774 lines
19 KiB
C
774 lines
19 KiB
C
/* $NetBSD: pthread_mutex.c,v 1.81 2020/06/11 18:41:22 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* To track threads waiting for mutexes to be released, we use lockless
|
|
* lists built on atomic operations and memory barriers.
|
|
*
|
|
* A simple spinlock would be faster and make the code easier to
|
|
* follow, but spinlocks are problematic in userspace. If a thread is
|
|
* preempted by the kernel while holding a spinlock, any other thread
|
|
* attempting to acquire that spinlock will needlessly busy wait.
|
|
*
|
|
* There is no good way to know that the holding thread is no longer
|
|
* running, nor to request a wake-up once it has begun running again.
|
|
* Of more concern, threads in the SCHED_FIFO class do not have a
|
|
* limited time quantum and so could spin forever, preventing the
|
|
* thread holding the spinlock from getting CPU time: it would never
|
|
* be released.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__RCSID("$NetBSD: pthread_mutex.c,v 1.81 2020/06/11 18:41:22 ad Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/lwpctl.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/lock.h>
|
|
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <time.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#include "pthread.h"
|
|
#include "pthread_int.h"
|
|
#include "reentrant.h"
|
|
|
|
#define MUTEX_RECURSIVE_BIT ((uintptr_t)0x02)
|
|
#define MUTEX_PROTECT_BIT ((uintptr_t)0x08)
|
|
#define MUTEX_THREAD ((uintptr_t)~0x0f)
|
|
|
|
#define MUTEX_RECURSIVE(x) ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
|
|
#define MUTEX_PROTECT(x) ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
|
|
#define MUTEX_OWNER(x) ((uintptr_t)(x) & MUTEX_THREAD)
|
|
|
|
#define MUTEX_GET_TYPE(x) \
|
|
((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
|
|
#define MUTEX_SET_TYPE(x, t) \
|
|
(x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
|
|
#define MUTEX_GET_PROTOCOL(x) \
|
|
((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
|
|
#define MUTEX_SET_PROTOCOL(x, p) \
|
|
(x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
|
|
#define MUTEX_GET_CEILING(x) \
|
|
((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
|
|
#define MUTEX_SET_CEILING(x, c) \
|
|
(x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))
|
|
|
|
#if __GNUC_PREREQ__(3, 0)
|
|
#define NOINLINE __attribute ((noinline))
|
|
#else
|
|
#define NOINLINE /* nothing */
|
|
#endif
|
|
|
|
struct waiter {
|
|
struct waiter *volatile next;
|
|
lwpid_t volatile lid;
|
|
};
|
|
|
|
static void pthread__mutex_wakeup(pthread_t, struct pthread__waiter *);
|
|
static int pthread__mutex_lock_slow(pthread_mutex_t *,
|
|
const struct timespec *);
|
|
static void pthread__mutex_pause(void);
|
|
|
|
int _pthread_mutex_held_np(pthread_mutex_t *);
|
|
pthread_t _pthread_mutex_owner_np(pthread_mutex_t *);
|
|
|
|
__weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
|
|
__weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)
|
|
|
|
__strong_alias(__libc_mutex_init,pthread_mutex_init)
|
|
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
|
|
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
|
|
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
|
|
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
|
|
|
|
__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
|
|
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
|
|
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
|
|
|
|
int
|
|
pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
|
|
{
|
|
uintptr_t type, proto, val, ceil;
|
|
|
|
#if 0
|
|
/*
|
|
* Always initialize the mutex structure, maybe be used later
|
|
* and the cost should be minimal.
