packet in mbuf chain m contains a skeletal IP
|
|
* header (with len, off, ttl, proto, tos, src, dst).
|
|
* The mbuf chain containing the packet will be freed.
|
|
* The mbuf opt, if present, will not be freed.
|
|
*/
|
|
int
|
|
ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
|
|
struct ip_moptions *imo, struct socket *so)
|
|
{
|
|
struct rtentry *rt;
|
|
struct ip *ip;
|
|
struct ifnet *ifp, *mifp = NULL;
|
|
struct mbuf *m = m0;
|
|
int hlen = sizeof (struct ip);
|
|
int len, error = 0;
|
|
struct route iproute;
|
|
const struct sockaddr_in *dst;
|
|
struct in_ifaddr *ia;
|
|
int isbroadcast;
|
|
int sw_csum;
|
|
u_long mtu;
|
|
#ifdef IPSEC
|
|
struct secpolicy *sp = NULL;
|
|
#endif
|
|
bool natt_frag = false;
|
|
bool rtmtu_nolock;
|
|
union {
|
|
struct sockaddr dst;
|
|
struct sockaddr_in dst4;
|
|
} u;
|
|
struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
|
|
* to the nexthop
|
|
*/
|
|
struct psref psref;
|
|
int bound;
|
|
|
|
len = 0;
|
|
|
|
MCLAIM(m, &ip_tx_mowner);
|
|
|
|
KASSERT((m->m_flags & M_PKTHDR) != 0);
|
|
KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
|
|
KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
|
|
(M_CSUM_TCPv4|M_CSUM_UDPv4));
|
|
|
|
if (opt) {
|
|
m = ip_insertoptions(m, opt, &len);
|
|
if (len >= sizeof(struct ip))
|
|
hlen = len;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
|
|
/*
|
|
* Fill in IP header.
|
|
*/
|
|
if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
|
|
ip->ip_v = IPVERSION;
|
|
ip->ip_off = htons(0);
|
|
/* ip->ip_id filled in after we find out source ia */
|
|
ip->ip_hl = hlen >> 2;
|
|
IP_STATINC(IP_STAT_LOCALOUT);
|
|
} else {
|
|
hlen = ip->ip_hl << 2;
|
|
}
|
|
|
|
/*
|
|
* Route packet.
|
|
*/
|
|
if (ro == NULL) {
|
|
memset(&iproute, 0, sizeof(iproute));
|
|
ro = &iproute;
|
|
}
|
|
sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
|
|
dst = satocsin(rtcache_getdst(ro));
|
|
|
|
/*
|
|
* If there is a cached route, check that it is to the same
|
|
* destination and is still up. If not, free it and try again.
|
|
* The address family should also be checked in case of sharing
|
|
* the cache with IPv6.
|
|
*/
|
|
if (dst && (dst->sin_family != AF_INET ||
|
|
!in_hosteq(dst->sin_addr, ip->ip_dst)))
|
|
rtcache_free(ro);
|
|
|
|
if ((rt = rtcache_validate(ro)) == NULL &&
|
|
(rt = rtcache_update(ro, 1)) == NULL) {
|
|
dst = &u.dst4;
|
|
error = rtcache_setdst(ro, &u.dst);
|
|
if (error != 0)
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If routing to interface only, short circuit routing lookup.
|
|
*/
|
|
if (flags & IP_ROUTETOIF) {
|
|
if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
|
|
IP_STATINC(IP_STAT_NOROUTE);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
ifp = ia->ia_ifp;
|
|
mtu = ifp->if_mtu;
|
|
ip->ip_ttl = 1;
|
|
isbroadcast = in_broadcast(dst->sin_addr, ifp);
|
|
} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
|
|
ip->ip_dst.s_addr == INADDR_BROADCAST) &&
|
|
imo != NULL && imo->imo_multicast_if_index != 0) {
|
|
bound = curlwp_bind();
|
|
ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
|
|
if (ifp == NULL) {
|
|
curlwp_bindx(bound);
|
|
IP_STATINC(IP_STAT_NOROUTE);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
mtu = ifp->if_mtu;
|
|
ia = in_get_ia_from_ifp(ifp);
|
|
isbroadcast = 0;
|
|
} else {
|
|
if (rt == NULL)
|
|
rt = rtcache_init(ro);
|
|
if (rt == NULL) {
|
|
IP_STATINC(IP_STAT_NOROUTE);
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
ia = ifatoia(rt->rt_ifa);
|
|
ifp = rt->rt_ifp;
|
|
if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
|
|
mtu = ifp->if_mtu;
|
|
rt->rt_use++;
|
|
if (rt->rt_flags & RTF_GATEWAY)
|
|
dst = satosin(rt->rt_gateway);
|
|
if (rt->rt_flags & RTF_HOST)
|
|
isbroadcast = rt->rt_flags & RTF_BROADCAST;
|
|
else
|
|
isbroadcast = in_broadcast(dst->sin_addr, ifp);
|
|
}
|
|
rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
|
|
|
|
if (IN_MULTICAST(ip->ip_dst.s_addr) ||
|
|
(ip->ip_dst.s_addr == INADDR_BROADCAST)) {
|
|
bool inmgroup;
|
|
|
|
m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
|
|
M_BCAST : M_MCAST;
|
|
/*
|
|
* See if the caller provided any multicast options
|
|
*/
|
|
if (imo != NULL)
|
|
ip->ip_ttl = imo->imo_multicast_ttl;
|
|
else
|
|
ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
|
|
/*
|
|
* if we don't know the outgoing ifp yet, we can't generate
|
|
* output
|
|
*/
|
|
if (!ifp) {
|
|
IP_STATINC(IP_STAT_NOROUTE);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If the packet is multicast or broadcast, confirm that
|
|
* the outgoing interface can transmit it.
