NetBSD/sys/dev/acpi/acpi_cpu.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

910 lines
20 KiB
C

/* $NetBSD: acpi_cpu.c,v 1.51 2017/06/01 02:45:09 chs Exp $ */
/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu.c,v 1.51 2017/06/01 02:45:09 chs Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/evcnt.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/cpufreq.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>
#include <machine/acpi_machdep.h>
#include <machine/cpuvar.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_cpu")
static int acpicpu_match(device_t, cfdata_t, void *);
static void acpicpu_attach(device_t, device_t, void *);
static int acpicpu_detach(device_t, int);
static int acpicpu_once_attach(void);
static int acpicpu_once_detach(void);
static void acpicpu_start(device_t);
static void acpicpu_sysctl(device_t);
static ACPI_STATUS acpicpu_object(ACPI_HANDLE, struct acpicpu_object *);
static uint32_t acpicpu_cap(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_cap_osc(struct acpicpu_softc *,
uint32_t, uint32_t *);
static void acpicpu_notify(ACPI_HANDLE, uint32_t, void *);
static bool acpicpu_suspend(device_t, const pmf_qual_t *);
static bool acpicpu_resume(device_t, const pmf_qual_t *);
static void acpicpu_evcnt_attach(device_t);
static void acpicpu_evcnt_detach(device_t);
static void acpicpu_debug_print(device_t);
static const char *acpicpu_debug_print_method_c(uint8_t);
static const char *acpicpu_debug_print_method_pt(uint8_t);
static const char *acpicpu_debug_print_dep(uint32_t);
static uint32_t acpicpu_count = 0;
struct acpicpu_softc **acpicpu_sc = NULL;
static struct sysctllog *acpicpu_log = NULL;
static bool acpicpu_dynamic = true;
static bool acpicpu_passive = true;
static const struct {
const char *manu;
const char *prod;
const char *vers;
} acpicpu_quirks[] = {
{ "Supermicro", "PDSMi-LN4", "0123456789" },
{ "ASUSTeK Computer INC.", "M2A-MX", "Rev 1.xx" },
};
CFATTACH_DECL_NEW(acpicpu, sizeof(struct acpicpu_softc),
acpicpu_match, acpicpu_attach, acpicpu_detach, NULL);
static int
acpicpu_match(device_t parent, cfdata_t match, void *aux)
{
const char *manu, *prod, *vers;
struct cpu_info *ci;
size_t i;
if (acpi_softc == NULL)
return 0;
manu = pmf_get_platform("board-vendor");
prod = pmf_get_platform("board-product");
vers = pmf_get_platform("board-version");
if (manu != NULL && prod != NULL && vers != NULL) {
for (i = 0; i < __arraycount(acpicpu_quirks); i++) {
if (strcasecmp(acpicpu_quirks[i].manu, manu) == 0 &&
strcasecmp(acpicpu_quirks[i].prod, prod) == 0 &&
strcasecmp(acpicpu_quirks[i].vers, vers) == 0)
return 0;
}
}
ci = acpicpu_md_match(parent, match, aux);
if (ci == NULL)
return 0;
if (acpi_match_cpu_info(ci) == NULL)
return 0;
return 10;
}
static void
acpicpu_attach(device_t parent, device_t self, void *aux)
{
struct acpicpu_softc *sc = device_private(self);
struct cpu_info *ci;
ACPI_HANDLE hdl;
cpuid_t id;
int rv;
ci = acpicpu_md_attach(parent, self, aux);
if (ci == NULL)
return;
sc->sc_ci = ci;
sc->sc_dev = self;
sc->sc_cold = true;
hdl = acpi_match_cpu_info(ci);
if (hdl == NULL) {
aprint_normal(": failed to match processor\n");
return;
}
sc->sc_node = acpi_match_node(hdl);
if (acpicpu_once_attach() != 0) {
aprint_normal(": failed to initialize\n");
return;
}
KASSERT(acpi_softc != NULL);
KASSERT(acpicpu_sc != NULL);
KASSERT(sc->sc_node != NULL);
id = sc->sc_ci->ci_acpiid;
if (acpicpu_sc[id] != NULL) {
aprint_normal(": already attached\n");
return;
}
aprint_naive("\n");
aprint_normal(": ACPI CPU\n");
