NetBSD/sbin/newfs/mkfs.c

1541 lines
44 KiB
C

/* $NetBSD: mkfs.c,v 1.91 2005/08/23 11:18:30 tron Exp $ */
/*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
#else
__RCSID("$NetBSD: mkfs.c,v 1.91 2005/08/23 11:18:30 tron Exp $");
#endif
#endif /* not lint */
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <sys/disklabel.h>
#include <err.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <stddef.h>
#ifndef STANDALONE
#include <stdio.h>
#endif
#include "extern.h"
union dinode {
struct ufs1_dinode dp1;
struct ufs2_dinode dp2;
};
static void initcg(int, const struct timeval *);
static int fsinit(const struct timeval *, mode_t, uid_t, gid_t);
static int makedir(struct direct *, int);
static daddr_t alloc(int, int);
static void iput(union dinode *, ino_t);
static void rdfs(daddr_t, int, void *);
static void wtfs(daddr_t, int, void *);
static int isblock(struct fs *, unsigned char *, int);
static void clrblock(struct fs *, unsigned char *, int);
static void setblock(struct fs *, unsigned char *, int);
static int ilog2(int);
static void zap_old_sblock(int);
#ifdef MFS
static void calc_memfree(void);
static void *mkfs_malloc(size_t size);
#endif
static int count_digits(uint64_t);
/*
* make file system for cylinder-group style file systems
*/
#define UMASK 0755
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
union {
struct fs fs;
char pad[SBLOCKSIZE];
} fsun;
#define sblock fsun.fs
struct csum *fscs_0; /* first block of cylinder summaries */
struct csum *fscs_next; /* place for next summary */
struct csum *fscs_end; /* end of summary buffer */
struct csum *fscs_reset; /* place for next summary after write */
uint fs_csaddr; /* fragment number to write to */
union {
struct cg cg;
char pad[MAXBSIZE];
} cgun;
#define acg cgun.cg
#define DIP(dp, field) \
((sblock.fs_magic == FS_UFS1_MAGIC) ? \
(dp)->dp1.di_##field : (dp)->dp2.di_##field)
char *iobuf;
int iobufsize; /* size to end of 2nd inode block */
int iobuf_memsize; /* Actual buffer size */
int fsi, fso;
void
mkfs(struct partition *pp, const char *fsys, int fi, int fo,
mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
uint fragsperinodeblk, ncg;
uint cgzero;
uint64_t inodeblks, cgall;
int32_t cylno, i, csfrags;
struct timeval tv;
long long sizepb;
int nprintcols, printcolwidth;
#ifndef STANDALONE
gettimeofday(&tv, NULL);
#endif
#ifdef MFS
if (mfs && !Nflag) {
calc_memfree();
if (fssize * sectorsize > memleft)
fssize = memleft / sectorsize;
if ((membase = mkfs_malloc(fssize * sectorsize)) == 0)
exit(12);
}
#endif
fsi = fi;
fso = fo;
if (Oflag == 0) {
sblock.fs_old_inodefmt = FS_42INODEFMT;
sblock.fs_maxsymlinklen = 0;
sblock.fs_old_flags = 0;
} else {
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_maxsymlinklen = (Oflag == 1 ? MAXSYMLINKLEN_UFS1 :
MAXSYMLINKLEN_UFS2);
sblock.fs_old_flags = FS_FLAGS_UPDATED;
if (isappleufs)
sblock.fs_old_flags = 0;
sblock.fs_flags = 0;
}
/*
* collect and verify the filesystem density info
*/
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfpdir;
if (sblock.fs_avgfilesize <= 0) {
printf("illegal expected average file size %d\n",
sblock.fs_avgfilesize);
exit(14);
}
if (sblock.fs_avgfpdir <= 0) {
printf("illegal expected number of files per directory %d\n",
sblock.fs_avgfpdir);
exit(15);
}
/*
* collect and verify the block and fragment sizes
*/
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
if (!POWEROF2(sblock.fs_bsize)) {
printf("block size must be a power of 2, not %d\n",
sblock.fs_bsize);
exit(16);
}
if (!POWEROF2(sblock.fs_fsize)) {
printf("fragment size must be a power of 2, not %d\n",
sblock.fs_fsize);
exit(17);
}
if (sblock.fs_fsize < sectorsize) {
printf("fragment size %d is too small, minimum is %d\n",
sblock.fs_fsize, sectorsize);
exit(18);
}
if (sblock.fs_bsize < MINBSIZE) {
printf("block size %d is too small, minimum is %d\n",
sblock.fs_bsize, MINBSIZE);
exit(19);
}
if (sblock.fs_bsize > MAXBSIZE) {
printf("block size %d is too large, maximum is %d\n",
sblock.fs_bsize, MAXBSIZE);
exit(19);
}
if (sblock.fs_bsize < sblock.fs_fsize) {
printf("block size (%d) cannot be smaller than fragment size (%d)\n",
sblock.fs_bsize, sblock.fs_fsize);
exit(20);
}
if (maxbsize < bsize || !POWEROF2(maxbsize)) {
sblock.fs_maxbsize = sblock.fs_bsize;
} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
} else {
sblock.fs_maxbsize = maxbsize;
}
sblock.fs_maxcontig = maxcontig;
if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
}