|
|
*/
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutex_init_stub(ptm, attr);
|
|
#endif
|
|
|
|
pthread__error(EINVAL, "Invalid mutes attribute",
|
|
attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
if (attr == NULL) {
|
|
type = PTHREAD_MUTEX_NORMAL;
|
|
proto = PTHREAD_PRIO_NONE;
|
|
ceil = 0;
|
|
} else {
|
|
val = (uintptr_t)attr->ptma_private;
|
|
|
|
type = MUTEX_GET_TYPE(val);
|
|
proto = MUTEX_GET_PROTOCOL(val);
|
|
ceil = MUTEX_GET_CEILING(val);
|
|
}
|
|
switch (type) {
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
__cpu_simple_lock_set(&ptm->ptm_errorcheck);
|
|
ptm->ptm_owner = NULL;
|
|
break;
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
|
|
ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
|
|
break;
|
|
default:
|
|
__cpu_simple_lock_clear(&ptm->ptm_errorcheck);
|
|
ptm->ptm_owner = NULL;
|
|
break;
|
|
}
|
|
switch (proto) {
|
|
case PTHREAD_PRIO_PROTECT:
|
|
val = (uintptr_t)ptm->ptm_owner;
|
|
val |= MUTEX_PROTECT_BIT;
|
|
ptm->ptm_owner = (void *)val;
|
|
break;
|
|
|
|
}
|
|
ptm->ptm_magic = _PT_MUTEX_MAGIC;
|
|
ptm->ptm_waiters = NULL;
|
|
ptm->ptm_recursed = 0;
|
|
ptm->ptm_ceiling = (unsigned char)ceil;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutex_destroy(pthread_mutex_t *ptm)
|
|
{
|
|
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutex_destroy_stub(ptm);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
pthread__error(EBUSY, "Destroying locked mutex",
|
|
MUTEX_OWNER(ptm->ptm_owner) == 0);
|
|
|
|
ptm->ptm_magic = _PT_MUTEX_DEAD;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutex_lock(pthread_mutex_t *ptm)
|
|
{
|
|
pthread_t self;
|
|
void *val;
|
|
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutex_lock_stub(ptm);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
self = pthread__self();
|
|
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
|
|
if (__predict_true(val == NULL)) {
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
return 0;
|
|
}
|
|
return pthread__mutex_lock_slow(ptm, NULL);
|
|
}
|
|
|
|
int
|
|
pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
|
|
{
|
|
pthread_t self;
|
|
void *val;
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
self = pthread__self();
|
|
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
|
|
if (__predict_true(val == NULL)) {
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
return 0;
|
|
}
|
|
return pthread__mutex_lock_slow(ptm, ts);
|
|
}
|
|
|
|
/* We want function call overhead. */
|
|
NOINLINE static void
|
|
pthread__mutex_pause(void)
|
|
{
|
|
|
|
pthread__smt_pause();
|
|
}
|
|
|
|
/*
|
|
* Spin while the holder is running. 'lwpctl' gives us the true
|
|
* status of the thread.
|
|
*/
|
|
NOINLINE static void *
|
|
pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
|
|
{
|
|
pthread_t thread;
|
|
unsigned int count, i;
|
|
|
|
for (count = 2;; owner = ptm->ptm_owner) {
|
|
thread = (pthread_t)MUTEX_OWNER(owner);
|
|
if (thread == NULL)
|
|
break;
|
|
if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
|
|
break;
|
|
if (count < 128)
|
|
count += count;
|
|
for (i = count; i != 0; i--)
|
|
pthread__mutex_pause();
|
|
}
|
|
|
|
return owner;
|
|
}
|
|
|
|
NOINLINE static int
|
|
pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
|
|
{
|
|
void *newval, *owner, *next;
|
|
struct waiter waiter;
|
|
pthread_t self;
|
|
int serrno;
|
|
int error;
|
|
|
|
owner = ptm->ptm_owner;
|
|
self = pthread__self();
|
|
serrno = errno;
|
|
|
|
pthread__assert(self->pt_lid != 0);
|
|
|
|
/* Recursive or errorcheck? */
|
|
if (MUTEX_OWNER(owner) == (uintptr_t)self) {
|
|
if (MUTEX_RECURSIVE(owner)) {
|
|
if (ptm->ptm_recursed == INT_MAX)
|
|
return EAGAIN;
|
|
ptm->ptm_recursed++;
|
|
return 0;
|
|
}
|
|
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
|
|
return EDEADLK;
|
|
}
|
|
|
|
/* priority protect */
|
|
if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
|
|
error = errno;
|
|
errno = serrno;
|
|
return error;
|
|
}
|
|
|
|
for (;;) {
|
|
/* If it has become free, try to acquire it again. */
|
|
if (MUTEX_OWNER(owner) == 0) {
|
|
newval = (void *)((uintptr_t)self | (uintptr_t)owner);
|
|
next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
|
|
if (__predict_false(next != owner)) {
|
|
owner = next;
|
|
continue;
|
|
}
|
|
errno = serrno;
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
return 0;
|
|
} else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
|
|
/* Spin while the owner is running. */
|
|
owner = pthread__mutex_spin(ptm, owner);
|
|
if (MUTEX_OWNER(owner) == 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Nope, still held. Add thread to the list of waiters.