|
|
*/
|
|
if (((m->m_flags & M_MCAST) &&
|
|
(ifp->if_flags & IFF_MULTICAST) == 0) ||
|
|
((m->m_flags & M_BCAST) &&
|
|
(ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
|
|
IP_STATINC(IP_STAT_NOROUTE);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* If source address not specified yet, use an address
|
|
* of outgoing interface.
|
|
*/
|
|
if (in_nullhost(ip->ip_src)) {
|
|
struct in_ifaddr *xia;
|
|
struct ifaddr *xifa;
|
|
|
|
xia = in_get_ia_from_ifp(ifp);
|
|
if (!xia) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
xifa = &xia->ia_ifa;
|
|
if (xifa->ifa_getifa != NULL) {
|
|
xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
|
|
if (xia == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
}
|
|
ip->ip_src = xia->ia_addr.sin_addr;
|
|
}
|
|
|
|
inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
|
|
if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
|
|
/*
|
|
* If we belong to the destination multicast group
|
|
* on the outgoing interface, and the caller did not
|
|
* forbid loopback, loop back a copy.
|
|
*/
|
|
ip_mloopback(ifp, m, &u.dst4);
|
|
}
|
|
#ifdef MROUTING
|
|
else {
|
|
/*
|
|
* If we are acting as a multicast router, perform
|
|
* multicast forwarding as if the packet had just
|
|
* arrived on the interface to which we are about
|
|
* to send. The multicast forwarding function
|
|
* recursively calls this function, using the
|
|
* IP_FORWARDING flag to prevent infinite recursion.
|
|
*
|
|
* Multicasts that are looped back by ip_mloopback(),
|
|
* above, will be forwarded by the ip_input() routine,
|
|
* if necessary.
|
|
*/
|
|
extern struct socket *ip_mrouter;
|
|
|
|
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
|
|
if (ip_mforward(m, ifp) != 0) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Multicasts with a time-to-live of zero may be looped-
|
|
* back, above, but must not be transmitted on a network.
|
|
* Also, multicasts addressed to the loopback interface
|
|
* are not sent -- the above call to ip_mloopback() will
|
|
* loop back a copy if this host actually belongs to the
|
|
* destination group on the loopback interface.
|
|
*/
|
|
if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
goto sendit;
|
|
}
|
|
|
|
/*
|
|
* If source address not specified yet, use address
|
|
* of outgoing interface.
|
|
*/
|
|
if (in_nullhost(ip->ip_src)) {
|
|
struct ifaddr *xifa;
|
|
|
|
xifa = &ia->ia_ifa;
|
|
if (xifa->ifa_getifa != NULL) {
|
|
ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
|
|
if (ia == NULL) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
}
|
|
ip->ip_src = ia->ia_addr.sin_addr;
|
|
}
|
|
|
|
/*
|
|
* packets with Class-D address as source are not valid per
|
|
* RFC 1112
|
|
*/
|
|
if (IN_MULTICAST(ip->ip_src.s_addr)) {
|
|
IP_STATINC(IP_STAT_ODROPPED);
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Look for broadcast address and and verify user is allowed to
|
|
* send such a packet.
|
|
*/
|
|
if (isbroadcast) {
|
|
if ((ifp->if_flags & IFF_BROADCAST) == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
goto bad;
|
|
}
|
|
if ((flags & IP_ALLOWBROADCAST) == 0) {
|
|
error = EACCES;
|
|
goto bad;
|
|
}
|
|
/* don't allow broadcast messages to be fragmented */
|
|
if (ntohs(ip->ip_len) > ifp->if_mtu) {
|
|
error = EMSGSIZE;
|
|
goto bad;
|
|
}
|
|
m->m_flags |= M_BCAST;
|
|
} else
|
|
m->m_flags &= ~M_BCAST;
|
|
|
|
sendit:
|
|
if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
|
|
if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
|
|
ip->ip_id = 0;
|
|
} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
|
|
ip->ip_id = ip_newid(ia);
|
|
} else {
|
|
|
|
/*
|
|
* TSO capable interfaces (typically?) increment
|
|
* ip_id for each segment.
|
|
* "allocate" enough ids here to increase the chance
|
|
* for them to be unique.
|
|
*
|
|
* note that the following calculation is not
|
|
* needed to be precise. wasting some ip_id is fine.
|
|
*/
|
|
|
|
unsigned int segsz = m->m_pkthdr.segsz;
|
|
unsigned int datasz = ntohs(ip->ip_len) - hlen;
|
|
unsigned int num = howmany(datasz, segsz);
|
|
|
|
ip->ip_id = ip_newid_range(ia, num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we're doing Path MTU Discovery, we need to set DF unless
|
|
* the route's MTU is locked.
|
|
*/
|
|
if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
|
|
ip->ip_off |= htons(IP_DF);
|
|
}
|
|
|
|
#ifdef IPSEC
|
|
if (ipsec_used) {
|
|
bool ipsec_done = false;
|
|
|
|
/* Perform IPsec processing, if any. */
|
|
error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
|
|
&ipsec_done);
|
|
if (error || ipsec_done)
|
|
goto done;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Run through list of hooks for output packets.
|
|
*/
|
|
error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
|
|
if (error)
|
|
goto done;
|
|
if (m == NULL)
|
|
goto done;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
|
|
m->m_pkthdr.csum_data |= hlen << 16;
|
|
|
|
#if IFA_STATS
|
|
/*
|
|
* search for the source address structure to
|
|
* maintain output statistics.
|
|
*/
|
|
ia = in_get_ia(ip->ip_src);
|
|
#endif
|
|
|
|
/* Maybe skip checksums on loopback interfaces. */
|
|
if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
|
|
}
|
|
sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
|
|
/*
|
|
* If small enough for mtu of path, or if using TCP segmentation
|
|
* offload, can just send directly.