if (sblock.fs_maxcontig > 1)
sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
sblock.fs_bshift++;
for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
sblock.fs_fshift++;
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
sblock.fs_fragshift++;
if (sblock.fs_frag > MAXFRAG) {
printf("fragment size %d is too small, "
"minimum with block size %d is %d\n",
sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
exit(21);
}
sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
sblock.fs_size = dbtofsb(&sblock, fssize);
if (Oflag <= 1) {
if (sblock.fs_size >= 1ull << 31) {
printf("Too many fragments (0x%" PRIx64
") for a UFS1 filesystem\n", sblock.fs_size);
exit(22);
}
sblock.fs_magic = FS_UFS1_MAGIC;
sblock.fs_sblockloc = SBLOCK_UFS1;
sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof (int32_t));
sblock.fs_old_inodefmt = FS_44INODEFMT;
sblock.fs_old_cgoffset = 0;
sblock.fs_old_cgmask = 0xffffffff;
sblock.fs_old_size = sblock.fs_size;
sblock.fs_old_rotdelay = 0;
sblock.fs_old_rps = 60;
sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
sblock.fs_old_cpg = 1;
sblock.fs_old_interleave = 1;
sblock.fs_old_trackskew = 0;
sblock.fs_old_cpc = 0;
sblock.fs_old_postblformat = FS_DYNAMICPOSTBLFMT;
sblock.fs_old_nrpos = 1;
} else {
sblock.fs_magic = FS_UFS2_MAGIC;
sblock.fs_sblockloc = SBLOCK_UFS2;
sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
sizeof (int64_t));
}
sblock.fs_sblkno =
roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
sblock.fs_frag);
sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
/*
* Calculate the number of blocks to put into each cylinder group.
*
* The cylinder group size is limited because the data structure
* must fit into a single block.
* We try to have as few cylinder groups as possible, with a proviso
* that we create at least MINCYLGRPS (==4) except for small
* filesystems.
*
* This algorithm works out how many blocks of inodes would be
* needed to fill the entire volume at the specified density.
* It then looks at how big the 'cylinder block' would have to
* be and, assuming that it is linearly related to the number
* of inodes and blocks how many cylinder groups are needed to
* keep the cylinder block below the filesystem block size.
*
* The cylinder groups are then all created with the average size.
*
* Space taken by the red tape on cylinder groups other than the
* first is ignored.
*/
/* There must be space for 1 inode block and 2 data blocks */
if (sblock.fs_size < sblock.fs_iblkno + 3 * sblock.fs_frag) {
printf("Filesystem size %lld < minimum size of %d\n",
(long long)sblock.fs_size, sblock.fs_iblkno + 3 * sblock.fs_frag);
exit(23);
}
if (num_inodes != 0)
inodeblks = howmany(num_inodes, INOPB(&sblock));
else {
/*
* Calculate 'per inode block' so we can allocate less than
* 1 fragment per inode - useful for /dev.
*/
fragsperinodeblk = MAX(numfrags(&sblock,
density * INOPB(&sblock)), 1);
inodeblks = (sblock.fs_size - sblock.fs_iblkno) /
(sblock.fs_frag + fragsperinodeblk);
}
if (inodeblks == 0)
inodeblks = 1;
/* Ensure that there are at least 2 data blocks (or we fail below) */
if (inodeblks > (sblock.fs_size - sblock.fs_iblkno)/sblock.fs_frag - 2)
inodeblks = (sblock.fs_size-sblock.fs_iblkno)/sblock.fs_frag-2;
/* Even UFS2 limits number of inodes to 2^31 (fs_ipg is int32_t) */
if (inodeblks * INOPB(&sblock) >= 1ull << 31)
inodeblks = ((1ull << 31) - NBBY) / INOPB(&sblock);
/*
* See what would happen if we tried to use 1 cylinder group.
* Assume space linear, so work out number of cylinder groups needed.
* Subtract one from the allowed size to compensate for rounding
* a number of bits up to a complete byte.
*/
cgzero = CGSIZE_IF(&sblock, 0, 0);
cgall = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock), sblock.fs_size);
ncg = howmany(cgall - cgzero, sblock.fs_bsize - cgzero - 1);
if (ncg < MINCYLGRPS) {
/*
* We would like to allocate MINCLYGRPS cylinder groups,
* but for small file sytems (especially ones with a lot
* of inodes) this is not desirable (or possible).
*/
i = sblock.fs_size / 2 / (sblock.fs_iblkno +
inodeblks * sblock.fs_frag);
if (i > ncg)
ncg = i;
if (ncg > MINCYLGRPS)
ncg = MINCYLGRPS;
if (ncg > inodeblks)
ncg = inodeblks;
}
/*
* Put an equal number of blocks in each cylinder group.
* Round up so we don't have more fragments in the last CG than
* the earlier ones (does that matter?), but kill a block if the
* CGSIZE becomes too big (only happens if there are a lot of CGs).