|
|
* Issue a memory barrier to ensure stores to 'waiter'
|
|
* are visible before we enter the list.
|
|
*/
|
|
waiter.next = ptm->ptm_waiters;
|
|
waiter.lid = self->pt_lid;
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_producer();
|
|
#endif
|
|
next = atomic_cas_ptr(&ptm->ptm_waiters, waiter.next, &waiter);
|
|
if (next != waiter.next) {
|
|
owner = ptm->ptm_owner;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the mutex has become free since entering self onto the
|
|
* waiters list, need to wake everybody up (including self)
|
|
* and retry. It's possible to race with an unlocking
|
|
* thread, so self may have already been awoken.
|
|
*/
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
if (MUTEX_OWNER(ptm->ptm_owner) == 0) {
|
|
pthread__mutex_wakeup(self,
|
|
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
|
|
}
|
|
|
|
/*
|
|
* We must not proceed until told that we are no longer
|
|
* waiting (via waiter.lid being set to zero). Otherwise
|
|
* it's unsafe to re-enter "waiter" onto the waiters list.
|
|
*/
|
|
while (waiter.lid != 0) {
|
|
error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
|
|
__UNCONST(ts), 0, NULL, NULL);
|
|
if (error < 0 && errno == ETIMEDOUT) {
|
|
/* Remove self from waiters list */
|
|
pthread__mutex_wakeup(self,
|
|
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
|
|
|
|
/*
|
|
* Might have raced with another thread to
|
|
* do the wakeup. In any case there will be
|
|
* a wakeup for sure. Eat it and wait for
|
|
* waiter.lid to clear.
|
|
*/
|
|
while (waiter.lid != 0) {
|
|
(void)_lwp_park(CLOCK_MONOTONIC, 0,
|
|
NULL, 0, NULL, NULL);
|
|
}
|
|
|
|
/* Priority protect */
|
|
if (MUTEX_PROTECT(owner))
|
|
(void)_sched_protect(-1);
|
|
errno = serrno;
|
|
return ETIMEDOUT;
|
|
}
|
|
}
|
|
owner = ptm->ptm_owner;
|
|
}
|
|
}
|
|
|
|
int
|
|
pthread_mutex_trylock(pthread_mutex_t *ptm)
|
|
{
|
|
pthread_t self;
|
|
void *val, *new, *next;
|
|
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutex_trylock_stub(ptm);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
self = pthread__self();
|
|
val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
|
|
if (__predict_true(val == NULL)) {
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
if (MUTEX_RECURSIVE(val)) {
|
|
if (MUTEX_OWNER(val) == 0) {
|
|
new = (void *)((uintptr_t)self | (uintptr_t)val);
|
|
next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
|
|
if (__predict_true(next == val)) {