|
|
*/
|
|
if (ntohs(ip->ip_len) <= mtu ||
|
|
(m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
|
|
const struct sockaddr *sa;
|
|
|
|
#if IFA_STATS
|
|
if (ia)
|
|
ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
|
|
#endif
|
|
/*
|
|
* Always initialize the sum to 0! Some HW assisted
|
|
* checksumming requires this.
|
|
*/
|
|
ip->ip_sum = 0;
|
|
|
|
if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
|
|
/*
|
|
* Perform any checksums that the hardware can't do
|
|
* for us.
|
|
*
|
|
* XXX Does any hardware require the {th,uh}_sum
|
|
* XXX fields to be 0?
|
|
*/
|
|
if (sw_csum & M_CSUM_IPv4) {
|
|
KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
|
|
ip->ip_sum = in_cksum(m, hlen);
|
|
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
|
|
}
|
|
if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
if (IN_NEED_CHECKSUM(ifp,
|
|
sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
|
|
in_delayed_cksum(m);
|
|
}
|
|
m->m_pkthdr.csum_flags &=
|
|
~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
}
|
|
|
|
sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
|
|
if (__predict_true(
|
|
(m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
|
|
(ifp->if_capenable & IFCAP_TSOv4) != 0)) {
|
|
error = ip_if_output(ifp, m, sa, rt);
|
|
} else {
|
|
error = ip_tso_output(ifp, m, sa, rt);
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We can't use HW checksumming if we're about to
|
|
* to fragment the packet.
|
|
*
|
|
* XXX Some hardware can do this.
|
|
*/
|
|
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
if (IN_NEED_CHECKSUM(ifp,
|
|
m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
|
|
in_delayed_cksum(m);
|
|
}
|
|
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
/*
|
|
* Too large for interface; fragment if possible.
|
|
* Must be able to put at least 8 bytes per fragment.
|
|
*/
|
|
if (ntohs(ip->ip_off) & IP_DF) {
|
|
if (flags & IP_RETURNMTU) {
|
|
struct inpcb *inp;
|
|
|
|
KASSERT(so && solocked(so));
|
|
inp = sotoinpcb(so);
|
|
inp->inp_errormtu = mtu;
|
|
}
|
|
error = EMSGSIZE;
|
|
IP_STATINC(IP_STAT_CANTFRAG);
|
|
goto bad;
|
|
}
|
|
|
|
error = ip_fragment(m, ifp, mtu);
|
|
if (error) {
|
|
m = NULL;
|
|
goto bad;
|
|
}
|
|
|
|
for (; m; m = m0) {
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = 0;
|
|
if (error) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
#if IFA_STATS
|
|
if (ia)
|
|
ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
|
|
#endif
|
|
/*
|
|
* If we get there, the packet has not been handled by
|
|
* IPsec whereas it should have. Now that it has been
|
|
* fragmented, re-inject it in ip_output so that IPsec
|
|
* processing can occur.
|
|
*/
|
|
if (natt_frag) {
|
|
error = ip_output(m, opt, ro,
|
|
flags | IP_RAWOUTPUT | IP_NOIPNEWID,
|
|
imo, so);
|
|
} else {
|
|
KASSERT((m->m_pkthdr.csum_flags &
|
|
(M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
|
|
error = ip_if_output(ifp, m,
|
|
(m->m_flags & M_MCAST) ?
|
|
sintocsa(rdst) : sintocsa(dst), rt);
|
|
}
|
|
}
|
|
if (error == 0) {
|
|
IP_STATINC(IP_STAT_FRAGMENTED);
|
|
}
|
|
done:
|
|
if (ro == &iproute) {
|
|
rtcache_free(&iproute);
|
|
}
|
|
#ifdef IPSEC
|
|
if (sp) {
|
|
KEY_FREESP(&sp);
|
|
}
|
|
#endif
|
|
if (mifp != NULL) {
|
|
if_put(mifp, &psref);
|
|
curlwp_bindx(bound);
|
|
}
|
|
return error;
|
|
bad:
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
int
|
|
ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
|
|
{
|
|
struct ip *ip, *mhip;
|
|
struct mbuf *m0;
|
|
int len, hlen, off;
|
|
int mhlen, firstlen;
|
|
struct mbuf **mnext;
|
|
int sw_csum = m->m_pkthdr.csum_flags;
|
|
int fragments = 0;
|
|
int s;
|
|
int error = 0;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
if (ifp != NULL)
|
|
sw_csum &= ~ifp->if_csum_flags_tx;
|
|
|
|
len = (mtu - hlen) &~ 7;
|
|
if (len < 8) {
|
|
m_freem(m);
|
|
return (EMSGSIZE);
|
|
}
|
|
|
|
firstlen = len;
|
|
mnext = &m->m_nextpkt;
|
|
|
|
/*
|
|
* Loop through length of segment after first fragment,
|
|
* make new header and copy data of each part and link onto chain.