*/
sblock.fs_fpg = roundup(howmany(sblock.fs_size, ncg), sblock.fs_frag);
i = CGSIZE_IF(&sblock, inodeblks * INOPB(&sblock) / ncg, sblock.fs_fpg);
if (i > sblock.fs_bsize)
sblock.fs_fpg -= (i - sblock.fs_bsize) * NBBY;
/* ... and recalculate how many cylinder groups we now need */
ncg = howmany(sblock.fs_size, sblock.fs_fpg);
inodeblks /= ncg;
if (inodeblks == 0)
inodeblks = 1;
sblock.fs_ipg = inodeblks * INOPB(&sblock);
/* Sanity check on our sums... */
if (CGSIZE(&sblock) > sblock.fs_bsize) {
printf("CGSIZE miscalculated %d > %d\n",
(int)CGSIZE(&sblock), sblock.fs_bsize);
exit(24);
}
/* Check that the last cylinder group has enough space for the inodes */
i = sblock.fs_size - sblock.fs_fpg * (ncg - 1ull);
if (i < sblock.fs_iblkno + inodeblks * sblock.fs_frag) {
/*
* Since we make all the cylinder groups the same size, the
* last will only be small if there are a large number of
* cylinder groups. If we pull even a fragment from each
* of the other groups then the last CG will be overfull.
* So we just kill the last CG.
*/
ncg--;
sblock.fs_size -= i;
}
sblock.fs_ncg = ncg;
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
if (Oflag <= 1) {
sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
sblock.fs_old_nsect = sblock.fs_old_spc;
sblock.fs_old_npsect = sblock.fs_old_spc;
sblock.fs_old_ncyl = sblock.fs_ncg;
}
/*
* Cylinder group summary information for each cylinder is written
* into the first cylinder group.
* Write this fragment by fragment, but doing the first CG last
* (after we've taken stuff off for the structure itself and the
* root directory.
*/
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
if (512 % sizeof *fscs_0)
errx(1, "cylinder group summary doesn't fit in sectors");
fscs_0 = mmap(0, 2 * sblock.fs_fsize, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
if (fscs_0 == NULL)
exit(39);
memset(fscs_0, 0, 2 * sblock.fs_fsize);
fs_csaddr = sblock.fs_csaddr;
fscs_next = fscs_0;
fscs_end = (void *)((char *)fscs_0 + 2 * sblock.fs_fsize);
fscs_reset = (void *)((char *)fscs_0 + sblock.fs_fsize);
/*
* fill in remaining fields of the super block
*/
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_sbsize > SBLOCKSIZE)
sblock.fs_sbsize = SBLOCKSIZE;
sblock.fs_minfree = minfree;
sblock.fs_maxcontig = maxcontig;
sblock.fs_maxbpg = maxbpg;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_pendingblocks = 0;
sblock.fs_pendinginodes = 0;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_cstotal.cs_nbfree = 0;
sblock.fs_cstotal.cs_nifree = 0;
sblock.fs_cstotal.cs_nffree = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_state = 0;
sblock.fs_clean = FS_ISCLEAN;
sblock.fs_ronly = 0;
sblock.fs_id[0] = (long)tv.tv_sec; /* XXXfvdl huh? */
sblock.fs_id[1] = arc4random() & INT32_MAX;
sblock.fs_fsmnt[0] = '\0';
csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
sblock.fs_cstotal.cs_nbfree =
fragstoblks(&sblock, sblock.fs_dsize) -
howmany(csfrags, sblock.fs_frag);
sblock.fs_cstotal.cs_nffree =
fragnum(&sblock, sblock.fs_size) +
(fragnum(&sblock, csfrags) > 0 ?
sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_dsize -= csfrags;
sblock.fs_time = tv.tv_sec;
if (Oflag <= 1) {
sblock.fs_old_time = tv.tv_sec;
sblock.fs_old_dsize = sblock.fs_dsize;
sblock.fs_old_csaddr = sblock.fs_csaddr;
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Dump out summary information about file system.
*/
if (!mfs || Nflag) {
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("%s: %.1fMB (%lld sectors) block size %d, "
"fragment size %d\n",
fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(long long)fsbtodb(&sblock, sblock.fs_size),
sblock.fs_bsize, sblock.fs_fsize);
printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
"%d inodes.\n",
sblock.fs_ncg,
(float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
#undef B2MBFACTOR
}
/*
* Now determine how wide each column will be, and calculate how
* many columns will fit in a 80 char line.
*/
printcolwidth = count_digits(
fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
nprintcols = 80 / (printcolwidth + 2);
/*
* allocate space for superblock, cylinder group map, and
* two sets of inode blocks.
*/
if (sblock.fs_bsize < SBLOCKSIZE)
iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
else
iobufsize = 4 * sblock.fs_bsize;
iobuf_memsize = iobufsize;
if (!mfs && sblock.fs_magic == FS_UFS1_MAGIC) {
/* A larger buffer so we can write multiple inode blks */
iobuf_memsize += 14 * sblock.fs_bsize;
}
for (;;) {
iobuf = mmap(0, iobuf_memsize, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
if (iobuf != NULL)
break;
if (iobuf_memsize != iobufsize) {
/* Try again with the smaller size */
iobuf_memsize = iobufsize;
continue;
}
printf("Cannot allocate I/O buffer\n");
exit(38);
}
memset(iobuf, 0, iobuf_memsize);
/*
* We now start writing to the filesystem
*/
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
* Convert to file system fragment sized units.