rv = acpicpu_object(sc->sc_node->ad_handle, &sc->sc_object);
if (ACPI_FAILURE(rv))
aprint_verbose_dev(self, "failed to obtain CPU object\n");
acpicpu_count++;
acpicpu_sc[id] = sc;
sc->sc_cap = acpicpu_cap(sc);
sc->sc_ncpus = acpi_md_ncpus();
sc->sc_flags = acpicpu_md_flags();
KASSERT(acpicpu_count <= sc->sc_ncpus);
KASSERT(sc->sc_node->ad_device == NULL);
sc->sc_node->ad_device = self;
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
acpicpu_cstate_attach(self);
acpicpu_pstate_attach(self);
acpicpu_tstate_attach(self);
acpicpu_debug_print(self);
acpicpu_evcnt_attach(self);
(void)config_interrupts(self, acpicpu_start);
(void)acpi_register_notify(sc->sc_node, acpicpu_notify);
(void)pmf_device_register(self, acpicpu_suspend, acpicpu_resume);
}
static int
acpicpu_detach(device_t self, int flags)
{
struct acpicpu_softc *sc = device_private(self);
sc->sc_cold = true;
acpicpu_evcnt_detach(self);
acpi_deregister_notify(sc->sc_node);
acpicpu_cstate_detach(self);
acpicpu_pstate_detach(self);
acpicpu_tstate_detach(self);
mutex_destroy(&sc->sc_mtx);
sc->sc_node->ad_device = NULL;
acpicpu_count--;
acpicpu_once_detach();
return 0;
}
static int
acpicpu_once_attach(void)
{
struct acpicpu_softc *sc;
unsigned int i;
if (acpicpu_count != 0)
return 0;
KASSERT(acpicpu_sc == NULL);
KASSERT(acpicpu_log == NULL);
acpicpu_sc = kmem_zalloc(maxcpus * sizeof(*sc), KM_SLEEP);
for (i = 0; i < maxcpus; i++)
acpicpu_sc[i] = NULL;
return 0;
}
static int
acpicpu_once_detach(void)
{
struct acpicpu_softc *sc;
if (acpicpu_count != 0)
return EDEADLK;
cpufreq_deregister();
if (acpicpu_log != NULL)
sysctl_teardown(&acpicpu_log);
if (acpicpu_sc != NULL)
kmem_free(acpicpu_sc, maxcpus * sizeof(*sc));
return 0;
}
static void
acpicpu_start(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
static uint32_t count = 0;
struct cpufreq cf;
uint32_t i;
/*
* Run the state-specific initialization routines. These
* must run only once, after interrupts have been enabled,
* all CPUs are running, and all ACPI CPUs have attached.
*/
if (++count != acpicpu_count || acpicpu_count != sc->sc_ncpus) {
sc->sc_cold = false;
return;
}
/*
* Set the last ACPI CPU as non-cold
* only after C-states are enabled.
*/
if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
acpicpu_cstate_start(self);
sc->sc_cold = false;
if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
acpicpu_pstate_start(self);
if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
acpicpu_tstate_start(self);
acpicpu_sysctl(self);
aprint_debug_dev(self, "ACPI CPUs started\n");
/*
* Register with cpufreq(9).
*/
if ((sc->sc_flags & ACPICPU_FLAG_P) != 0) {
(void)memset(&cf, 0, sizeof(struct cpufreq));
cf.cf_mp = false;
cf.cf_cookie = NULL;
cf.cf_get_freq = acpicpu_pstate_get;
cf.cf_set_freq = acpicpu_pstate_set;
cf.cf_state_count = sc->sc_pstate_count;
(void)strlcpy(cf.cf_name, "acpicpu", sizeof(cf.cf_name));
for (i = 0; i < sc->sc_pstate_count; i++) {
if (sc->sc_pstate[i].ps_freq == 0)
continue;
cf.cf_state[i].cfs_freq = sc->sc_pstate[i].ps_freq;
cf.cf_state[i].cfs_power = sc->sc_pstate[i].ps_power;
}
if (cpufreq_register(&cf) != 0)
aprint_error_dev(self, "failed to register cpufreq\n");
}
}
static void
acpicpu_sysctl(device_t self)
{
const struct sysctlnode *node;
int err;
KASSERT(acpicpu_log == NULL);
err = sysctl_createv(&acpicpu_log, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "acpi", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err != 0)
goto fail;
err = sysctl_createv(&acpicpu_log, 0, &node, &node,