|
|
*/
|
|
m0 = m;
|
|
mhlen = sizeof (struct ip);
|
|
for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
|
|
MGETHDR(m, M_DONTWAIT, MT_HEADER);
|
|
if (m == 0) {
|
|
error = ENOBUFS;
|
|
IP_STATINC(IP_STAT_ODROPPED);
|
|
goto sendorfree;
|
|
}
|
|
MCLAIM(m, m0->m_owner);
|
|
*mnext = m;
|
|
mnext = &m->m_nextpkt;
|
|
m->m_data += max_linkhdr;
|
|
mhip = mtod(m, struct ip *);
|
|
*mhip = *ip;
|
|
/* we must inherit MCAST and BCAST flags */
|
|
m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
|
|
if (hlen > sizeof (struct ip)) {
|
|
mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
|
|
mhip->ip_hl = mhlen >> 2;
|
|
}
|
|
m->m_len = mhlen;
|
|
mhip->ip_off = ((off - hlen) >> 3) +
|
|
(ntohs(ip->ip_off) & ~IP_MF);
|
|
if (ip->ip_off & htons(IP_MF))
|
|
mhip->ip_off |= IP_MF;
|
|
if (off + len >= ntohs(ip->ip_len))
|
|
len = ntohs(ip->ip_len) - off;
|
|
else
|
|
mhip->ip_off |= IP_MF;
|
|
HTONS(mhip->ip_off);
|
|
mhip->ip_len = htons((u_int16_t)(len + mhlen));
|
|
m->m_next = m_copym(m0, off, len, M_DONTWAIT);
|
|
if (m->m_next == 0) {
|
|
error = ENOBUFS; /* ??? */
|
|
IP_STATINC(IP_STAT_ODROPPED);
|
|
goto sendorfree;
|
|
}
|
|
m->m_pkthdr.len = mhlen + len;
|
|
m_reset_rcvif(m);
|
|
mhip->ip_sum = 0;
|
|
KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
|
|
if (sw_csum & M_CSUM_IPv4) {
|
|
mhip->ip_sum = in_cksum(m, mhlen);
|
|
} else {
|
|
/*
|
|
* checksum is hw-offloaded or not necessary.
|
|
*/
|
|
m->m_pkthdr.csum_flags |=
|
|
m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
|
|
m->m_pkthdr.csum_data |= mhlen << 16;
|
|
KASSERT(!(ifp != NULL &&
|
|
IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
|
|
(m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
|
|
}
|
|
IP_STATINC(IP_STAT_OFRAGMENTS);
|
|
fragments++;
|
|
}
|
|
/*
|
|
* Update first fragment by trimming what's been copied out
|
|
* and updating header, then send each fragment (in order).
|
|
*/
|
|
m = m0;
|
|
m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
|
|
m->m_pkthdr.len = hlen + firstlen;
|
|
ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
|
|
ip->ip_off |= htons(IP_MF);
|
|
ip->ip_sum = 0;
|
|
if (sw_csum & M_CSUM_IPv4) {
|
|
ip->ip_sum = in_cksum(m, hlen);
|
|
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
|
|
} else {
|
|
/*
|
|
* checksum is hw-offloaded or not necessary.
|
|
*/
|
|
KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
|
|
(m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
|
|
KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
|
|
sizeof(struct ip));
|
|
}
|
|
sendorfree:
|
|
/*
|
|
* If there is no room for all the fragments, don't queue
|
|
* any of them.
|
|
*/
|
|
if (ifp != NULL) {
|
|
s = splnet();
|
|
if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
|
|
error == 0) {
|
|
error = ENOBUFS;
|
|
IP_STATINC(IP_STAT_ODROPPED);
|
|
IFQ_INC_DROPS(&ifp->if_snd);
|
|
}
|
|
splx(s);
|
|
}
|
|
if (error) {
|
|
for (m = m0; m; m = m0) {
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
m_freem(m);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Process a delayed payload checksum calculation.
|
|
*/
|
|
void
|
|
in_delayed_cksum(struct mbuf *m)
|
|
{
|
|
struct ip *ip;
|
|
u_int16_t csum, offset;
|
|
|
|
ip = mtod(m, struct ip *);
|
|
offset = ip->ip_hl << 2;
|
|
csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
|
|
if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
|
|
csum = 0xffff;
|
|
|
|
offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
|
|
|
|
if ((offset + sizeof(u_int16_t)) > m->m_len) {
|
|
/* This happen when ip options were inserted
|
|
printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
|
|
m->m_len, offset, ip->ip_p);
|
|
*/
|
|
m_copyback(m, offset, sizeof(csum), (void *) &csum);
|
|
} else
|
|
*(u_int16_t *)(mtod(m, char *) + offset) = csum;
|
|
}
|
|
|
|
/*
|
|
* Determine the maximum length of the options to be inserted;
|
|
* we would far rather allocate too much space rather than too little.
|
|
*/
|
|
|
|
u_int
|
|
ip_optlen(struct inpcb *inp)
|
|
{
|
|
struct mbuf *m = inp->inp_options;
|
|
|
|
if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
|
|
return (m->m_len - offsetof(struct ipoption, ipopt_dst));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Insert IP options into preformed packet.
|
|
* Adjust IP destination as required for IP source routing,
|
|
* as indicated by a non-zero in_addr at the start of the options.
|
|
*/
|
|
static struct mbuf *
|
|
ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
|
|
{
|
|
struct ipoption *p = mtod(opt, struct ipoption *);
|
|
struct mbuf *n;
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
unsigned optlen;
|
|
|
|
optlen = opt->m_len - sizeof(p->ipopt_dst);
|
|
if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
|
|
return (m); /* XXX should fail */
|
|
if (!in_nullhost(p->ipopt_dst))
|
|
ip->ip_dst = p->ipopt_dst;
|
|
if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
|
|
MGETHDR(n, M_DONTWAIT, MT_HEADER);
|
|
if (n == 0)
|
|
return (m);
|
|
MCLAIM(n, m->m_owner);
|
|
M_MOVE_PKTHDR(n, m);
|
|
m->m_len -= sizeof(struct ip);
|
|
m->m_data += sizeof(struct ip);
|
|
n->m_next = m;
|
|
m = n;
|
|
m->m_len = optlen + sizeof(struct ip);
|
|
m->m_data += max_linkhdr;
|
|
bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
|
|
} else {
|
|
m->m_data -= optlen;
|
|
m->m_len += optlen;
|
|
memmove(mtod(m, void *), ip, sizeof(struct ip));
|
|
}
|
|
m->m_pkthdr.len += optlen;
|
|
ip = mtod(m, struct ip *);
|
|
bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
|
|
*phlen = sizeof(struct ip) + optlen;
|
|
ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Copy options from ip to jp,
|
|
* omitting those not copied during fragmentation.