*/
if (fssize <= 0) {
printf("preposterous size %lld\n", (long long)fssize);
exit(13);
}
wtfs(fssize - 1, sectorsize, iobuf);
/*
* Ensure there is nothing that looks like a filesystem
* superbock anywhere other than where ours will be.
* If fsck finds the wrong one all hell breaks loose!
*/
for (i = 0; ; i++) {
static const int sblocklist[] = SBLOCKSEARCH;
int sblkoff = sblocklist[i];
int sz;
if (sblkoff == -1)
break;
/* Remove main superblock */
zap_old_sblock(sblkoff);
/* and all possible locations for the first alternate */
sblkoff += SBLOCKSIZE;
for (sz = SBLOCKSIZE; sz <= 0x10000; sz <<= 1)
zap_old_sblock(roundup(sblkoff, sz));
}
if (isappleufs) {
struct appleufslabel appleufs;
ffs_appleufs_set(&appleufs, appleufs_volname, tv.tv_sec, 0);
wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
&appleufs);
} else {
struct appleufslabel appleufs;
/* Look for and zap any existing valid apple ufs labels */
rdfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
&appleufs);
if (ffs_appleufs_validate(fsys, &appleufs, NULL) == 0) {
memset(&appleufs, 0, sizeof(appleufs));
wtfs(APPLEUFS_LABEL_OFFSET/sectorsize, APPLEUFS_LABEL_SIZE,
&appleufs);
}
}
/*
* Make a copy of the superblock into the buffer that we will be
* writing out in each cylinder group.
*/
memcpy(iobuf, &sblock, sizeof sblock);
if (needswap)
ffs_sb_swap(&sblock, (struct fs *)iobuf);
if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
0xff, 256);
if (!mfs || Nflag)
printf("super-block backups (for fsck -b #) at:");
for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
initcg(cylno, &tv);
if (mfs && !Nflag)
continue;
if (cylno % nprintcols == 0)
printf("\n");
printf(" %*lld,", printcolwidth,
(long long)fsbtodb(&sblock, cgsblock(&sblock, cylno)));
fflush(stdout);
}
if (!mfs || Nflag)
printf("\n");
if (Nflag)
exit(0);
/*
* Now construct the initial file system,
*/
if (fsinit(&tv, mfsmode, mfsuid, mfsgid) == 0 && mfs)
errx(1, "Error making filesystem");
sblock.fs_time = tv.tv_sec;
if (Oflag <= 1) {
sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Write out the super-block and zeros until the first cg info
*/
i = cgsblock(&sblock, 0) * sblock.fs_fsize - sblock.fs_sblockloc,
memset(iobuf, 0, i);
memcpy(iobuf, &sblock, sizeof sblock);
if (needswap)
ffs_sb_swap(&sblock, (struct fs *)iobuf);
if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0)
memset(iobuf + offsetof(struct fs, fs_old_postbl_start),
0xff, 256);
wtfs(sblock.fs_sblockloc / sectorsize, i, iobuf);
/* Write out first and last cylinder summary sectors */
if (needswap)
ffs_csum_swap(fscs_0, fscs_0, sblock.fs_fsize);
wtfs(fsbtodb(&sblock, sblock.fs_csaddr), sblock.fs_fsize, fscs_0);
if (fscs_next > fscs_reset) {
if (needswap)
ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
fs_csaddr++;
wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
}
/* mfs doesn't need these permanently allocated */
munmap(iobuf, iobuf_memsize);
munmap(fscs_0, 2 * sblock.fs_fsize);
/*
* Update information about this partion in pack
* label, to that it may be updated on disk.
*/
if (pp == NULL)
return;
if (isappleufs)
pp->p_fstype = FS_APPLEUFS;
else
pp->p_fstype = FS_BSDFFS;
pp->p_fsize = sblock.fs_fsize;
pp->p_frag = sblock.fs_frag;
pp->p_cpg = sblock.fs_fpg;
}
/*
* Initialize a cylinder group.
*/
void
initcg(int cylno, const struct timeval *tv)
{
daddr_t cbase, dmax;
int32_t i, d, dlower, dupper, blkno;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
int start;
/*
* Determine block bounds for cylinder group.
* Allow space for super block summary information in first
* cylinder group.