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
return 0;
|
|
}
|
|
}
|
|
if (MUTEX_OWNER(val) == (uintptr_t)self) {
|
|
if (ptm->ptm_recursed == INT_MAX)
|
|
return EAGAIN;
|
|
ptm->ptm_recursed++;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
int
|
|
pthread_mutex_unlock(pthread_mutex_t *ptm)
|
|
{
|
|
pthread_t self;
|
|
void *val, *newval;
|
|
int error;
|
|
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutex_unlock_stub(ptm);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_exit();
|
|
#endif
|
|
error = 0;
|
|
self = pthread__self();
|
|
newval = NULL;
|
|
|
|
val = atomic_cas_ptr(&ptm->ptm_owner, self, newval);
|
|
if (__predict_false(val != self)) {
|
|
bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
|
|
if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
|
|
if (!weown) {
|
|
error = EPERM;
|
|
newval = val;
|
|
} else {
|
|
newval = NULL;
|
|
}
|
|
} else if (MUTEX_RECURSIVE(val)) {
|
|
if (!weown) {
|
|
error = EPERM;
|
|
newval = val;
|
|
} else if (ptm->ptm_recursed) {
|
|
ptm->ptm_recursed--;
|
|
newval = val;
|
|
} else {
|
|
newval = (pthread_t)MUTEX_RECURSIVE_BIT;
|
|
}
|
|
} else {
|
|
pthread__error(EPERM,
|
|
"Unlocking unlocked mutex", (val != NULL));
|
|
pthread__error(EPERM,
|
|
"Unlocking mutex owned by another thread", weown);
|
|
newval = NULL;
|
|
}
|
|
|
|
/*
|
|
* Release the mutex. If there appear to be waiters, then
|
|
* wake them up.
|
|
*/
|
|
if (newval != val) {
|
|
val = atomic_swap_ptr(&ptm->ptm_owner, newval);
|
|
if (__predict_false(MUTEX_PROTECT(val))) {
|
|
/* restore elevated priority */
|
|
(void)_sched_protect(-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, wake any waiters and return.
|
|
*/
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_enter();
|
|
#endif
|
|
if (MUTEX_OWNER(newval) == 0 && ptm->ptm_waiters != NULL) {
|
|
pthread__mutex_wakeup(self,
|
|
atomic_swap_ptr(&ptm->ptm_waiters, NULL));
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* pthread__mutex_wakeup: unpark threads waiting for us
|
|
*/
|
|
|
|
static void
|
|
pthread__mutex_wakeup(pthread_t self, struct pthread__waiter *cur)
|
|
{
|
|
lwpid_t lids[PTHREAD__UNPARK_MAX];
|
|
const size_t mlid = pthread__unpark_max;
|
|
struct pthread__waiter *next;
|
|
size_t nlid;
|
|
|
|
/*
|
|
* Pull waiters from the queue and add to our list. Use a memory
|
|
* barrier to ensure that we safely read the value of waiter->next
|
|
* before the awoken thread sees waiter->lid being cleared.