|
|
*/
|
|
int
|
|
ip_optcopy(struct ip *ip, struct ip *jp)
|
|
{
|
|
u_char *cp, *dp;
|
|
int opt, optlen, cnt;
|
|
|
|
cp = (u_char *)(ip + 1);
|
|
dp = (u_char *)(jp + 1);
|
|
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[0];
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP) {
|
|
/* Preserve for IP mcast tunnel's LSRR alignment. */
|
|
*dp++ = IPOPT_NOP;
|
|
optlen = 1;
|
|
continue;
|
|
}
|
|
|
|
KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
|
|
optlen = cp[IPOPT_OLEN];
|
|
KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
|
|
|
|
/* Invalid lengths should have been caught by ip_dooptions. */
|
|
if (optlen > cnt)
|
|
optlen = cnt;
|
|
if (IPOPT_COPIED(opt)) {
|
|
bcopy((void *)cp, (void *)dp, (unsigned)optlen);
|
|
dp += optlen;
|
|
}
|
|
}
|
|
for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
|
|
*dp++ = IPOPT_EOL;
|
|
return (optlen);
|
|
}
|
|
|
|
/*
|
|
* IP socket option processing.
|
|
*/
|
|
int
|
|
ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
struct ip *ip = &inp->inp_ip;
|
|
int inpflags = inp->inp_flags;
|
|
int optval = 0, error = 0;
|
|
|
|
if (sopt->sopt_level != IPPROTO_IP) {
|
|
if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
|
|
return 0;
|
|
return ENOPROTOOPT;
|
|
}
|
|
|
|
switch (op) {
|
|
case PRCO_SETOPT:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
#ifdef notyet
|
|
case IP_RETOPTS:
|
|
#endif
|
|
error = ip_pcbopts(inp, sopt);
|
|
break;
|
|
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_MINTTL:
|
|
case IP_PKTINFO:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVIF:
|
|
case IP_RECVPKTINFO:
|
|
case IP_RECVTTL:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_TOS:
|
|
ip->ip_tos = optval;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
ip->ip_ttl = optval;
|
|
break;
|
|
|
|
case IP_MINTTL:
|
|
if (optval > 0 && optval <= MAXTTL)
|
|
inp->inp_ip_minttl = optval;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
#define OPTSET(bit) \
|
|
if (optval) \
|
|
inpflags |= bit; \
|
|
else \
|
|
inpflags &= ~bit;
|
|
|
|
case IP_PKTINFO:
|
|
OPTSET(INP_PKTINFO);
|
|
break;
|
|
|
|
case IP_RECVOPTS:
|
|
OPTSET(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVPKTINFO:
|
|
OPTSET(INP_RECVPKTINFO);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
OPTSET(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
OPTSET(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
OPTSET(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
OPTSET(INP_RECVTTL);
|
|
break;
|
|
}
|
|
break;
|
|
#undef OPTSET
|
|
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_DROP_MEMBERSHIP:
|
|
error = ip_setmoptions(&inp->inp_moptions, sopt);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
|
|
switch (optval) {
|
|
case IP_PORTRANGE_DEFAULT:
|
|
case IP_PORTRANGE_HIGH:
|
|
inpflags &= ~(INP_LOWPORT);
|
|
break;
|
|
|
|
case IP_PORTRANGE_LOW:
|
|
inpflags |= INP_LOWPORT;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case IP_PORTALGO:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
|
|
error = portalgo_algo_index_select(
|
|
(struct inpcb_hdr *)inp, optval);
|
|
break;
|
|
|
|
#if defined(IPSEC)
|
|
case IP_IPSEC_POLICY:
|
|
if (ipsec_enabled) {
|
|
error = ipsec4_set_policy(inp, sopt->sopt_name,
|
|
sopt->sopt_data, sopt->sopt_size,
|
|
curlwp->l_cred);
|
|
break;
|
|
}
|
|
/*FALLTHROUGH*/
|
|
#endif /* IPSEC */
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case PRCO_GETOPT:
|
|
switch (sopt->sopt_name) {
|
|
case IP_OPTIONS:
|
|
case IP_RETOPTS: {
|
|
struct mbuf *mopts = inp->inp_options;
|
|
|
|
if (mopts) {
|
|
struct mbuf *m;
|
|
|
|
m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
error = sockopt_setmbuf(sopt, m);
|
|
}
|
|
break;
|
|
}
|
|
case IP_PKTINFO:
|
|
case IP_TOS:
|
|
case IP_TTL:
|
|
case IP_MINTTL:
|
|
case IP_RECVOPTS:
|
|
case IP_RECVRETOPTS:
|
|
case IP_RECVDSTADDR:
|
|
case IP_RECVIF:
|
|
case IP_RECVPKTINFO:
|
|
case IP_RECVTTL:
|
|
case IP_ERRORMTU:
|
|
switch (sopt->sopt_name) {
|
|
case IP_TOS:
|
|
optval = ip->ip_tos;
|
|
break;
|
|
|
|
case IP_TTL:
|
|
optval = ip->ip_ttl;
|
|
break;
|
|
|
|
case IP_MINTTL:
|
|
optval = inp->inp_ip_minttl;
|
|
break;
|
|
|
|
case IP_ERRORMTU:
|
|
optval = inp->inp_errormtu;
|
|
break;
|
|
|
|
#define OPTBIT(bit) (inpflags & bit ? 1 : 0)
|
|
|
|
case IP_PKTINFO:
|
|
optval = OPTBIT(INP_PKTINFO);
|
|
break;
|
|
|
|
case IP_RECVOPTS:
|
|
optval = OPTBIT(INP_RECVOPTS);
|
|
break;
|
|
|
|
case IP_RECVPKTINFO:
|
|
optval = OPTBIT(INP_RECVPKTINFO);
|
|
break;
|
|
|
|
case IP_RECVRETOPTS:
|
|
optval = OPTBIT(INP_RECVRETOPTS);
|
|
break;
|
|
|
|
case IP_RECVDSTADDR:
|
|
optval = OPTBIT(INP_RECVDSTADDR);
|
|
break;
|
|
|
|
case IP_RECVIF:
|
|
optval = OPTBIT(INP_RECVIF);
|
|
break;
|
|
|
|
case IP_RECVTTL:
|
|
optval = OPTBIT(INP_RECVTTL);
|
|
break;
|
|
}
|
|
error = sockopt_setint(sopt, optval);
|
|
break;
|
|
|
|
#if 0 /* defined(IPSEC) */
|
|
case IP_IPSEC_POLICY:
|
|
{
|
|
struct mbuf *m = NULL;
|
|
|
|
/* XXX this will return EINVAL as sopt is empty */
|
|
error = ipsec4_get_policy(inp, sopt->sopt_data,
|
|
sopt->sopt_size, &m);
|
|
if (error == 0)
|
|
error = sockopt_setmbuf(sopt, m);
|
|
break;
|
|
}
|
|
#endif /*IPSEC*/
|
|
|
|
case IP_MULTICAST_IF:
|
|
case IP_MULTICAST_TTL:
|
|
case IP_MULTICAST_LOOP:
|
|
case IP_ADD_MEMBERSHIP:
|
|
case IP_DROP_MEMBERSHIP:
|
|
error = ip_getmoptions(inp->inp_moptions, sopt);
|
|
break;
|
|
|
|
case IP_PORTRANGE:
|
|
if (inpflags & INP_LOWPORT)
|
|
optval = IP_PORTRANGE_LOW;
|
|
else
|
|
optval = IP_PORTRANGE_DEFAULT;
|
|
error = sockopt_setint(sopt, optval);
|
|
break;
|
|
|
|
case IP_PORTALGO:
|
|
optval = inp->inp_portalgo;
|
|
error = sockopt_setint(sopt, optval);
|
|
break;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!error) {
|
|
inp->inp_flags = inpflags;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Set up IP options in pcb for insertion in output packets.
|
|
* Store in mbuf with pointer in pcbopt, adding pseudo-option
|
|
* with destination address if source routed.
|
|
*/
|
|
static int
|
|
ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
|
|
{
|
|
struct mbuf *m;
|
|
const u_char *cp;
|
|
u_char *dp;
|
|
int cnt;
|
|
|
|
/* Turn off any old options. */
|
|
if (inp->inp_options) {
|
|
m_free(inp->inp_options);
|
|
}
|
|
inp->inp_options = NULL;
|
|
if ((cnt = sopt->sopt_size) == 0) {
|
|
/* Only turning off any previous options. */
|
|
return 0;
|
|
}
|
|
cp = sopt->sopt_data;
|
|
|
|
#ifndef __vax__
|
|
if (cnt % sizeof(int32_t))
|
|
return (EINVAL);
|
|
#endif
|
|
|
|
m = m_get(M_DONTWAIT, MT_SOOPTS);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
dp = mtod(m, u_char *);
|
|
memset(dp, 0, sizeof(struct in_addr));
|
|
dp += sizeof(struct in_addr);
|
|
m->m_len = sizeof(struct in_addr);
|
|
|
|
/*
|
|
* IP option list according to RFC791. Each option is of the form
|
|
*
|
|
* [optval] [olen] [(olen - 2) data bytes]
|
|
*
|
|
* We validate the list and copy options to an mbuf for prepending
|
|
* to data packets. The IP first-hop destination address will be
|
|
* stored before actual options and is zero if unset.
|
|
*/
|
|
while (cnt > 0) {
|
|
uint8_t optval, olen, offset;
|
|
|
|
optval = cp[IPOPT_OPTVAL];
|
|
|
|
if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
|
|
olen = 1;
|
|
} else {
|
|
if (cnt < IPOPT_OLEN + 1)
|
|
goto bad;
|
|
|
|
olen = cp[IPOPT_OLEN];
|
|
if (olen < IPOPT_OLEN + 1 || olen > cnt)
|
|
goto bad;
|
|
}
|
|
|
|
if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
|
|
/*
|
|
* user process specifies route as:
|
|
* ->A->B->C->D
|
|
* D must be our final destination (but we can't
|
|
* check that since we may not have connected yet).
|
|
* A is first hop destination, which doesn't appear in
|
|
* actual IP option, but is stored before the options.