*/
cbase = cgbase(&sblock, cylno);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
dlower = cgsblock(&sblock, cylno) - cbase;
dupper = cgdmin(&sblock, cylno) - cbase;
if (cylno == 0) {
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
if (dupper >= cgstart(&sblock, cylno + 1)) {
printf("\rToo many cylinder groups to fit summary "
"information into first cylinder group\n");
exit(40);
}
}
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cylno;
acg.cg_ndblk = dmax - cbase;
if (sblock.fs_contigsumsize > 0)
acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
if (Oflag == 2) {
acg.cg_time = tv->tv_sec;
acg.cg_niblk = sblock.fs_ipg;
acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
sblock.fs_ipg : 2 * INOPB(&sblock);
acg.cg_iusedoff = start;
} else {
acg.cg_old_ncyl = sblock.fs_old_cpg;
if ((sblock.fs_old_flags & FS_FLAGS_UPDATED) == 0 &&
(cylno == sblock.fs_ncg - 1))
acg.cg_old_ncyl =
sblock.fs_old_ncyl % sblock.fs_old_cpg;
acg.cg_old_time = tv->tv_sec;
acg.cg_old_niblk = sblock.fs_ipg;
acg.cg_old_btotoff = start;
acg.cg_old_boff = acg.cg_old_btotoff +
sblock.fs_old_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_old_boff +
sblock.fs_old_cpg * sizeof(u_int16_t);
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
if (sblock.fs_contigsumsize <= 0) {
acg.cg_nextfreeoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, CHAR_BIT);
} else {
acg.cg_clustersumoff = acg.cg_freeoff +
howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
if (isappleufs) {
/* Apple PR2216969 gives rationale for this change.
* I believe they were mistaken, but we need to
* duplicate it for compatibility. -- dbj@NetBSD.org
*/
acg.cg_clustersumoff += sizeof(int32_t);
}
acg.cg_clustersumoff =
roundup(acg.cg_clustersumoff, sizeof(int32_t));
acg.cg_clusteroff = acg.cg_clustersumoff +
(sblock.fs_contigsumsize + 1) * sizeof(int32_t);
acg.cg_nextfreeoff = acg.cg_clusteroff +
howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
}
if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
printf("Panic: cylinder group too big\n");
exit(37);
}
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cylno == 0)
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg, 0), i);
acg.cg_cs.cs_nifree--;
}
if (cylno > 0) {
/*
* In cylno 0, beginning space is reserved
* for boot and super blocks.
*/
for (d = 0, blkno = 0; d < dlower;) {
setblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
if (Oflag <= 1) {
int cn = old_cbtocylno(&sblock, d);
old_cg_blktot(&acg, 0)[cn]++;
old_cg_blks(&sblock, &acg,
cn, 0)[old_cbtorpos(&sblock, d)]++;
}
d += sblock.fs_frag;
blkno++;
}
}
if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg, 0), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
d + sblock.fs_frag <= acg.cg_ndblk; ) {
setblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
setbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree++;
if (Oflag <= 1) {
int cn = old_cbtocylno(&sblock, d);
old_cg_blktot(&acg, 0)[cn]++;
old_cg_blks(&sblock, &acg,
cn, 0)[old_cbtorpos(&sblock, d)]++;
}
d += sblock.fs_frag;
blkno++;
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg, 0), d);
acg.cg_cs.cs_nffree++;
}
}
if (sblock.fs_contigsumsize > 0) {
int32_t *sump = cg_clustersum(&acg, 0);
u_char *mapp = cg_clustersfree(&acg, 0);
int map = *mapp++;
int bit = 1;
int run = 0;
for (i = 0; i < acg.cg_nclusterblks; i++) {
if ((map & bit) != 0) {
run++;
} else if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
run = 0;
}
if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
bit <<= 1;
} else {
map = *mapp++;
bit = 1;
}
}
if (run != 0) {
if (run > sblock.fs_contigsumsize)
run = sblock.fs_contigsumsize;
sump[run]++;
}
}
*fscs_next++ = acg.cg_cs;
if (fscs_next == fscs_end) {
/* write block of cylinder group summary info into cyl 0 */
if (needswap)
ffs_csum_swap(fscs_reset, fscs_reset, sblock.fs_fsize);
fs_csaddr++;
wtfs(fsbtodb(&sblock, fs_csaddr), sblock.fs_fsize, fscs_reset);
fscs_next = fscs_reset;
memset(fscs_next, 0, sblock.fs_fsize);
}
/*
* Write out the duplicate super block, the cylinder group map
* and two blocks worth of inodes in a single write.
*/
start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
if (needswap)
ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
start += sblock.fs_bsize;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
dp2 = (struct ufs2_dinode *)(&iobuf[start]);
for (i = MIN(sblock.fs_ipg, 2) * INOPB(&sblock); i != 0; i--) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
/* No need to swap, it'll stay random */
dp1->di_gen = arc4random() & INT32_MAX;
dp1++;
} else {
dp2->di_gen = arc4random() & INT32_MAX;
dp2++;
}
}
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
/*
* For the old file system, we have to initialize all the inodes.