|
|
*/
|
|
membar_datadep_consumer(); /* for alpha */
|
|
for (nlid = 0; cur != NULL; cur = next) {
|
|
if (nlid == mlid) {
|
|
(void)_lwp_unpark_all(lids, nlid, NULL);
|
|
nlid = 0;
|
|
}
|
|
next = cur->next;
|
|
pthread__assert(cur->lid != 0);
|
|
lids[nlid++] = cur->lid;
|
|
membar_exit();
|
|
cur->lid = 0;
|
|
/* No longer safe to touch 'cur' */
|
|
}
|
|
if (nlid == 1) {
|
|
(void)_lwp_unpark(lids[0], NULL);
|
|
} else if (nlid > 1) {
|
|
(void)_lwp_unpark_all(lids, nlid, NULL);
|
|
}
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_init(pthread_mutexattr_t *attr)
|
|
{
|
|
#if 0
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutexattr_init_stub(attr);
|
|
#endif
|
|
|
|
attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
|
|
attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
|
|
{
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutexattr_destroy_stub(attr);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
attr->ptma_magic = _PT_MUTEXATTR_DEAD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
*typep = MUTEX_GET_TYPE(attr->ptma_private);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
|
|
{
|
|
|
|
if (__predict_false(__uselibcstub))
|
|
return __libc_mutexattr_settype_stub(attr, type);
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
switch (type) {
|
|
case PTHREAD_MUTEX_NORMAL:
|
|
case PTHREAD_MUTEX_ERRORCHECK:
|
|
case PTHREAD_MUTEX_RECURSIVE:
|
|
MUTEX_SET_TYPE(attr->ptma_private, type);
|
|
return 0;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
*proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
switch (proto) {
|
|
case PTHREAD_PRIO_NONE:
|
|
case PTHREAD_PRIO_PROTECT:
|
|
MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
|
|
return 0;
|
|
case PTHREAD_PRIO_INHERIT:
|
|
return ENOTSUP;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
*ceil = MUTEX_GET_CEILING(attr->ptma_private);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
if (ceil & ~0xff)
|
|
return EINVAL;
|
|
|
|
MUTEX_SET_CEILING(attr->ptma_private, ceil);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef _PTHREAD_PSHARED
|
|
int
|
|
pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
|
|
int * __restrict pshared)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
*pshared = PTHREAD_PROCESS_PRIVATE;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex attribute",
|
|
attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
|
|
|
|
switch(pshared) {
|
|
case PTHREAD_PROCESS_PRIVATE:
|
|
return 0;
|
|
case PTHREAD_PROCESS_SHARED:
|
|
return ENOSYS;
|
|
}
|
|
return EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In order to avoid unnecessary contention on interlocking mutexes, we try
|
|
* to defer waking up threads until we unlock the mutex. The threads will
|
|
* be woken up when the calling thread (self) releases the mutex.
|
|
*/
|
|
void
|
|
pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm,
|
|
struct pthread__waiter *head)
|
|
{
|
|
struct pthread__waiter *tail, *n, *o;
|
|
|
|
pthread__assert(head != NULL);
|
|
|
|
if (__predict_false(ptm == NULL ||
|
|
MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
|
|
pthread__mutex_wakeup(self, head);
|
|
return;
|
|
}
|
|
|
|
/* This is easy if no existing waiters on mutex. */
|
|
if (atomic_cas_ptr(&ptm->ptm_waiters, NULL, head) == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* Oops need to append. Find the tail of the new queue. */
|
|
for (tail = head; tail->next != NULL; tail = tail->next) {
|
|
/* nothing */
|
|
}
|
|
|
|
/* Append atomically. */
|
|
for (o = ptm->ptm_waiters;; o = n) {
|
|
tail->next = o;
|
|
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
|
|
membar_producer();
|
|
#endif
|
|
n = atomic_cas_ptr(&ptm->ptm_waiters, o, head);
|
|
if (__predict_true(n == o)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
|
|
{
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
*ceil = ptm->ptm_ceiling;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
|
|
{
|
|
int error;
|
|
|
|
pthread__error(EINVAL, "Invalid mutex",
|
|
ptm->ptm_magic == _PT_MUTEX_MAGIC);
|
|
|
|
error = pthread_mutex_lock(ptm);
|
|
if (error == 0) {
|
|
*old_ceil = ptm->ptm_ceiling;
|
|
/*check range*/
|
|
ptm->ptm_ceiling = ceil;
|
|
pthread_mutex_unlock(ptm);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
int
|
|
_pthread_mutex_held_np(pthread_mutex_t *ptm)
|
|
{
|
|
|
|
return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
|
|
}
|
|
|
|
pthread_t
|
|
_pthread_mutex_owner_np(pthread_mutex_t *ptm)
|
|
{
|
|
|
|
return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
|
|
}
|