|
|
*/
|
|
if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
|
|
goto bad;
|
|
|
|
offset = cp[IPOPT_OFFSET];
|
|
memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
|
|
sizeof(struct in_addr));
|
|
|
|
cp += sizeof(struct in_addr);
|
|
cnt -= sizeof(struct in_addr);
|
|
olen -= sizeof(struct in_addr);
|
|
|
|
if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
|
|
goto bad;
|
|
|
|
memcpy(dp, cp, olen);
|
|
dp[IPOPT_OPTVAL] = optval;
|
|
dp[IPOPT_OLEN] = olen;
|
|
dp[IPOPT_OFFSET] = offset;
|
|
break;
|
|
} else {
|
|
if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
|
|
goto bad;
|
|
|
|
memcpy(dp, cp, olen);
|
|
break;
|
|
}
|
|
|
|
dp += olen;
|
|
m->m_len += olen;
|
|
|
|
if (optval == IPOPT_EOL)
|
|
break;
|
|
|
|
cp += olen;
|
|
cnt -= olen;
|
|
}
|
|
|
|
inp->inp_options = m;
|
|
return 0;
|
|
bad:
|
|
(void)m_free(m);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
|
|
*/
|
|
static struct ifnet *
|
|
ip_multicast_if(struct in_addr *a, int *ifindexp)
|
|
{
|
|
int ifindex;
|
|
struct ifnet *ifp = NULL;
|
|
struct in_ifaddr *ia;
|
|
|
|
if (ifindexp)
|
|
*ifindexp = 0;
|
|
if (ntohl(a->s_addr) >> 24 == 0) {
|
|
ifindex = ntohl(a->s_addr) & 0xffffff;
|
|
ifp = if_byindex(ifindex);
|
|
if (!ifp)
|
|
return NULL;
|
|
if (ifindexp)
|
|
*ifindexp = ifindex;
|
|
} else {
|
|
LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
|
|
if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
|
|
(ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
|
|
ifp = ia->ia_ifp;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ifp;
|
|
}
|
|
|
|
static int
|
|
ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
|
|
{
|
|
u_int tval;
|
|
u_char cval;
|
|
int error;
|
|
|
|
if (sopt == NULL)
|
|
return EINVAL;
|
|
|
|
switch (sopt->sopt_size) {
|
|
case sizeof(u_char):
|
|
error = sockopt_get(sopt, &cval, sizeof(u_char));
|
|
tval = cval;
|
|
break;
|
|
|
|
case sizeof(u_int):
|
|
error = sockopt_get(sopt, &tval, sizeof(u_int));
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (tval > maxval)
|
|
return EINVAL;
|
|
|
|
*val = tval;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
|
|
struct in_addr *ia, bool add)
|
|
{
|
|
int error;
|
|
struct ip_mreq mreq;
|
|
|
|
error = sockopt_get(sopt, &mreq, sizeof(mreq));
|
|
if (error)
|
|
return error;
|
|
|
|
if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
|
|
return EINVAL;
|
|
|
|
memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
|
|
|
|
if (in_nullhost(mreq.imr_interface)) {
|
|
union {
|
|
struct sockaddr dst;
|
|
struct sockaddr_in dst4;
|
|
} u;
|
|
struct route ro;
|
|
|
|
if (!add) {
|
|
*ifp = NULL;
|
|
return 0;
|
|
}
|
|
/*
|
|
* If no interface address was provided, use the interface of
|
|
* the route to the given multicast address.
|
|
*/
|
|
struct rtentry *rt;
|
|
memset(&ro, 0, sizeof(ro));
|
|
|
|
sockaddr_in_init(&u.dst4, ia, 0);
|
|
error = rtcache_setdst(&ro, &u.dst);
|
|
if (error != 0)
|
|
return error;
|
|
*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
|
|
rtcache_free(&ro);
|
|
} else {
|
|
*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
|
|
if (!add && *ifp == NULL)
|
|
return EADDRNOTAVAIL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a multicast group membership.
|
|
* Group must be a valid IP multicast address.
|
|
*/
|
|
static int
|
|
ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
|
|
{
|
|
struct ifnet *ifp = NULL; // XXX: gcc [ppc]
|
|
struct in_addr ia;
|
|
int i, error;
|
|
|
|
if (sopt->sopt_size == sizeof(struct ip_mreq))
|
|
error = ip_get_membership(sopt, &ifp, &ia, true);
|
|
else
|
|
#ifdef INET6
|
|
error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
|
|
#else
|
|
return EINVAL;
|
|
#endif
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* See if we found an interface, and confirm that it
|
|
* supports multicast.
|
|
*/
|
|
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
|
|
return EADDRNOTAVAIL;
|
|
|
|
/*
|
|
* See if the membership already exists or if all the
|
|
* membership slots are full.
|
|
*/
|
|
for (i = 0; i < imo->imo_num_memberships; ++i) {
|
|
if (imo->imo_membership[i]->inm_ifp == ifp &&
|
|
in_hosteq(imo->imo_membership[i]->inm_addr, ia))
|
|
break;
|
|
}
|
|
if (i < imo->imo_num_memberships)
|
|
return EADDRINUSE;
|
|
|
|
if (i == IP_MAX_MEMBERSHIPS)
|
|
return ETOOMANYREFS;
|
|
|
|
/*
|
|
* Everything looks good; add a new record to the multicast
|
|
* address list for the given interface.
|
|
*/
|
|
if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
|
|
return ENOBUFS;
|
|
|
|
++imo->imo_num_memberships;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Drop a multicast group membership.
|
|
* Group must be a valid IP multicast address.
|
|
*/
|
|
static int
|
|
ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
|
|
{
|
|
struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
|
|
struct ifnet *ifp = NULL; // XXX: gcc [ppc]
|
|
int i, error;
|
|
|
|
if (sopt->sopt_size == sizeof(struct ip_mreq))
|
|
error = ip_get_membership(sopt, &ifp, &ia, false);
|
|
else
|
|
#ifdef INET6
|
|
error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
|
|
#else
|
|
return EINVAL;
|
|
#endif
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Find the membership in the membership array.
|
|
*/
|
|
for (i = 0; i < imo->imo_num_memberships; ++i) {
|
|
if ((ifp == NULL ||
|
|
imo->imo_membership[i]->inm_ifp == ifp) &&
|
|
in_hosteq(imo->imo_membership[i]->inm_addr, ia))
|
|
break;
|
|
}
|
|
if (i == imo->imo_num_memberships)
|
|
return EADDRNOTAVAIL;
|
|
|
|
/*
|
|
* Give up the multicast address record to which the
|
|
* membership points.
|
|
*/
|
|
in_delmulti(imo->imo_membership[i]);
|
|
|
|
/*
|
|
* Remove the gap in the membership array.
|
|
*/
|
|
for (++i; i < imo->imo_num_memberships; ++i)
|
|
imo->imo_membership[i-1] = imo->imo_membership[i];
|
|
--imo->imo_num_memberships;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the IP multicast options in response to user setsockopt().
|
|
*/
|
|
int
|
|
ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
|
|
{
|
|
struct ip_moptions *imo = *pimo;
|
|
struct in_addr addr;
|
|
struct ifnet *ifp;
|
|
int ifindex, error = 0;
|
|
|
|
if (!imo) {
|
|
/*
|
|
* No multicast option buffer attached to the pcb;
|
|
* allocate one and initialize to default values.