*/
if (sblock.fs_magic != FS_UFS1_MAGIC)
return;
/* Write 'd' (usually 16 * fs_frag) file-system fragments at once */
d = (iobuf_memsize - start) / sblock.fs_bsize * sblock.fs_frag;
dupper = sblock.fs_ipg / INOPF(&sblock);
for (i = 2 * sblock.fs_frag; i < dupper; i += d) {
if (d > dupper - i)
d = dupper - i;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
do
dp1->di_gen = arc4random() & INT32_MAX;
while ((char *)++dp1 < &iobuf[iobuf_memsize]);
wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
d * sblock.fs_bsize / sblock.fs_frag, &iobuf[start]);
}
}
/*
* initialize the file system
*/
#ifdef LOSTDIR
#define PREDEFDIR 3
#else
#define PREDEFDIR 2
#endif
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
#endif
};
struct odirect {
u_int32_t d_ino;
u_int16_t d_reclen;
u_int16_t d_namlen;
u_char d_name[FFS_MAXNAMLEN + 1];
} oroot_dir[] = {
{ ROOTINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
#ifdef LOSTDIR
{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
#endif
};
#ifdef LOSTDIR
struct direct lost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
{ 0, DIRBLKSIZ, 0, 0, 0 },
};
struct odirect olost_found_dir[] = {
{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
{ ROOTINO, sizeof(struct direct), 2, ".." },
{ 0, DIRBLKSIZ, 0, 0 },
};
#endif
char buf[MAXBSIZE];
static void copy_dir(struct direct *, struct direct *);
int
fsinit(const struct timeval *tv, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
union dinode node;
#ifdef LOSTDIR
int i;
int dirblksiz = DIRBLKSIZ;
if (isappleufs)
dirblksiz = APPLEUFS_DIRBLKSIZ;
#endif
/*
* initialize the node
*/
#ifdef LOSTDIR
/*
* create the lost+found directory
*/
memset(&node, 0, sizeof(node));
if (Oflag == 0) {
(void)makedir((struct direct *)olost_found_dir, 2);
for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
copy_dir((struct direct*)&olost_found_dir[2],
(struct direct*)&buf[i]);
} else {
(void)makedir(lost_found_dir, 2);
for (i = dirblksiz; i < sblock.fs_bsize; i += dirblksiz)
copy_dir(&lost_found_dir[2], (struct direct*)&buf[i]);
}
if (sblock.fs_magic == FS_UFS1_MAGIC) {
node.dp1.di_atime = tv->tv_sec;
node.dp1.di_atimensec = tv->tv_usec * 1000;
node.dp1.di_mtime = tv->tv_sec;
node.dp1.di_mtimensec = tv->tv_usec * 1000;
node.dp1.di_ctime = tv->tv_sec;
node.dp1.di_ctimensec = tv->tv_usec * 1000;
node.dp1.di_mode = IFDIR | UMASK;
node.dp1.di_nlink = 2;
node.dp1.di_size = sblock.fs_bsize;
node.dp1.di_db[0] = alloc(node.dp1.di_size, node.dp1.di_mode);
if (node.dp1.di_db[0] == 0)
return (0);
node.dp1.di_blocks = btodb(fragroundup(&sblock,
node.dp1.di_size));
node.dp1.di_uid = geteuid();
node.dp1.di_gid = getegid();
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), node.dp1.di_size,
buf);
} else {
node.dp2.di_atime = tv->tv_sec;
node.dp2.di_atimensec = tv->tv_usec * 1000;
node.dp2.di_mtime = tv->tv_sec;
node.dp2.di_mtimensec = tv->tv_usec * 1000;
node.dp2.di_ctime = tv->tv_sec;
node.dp2.di_ctimensec = tv->tv_usec * 1000;
node.dp2.di_birthtime = tv->tv_sec;
node.dp2.di_birthnsec = tv->tv_usec * 1000;
node.dp2.di_mode = IFDIR | UMASK;
node.dp2.di_nlink = 2;
node.dp2.di_size = sblock.fs_bsize;
node.dp2.di_db[0] = alloc(node.dp2.di_size, node.dp2.di_mode);
if (node.dp2.di_db[0] == 0)
return (0);
node.dp2.di_blocks = btodb(fragroundup(&sblock,
node.dp2.di_size));
node.dp2.di_uid = geteuid();
node.dp2.di_gid = getegid();
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), node.dp2.di_size,
buf);
}
iput(&node, LOSTFOUNDINO);
#endif
/*
* create the root directory
*/
memset(&node, 0, sizeof(node));
if (Oflag <= 1) {
if (mfs) {
node.dp1.di_mode = IFDIR | mfsmode;
node.dp1.di_uid = mfsuid;
node.dp1.di_gid = mfsgid;
} else {
node.dp1.di_mode = IFDIR | UMASK;
node.dp1.di_uid = geteuid();
node.dp1.di_gid = getegid();
}
node.dp1.di_nlink = PREDEFDIR;
if (Oflag == 0)
node.dp1.di_size = makedir((struct direct *)oroot_dir,
PREDEFDIR);
else
node.dp1.di_size = makedir(root_dir, PREDEFDIR);
node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
if (node.dp1.di_db[0] == 0)
return (0);
node.dp1.di_blocks = btodb(fragroundup(&sblock,
node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, buf);
} else {
if (mfs) {
node.dp2.di_mode = IFDIR | mfsmode;
node.dp2.di_uid = mfsuid;
node.dp2.di_gid = mfsgid;
} else {
node.dp2.di_mode = IFDIR | UMASK;
node.dp2.di_uid = geteuid();
node.dp2.di_gid = getegid();
}
node.dp2.di_atime = tv->tv_sec;
node.dp2.di_atimensec = tv->tv_usec * 1000;
node.dp2.di_mtime = tv->tv_sec;
node.dp2.di_mtimensec = tv->tv_usec * 1000;
node.dp2.di_ctime = tv->tv_sec;
node.dp2.di_ctimensec = tv->tv_usec * 1000;
node.dp2.di_birthtime = tv->tv_sec;
node.dp2.di_birthnsec = tv->tv_usec * 1000;
node.dp2.di_nlink = PREDEFDIR;
node.dp2.di_size = makedir(root_dir, PREDEFDIR);
node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
if (node.dp2.di_db[0] == 0)
return (0);
node.dp2.di_blocks = btodb(fragroundup(&sblock,
node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, buf);
}
iput(&node, ROOTINO);
return (1);
}
/*
* construct a set of directory entries in "buf".
* return size of directory.
*/
int
makedir(struct direct *protodir, int entries)
{
char *cp;
int i, spcleft;
int dirblksiz = DIRBLKSIZ;
if (isappleufs)
dirblksiz = APPLEUFS_DIRBLKSIZ;
memset(buf, 0, DIRBLKSIZ);
spcleft = dirblksiz;
for (cp = buf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(Oflag == 0, &protodir[i], 0);
copy_dir(&protodir[i], (struct direct*)cp);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
copy_dir(&protodir[i], (struct direct*)cp);
return (dirblksiz);
}
/*
* allocate a block or frag
*/
daddr_t
alloc(int size, int mode)
{
int i, frag;
daddr_t d, blkno;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
/* fs -> host byte order */
if (needswap)
ffs_cg_swap(&acg, &acg, &sblock);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
printf("first cylinder group ran out of space\n");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg, 0),
d >> sblock.fs_fragshift))
goto goth;
printf("internal error: can't find block in cyl 0\n");
return (0);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg, 0), blkno);
if (sblock.fs_contigsumsize > 0)
clrbit(cg_clustersfree(&acg, 0), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs_0->cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs_0->cs_ndir++;
}
if (Oflag <= 1) {
int cn = old_cbtocylno(&sblock, d);
old_cg_blktot(&acg, 0)[cn]--;
old_cg_blks(&sblock, &acg,
cn, 0)[old_cbtorpos(&sblock, d)]--;
}
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs_0->cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg, 0), d + i);
}
/* host -> fs byte order */
if (needswap)
ffs_cg_swap(&acg, &acg, &sblock);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
return (d);
}
/*
* Allocate an inode on the disk
*/
static void
iput(union dinode *ip, ino_t ino)
{
daddr_t d;
int c, i;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
c = ino_to_cg(&sblock, ino);
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
/* fs -> host byte order */
if (needswap)
ffs_cg_swap(&acg, &acg, &sblock);
if (acg.cg_magic != CG_MAGIC) {
printf("cg 0: bad magic number\n");
exit(31);
}
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg, 0), ino);
/* host -> fs byte order */
if (needswap)
ffs_cg_swap(&acg, &acg, &sblock);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, &acg);
sblock.fs_cstotal.cs_nifree--;
fscs_0->cs_nifree--;
if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
printf("fsinit: inode value out of range (%llu).\n",
(unsigned long long)ino);
exit(32);
}
d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
rdfs(d, sblock.fs_bsize, (char *)iobuf);
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1 = (struct ufs1_dinode *)iobuf;
dp1 += ino_to_fsbo(&sblock, ino);
if (needswap) {
ffs_dinode1_swap(&ip->dp1, dp1);
/* ffs_dinode1_swap() doesn't swap blocks addrs */
for (i=0; i<NDADDR + NIADDR; i++)
dp1->di_db[i] = bswap32(ip->dp1.di_db[i]);
} else
*dp1 = ip->dp1;
dp1->di_gen = arc4random() & INT32_MAX;
} else {
dp2 = (struct ufs2_dinode *)iobuf;
dp2 += ino_to_fsbo(&sblock, ino);
if (needswap) {
ffs_dinode2_swap(&ip->dp2, dp2);
for (i=0; i<NDADDR + NIADDR; i++)
dp2->di_db[i] = bswap64(ip->dp2.di_db[i]);
} else
*dp2 = ip->dp2;
dp2->di_gen = arc4random() & INT32_MAX;
}
wtfs(d, sblock.fs_bsize, iobuf);
}
/*
* read a block from the file system
*/
void
rdfs(daddr_t bno, int size, void *bf)
{
int n;
off_t offset;
#ifdef MFS
if (mfs) {
if (Nflag)
memset(bf, 0, size);
else
memmove(bf, membase + bno * sectorsize, size);
return;
}
#endif
offset = bno;
n = pread(fsi, bf, size, offset * sectorsize);
if (n != size) {
printf("rdfs: read error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(34);
}
}
/*
* write a block to the file system
*/
void
wtfs(daddr_t bno, int size, void *bf)
{
int n;
off_t offset;
if (Nflag)
return;
#ifdef MFS
if (mfs) {
memmove(membase + bno * sectorsize, bf, size);
return;
}
#endif
offset = bno;
n = pwrite(fso, bf, size, offset * sectorsize);
if (n != size) {
printf("wtfs: write error for sector %lld: %s\n",
(long long)bno, strerror(errno));
exit(36);
}
}
/*
* check if a block is available
*/
int
isblock(struct fs *fs, unsigned char *cp, int h)
{
unsigned char mask;
switch (fs->fs_fragshift) {
case 3:
return (cp[h] == 0xff);
case 2:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 1:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 0:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef STANDALONE