|
|
*/
|
|
imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
|
|
if (imo == NULL)
|
|
return ENOBUFS;
|
|
|
|
imo->imo_multicast_if_index = 0;
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
|
|
imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
|
|
imo->imo_num_memberships = 0;
|
|
*pimo = imo;
|
|
}
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_MULTICAST_IF:
|
|
/*
|
|
* Select the interface for outgoing multicast packets.
|
|
*/
|
|
error = sockopt_get(sopt, &addr, sizeof(addr));
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* INADDR_ANY is used to remove a previous selection.
|
|
* When no interface is selected, a default one is
|
|
* chosen every time a multicast packet is sent.
|
|
*/
|
|
if (in_nullhost(addr)) {
|
|
imo->imo_multicast_if_index = 0;
|
|
break;
|
|
}
|
|
/*
|
|
* The selected interface is identified by its local
|
|
* IP address. Find the interface and confirm that
|
|
* it supports multicasting.
|
|
*/
|
|
ifp = ip_multicast_if(&addr, &ifindex);
|
|
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
|
|
error = EADDRNOTAVAIL;
|
|
break;
|
|
}
|
|
imo->imo_multicast_if_index = ifp->if_index;
|
|
if (ifindex)
|
|
imo->imo_multicast_addr = addr;
|
|
else
|
|
imo->imo_multicast_addr.s_addr = INADDR_ANY;
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL:
|
|
/*
|
|
* Set the IP time-to-live for outgoing multicast packets.
|
|
*/
|
|
error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
|
|
break;
|
|
|
|
case IP_MULTICAST_LOOP:
|
|
/*
|
|
* Set the loopback flag for outgoing multicast packets.
|
|
* Must be zero or one.
|
|
*/
|
|
error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
|
|
break;
|
|
|
|
case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
|
|
error = ip_add_membership(imo, sopt);
|
|
break;
|
|
|
|
case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
|
|
error = ip_drop_membership(imo, sopt);
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If all options have default values, no need to keep the mbuf.
|
|
*/
|
|
if (imo->imo_multicast_if_index == 0 &&
|
|
imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
|
|
imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
|
|
imo->imo_num_memberships == 0) {
|
|
kmem_free(imo, sizeof(*imo));
|
|
*pimo = NULL;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Return the IP multicast options in response to user getsockopt().
|
|
*/
|
|
int
|
|
ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
|
|
{
|
|
struct in_addr addr;
|
|
uint8_t optval;
|
|
int error = 0;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case IP_MULTICAST_IF:
|
|
if (imo == NULL || imo->imo_multicast_if_index == 0)
|
|
addr = zeroin_addr;
|
|
else if (imo->imo_multicast_addr.s_addr) {
|
|
/* return the value user has set */
|
|
addr = imo->imo_multicast_addr;
|
|
} else {
|
|
struct ifnet *ifp;
|
|
struct in_ifaddr *ia = NULL;
|
|
int s = pserialize_read_enter();
|
|
|
|
ifp = if_byindex(imo->imo_multicast_if_index);
|
|
if (ifp != NULL) {
|
|
ia = in_get_ia_from_ifp(ifp);
|
|
}
|
|
addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
|
|
pserialize_read_exit(s);
|
|
}
|
|
error = sockopt_set(sopt, &addr, sizeof(addr));
|
|
break;
|
|
|
|
case IP_MULTICAST_TTL:
|
|
optval = imo ? imo->imo_multicast_ttl
|
|
: IP_DEFAULT_MULTICAST_TTL;
|
|
|
|
error = sockopt_set(sopt, &optval, sizeof(optval));
|
|
break;
|
|
|
|
case IP_MULTICAST_LOOP:
|
|
optval = imo ? imo->imo_multicast_loop
|
|
: IP_DEFAULT_MULTICAST_LOOP;
|
|
|
|
error = sockopt_set(sopt, &optval, sizeof(optval));
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Discard the IP multicast options.
|
|
*/
|
|
void
|
|
ip_freemoptions(struct ip_moptions *imo)
|
|
{
|
|
int i;
|
|
|
|
if (imo != NULL) {
|
|
for (i = 0; i < imo->imo_num_memberships; ++i)
|
|
in_delmulti(imo->imo_membership[i]);
|
|
kmem_free(imo, sizeof(*imo));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine called from ip_output() to loop back a copy of an IP multicast
|
|
* packet to the input queue of a specified interface. Note that this
|
|
* calls the output routine of the loopback "driver", but with an interface
|
|
* pointer that might NOT be lo0ifp -- easier than replicating that code here.
|
|
*/
|
|
static void
|
|
ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
|
|
{
|
|
struct ip *ip;
|
|
struct mbuf *copym;
|
|
|
|
copym = m_copypacket(m, M_DONTWAIT);
|
|
if (copym != NULL &&
|
|
(copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
|
|
copym = m_pullup(copym, sizeof(struct ip));
|
|
if (copym == NULL)
|
|
return;
|
|
/*
|
|
* We don't bother to fragment if the IP length is greater
|
|
* than the interface's MTU. Can this possibly matter?
|
|
*/
|
|
ip = mtod(copym, struct ip *);
|
|
|
|
if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
|
|
in_delayed_cksum(copym);
|
|
copym->m_pkthdr.csum_flags &=
|
|
~(M_CSUM_TCPv4|M_CSUM_UDPv4);
|
|
}
|
|
|
|
ip->ip_sum = 0;
|
|
ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
|
|
#ifndef NET_MPSAFE
|
|
KERNEL_LOCK(1, NULL);
|
|
#endif
|
|
(void)looutput(ifp, copym, sintocsa(dst), NULL);
|
|
#ifndef NET_MPSAFE
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
#endif
|
|
}
|