printf("isblock bad fs_fragshift %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "isblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return (0);
}
}
/*
* take a block out of the map
*/
void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
switch ((fs)->fs_fragshift) {
case 3:
cp[h] = 0;
return;
case 2:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 1:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 0:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("clrblock bad fs_fragshift %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "clrblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return;
}
}
/*
* put a block into the map
*/
void
setblock(struct fs *fs, unsigned char *cp, int h)
{
switch (fs->fs_fragshift) {
case 3:
cp[h] = 0xff;
return;
case 2:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 1:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 0:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("setblock bad fs_frag %d\n", fs->fs_fragshift);
#else
fprintf(stderr, "setblock bad fs_fragshift %d\n",
fs->fs_fragshift);
#endif
return;
}
}
/* copy a direntry to a buffer, in fs byte order */
static void
copy_dir(struct direct *dir, struct direct *dbuf)
{
memcpy(dbuf, dir, DIRSIZ(Oflag == 0, dir, 0));
if (needswap) {
dbuf->d_ino = bswap32(dir->d_ino);
dbuf->d_reclen = bswap16(dir->d_reclen);
if (Oflag == 0)
((struct odirect*)dbuf)->d_namlen =
bswap16(((struct odirect*)dir)->d_namlen);
}
}
/* Determine how many digits are needed to print a given integer */
static int
count_digits(uint64_t num)
{
int ndig;
for (ndig = 1; num > 9; num /= 10, ndig++);
return (ndig);
}
static int
ilog2(int val)
{
u_int n;
for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
if (1 << n == val)
return (n);
errx(1, "ilog2: %d is not a power of 2\n", val);
}
static void
zap_old_sblock(int sblkoff)
{
static int cg0_data;
uint32_t oldfs[SBLOCKSIZE / 4];
static const struct fsm {
uint32_t offset;
uint32_t magic;
uint32_t mask;
} fs_magics[] = {
{offsetof(struct fs, fs_magic)/4, FS_UFS1_MAGIC, ~0u},
{offsetof(struct fs, fs_magic)/4, FS_UFS2_MAGIC, ~0u},
{0, 0x70162, ~0u}, /* LFS_MAGIC */
{14, 0xef53, 0xffff}, /* EXT2FS (little) */
{14, 0xef530000, 0xffff0000}, /* EXT2FS (big) */
{~0u},
};
const struct fsm *fsm;
if (Nflag)
return;
if (sblkoff == 0) /* Why did UFS2 add support for this? sigh. */
return;
if (cg0_data == 0)
/* For FFSv1 this could include all the inodes. */
cg0_data = cgsblock(&sblock, 0) * sblock.fs_fsize + iobufsize;
/* Ignore anything that is beyond our filesystem */
if ((sblkoff + SBLOCKSIZE)/sectorsize >= fssize)
return;
/* Zero anything inside our filesystem... */
if (sblkoff >= sblock.fs_sblockloc) {
/* ...unless we will write that area anyway */
if (sblkoff >= cg0_data)
wtfs(sblkoff / sectorsize,
roundup(sizeof sblock, sectorsize), iobuf);
return;
}
/* The sector might contain boot code, so we must validate it */
rdfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
for (fsm = fs_magics; ; fsm++) {
uint32_t v;
if (fsm->mask == 0)
return;
v = oldfs[fsm->offset];
if ((v & fsm->mask) == fsm->magic ||
(bswap32(v) & fsm->mask) == fsm->magic)
break;
}
/* Just zap the magic number */
oldfs[fsm->offset] = 0;
wtfs(sblkoff/sectorsize, sizeof oldfs, &oldfs);
}
#ifdef MFS
/*
* XXX!
* Attempt to guess how much more space is available for process data. The
* heuristic we use is
*
* max_data_limit - (sbrk(0) - etext) - 128kB
*
* etext approximates that start address of the data segment, and the 128kB
* allows some slop for both segment gap between text and data, and for other
* (libc) malloc usage.
*/
static void
calc_memfree(void)
{
extern char etext;
struct rlimit rlp;
u_long base;
base = (u_long)sbrk(0) - (u_long)&etext;
if (getrlimit(RLIMIT_DATA, &rlp) < 0)
perror("getrlimit");
rlp.rlim_cur = rlp.rlim_max;
if (setrlimit(RLIMIT_DATA, &rlp) < 0)
perror("setrlimit");
memleft = rlp.rlim_max - base - (128 * 1024);
}
/*
* Internal version of malloc that trims the requested size if not enough
* memory is available.
*/
static void *
mkfs_malloc(size_t size)
{
u_long pgsz;
if (size == 0)
return (NULL);
if (memleft == 0)
calc_memfree();
pgsz = getpagesize() - 1;
size = (size + pgsz) &~ pgsz;
if (size > memleft)
size = memleft;
memleft -= size;
return (mmap(0, size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
-1, 0));
}
#endif /* MFS */