0, CTLTYPE_NODE, "cpu", SYSCTL_DESCR("ACPI CPU"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (err != 0)
goto fail;
err = sysctl_createv(&acpicpu_log, 0, &node, NULL,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "dynamic",
SYSCTL_DESCR("Dynamic states"), NULL, 0,
&acpicpu_dynamic, 0, CTL_CREATE, CTL_EOL);
if (err != 0)
goto fail;
err = sysctl_createv(&acpicpu_log, 0, &node, NULL,
CTLFLAG_READWRITE, CTLTYPE_BOOL, "passive",
SYSCTL_DESCR("Passive cooling"), NULL, 0,
&acpicpu_passive, 0, CTL_CREATE, CTL_EOL);
if (err != 0)
goto fail;
return;
fail:
aprint_error_dev(self, "failed to initialize sysctl (err %d)\n", err);
}
static ACPI_STATUS
acpicpu_object(ACPI_HANDLE hdl, struct acpicpu_object *ao)
{
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
rv = acpi_eval_struct(hdl, NULL, &buf);
if (ACPI_FAILURE(rv))
goto out;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PROCESSOR) {
rv = AE_TYPE;
goto out;
}
if (obj->Processor.ProcId > (uint32_t)maxcpus) {
rv = AE_LIMIT;
goto out;
}
KDASSERT((uint64_t)obj->Processor.PblkAddress < UINT32_MAX);
if (ao != NULL) {
ao->ao_procid = obj->Processor.ProcId;
ao->ao_pblklen = obj->Processor.PblkLength;
ao->ao_pblkaddr = obj->Processor.PblkAddress;
}
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static uint32_t
acpicpu_cap(struct acpicpu_softc *sc)
{
uint32_t flags, cap = 0;
ACPI_STATUS rv;
/*
* Query and set machine-dependent capabilities.
* Note that the Intel-specific _PDC method has
* already been evaluated. It was furthermore
* deprecated in the ACPI 3.0 in favor of _OSC.
*/
flags = acpi_md_pdc();
rv = acpicpu_cap_osc(sc, flags, &cap);
if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND) {
aprint_error_dev(sc->sc_dev, "failed to evaluate "
"_OSC: %s\n", AcpiFormatException(rv));
}
return (cap != 0) ? cap : flags;
}
static ACPI_STATUS
acpicpu_cap_osc(struct acpicpu_softc *sc, uint32_t flags, uint32_t *val)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj[4];
ACPI_OBJECT *osc;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t cap[2];
uint32_t *ptr;
int i = 5;
static uint8_t intel_uuid[16] = {
0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47,
0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53
};
cap[0] = ACPI_OSC_QUERY;
cap[1] = flags;
again:
arg.Count = 4;
arg.Pointer = obj;
obj[0].Type = ACPI_TYPE_BUFFER;
obj[0].Buffer.Length = sizeof(intel_uuid);
obj[0].Buffer.Pointer = intel_uuid;
obj[1].Type = ACPI_TYPE_INTEGER;
obj[1].Integer.Value = ACPICPU_PDC_REVID;
obj[2].Type = ACPI_TYPE_INTEGER;
obj[2].Integer.Value = __arraycount(cap);
obj[3].Type = ACPI_TYPE_BUFFER;
obj[3].Buffer.Length = sizeof(cap);
obj[3].Buffer.Pointer = (void *)cap;
buf.Pointer = NULL;
buf.Length = ACPI_ALLOCATE_LOCAL_BUFFER;
rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OSC", &arg, &buf);
if (ACPI_FAILURE(rv))
goto out;
osc = buf.Pointer;
if (osc->Type != ACPI_TYPE_BUFFER) {
rv = AE_TYPE;
goto out;
}
if (osc->Buffer.Length != sizeof(cap)) {
rv = AE_BUFFER_OVERFLOW;
goto out;
}
ptr = (uint32_t *)osc->Buffer.Pointer;
if ((ptr[0] & ACPI_OSC_ERROR) != 0) {
rv = AE_ERROR;
goto out;
}
if ((ptr[0] & (ACPI_OSC_ERROR_REV | ACPI_OSC_ERROR_UUID)) != 0) {
rv = AE_BAD_PARAMETER;
goto out;
}
/*
* "It is strongly recommended that the OS evaluate
* _OSC with the Query Support Flag set until _OSC
* returns the Capabilities Masked bit clear, to
* negotiate the set of features to be granted to
* the OS for native support (ACPI 4.0, 6.2.10)."
*/
if ((ptr[0] & ACPI_OSC_ERROR_MASKED) != 0 && i >= 0) {
ACPI_FREE(buf.Pointer);
i--;
goto again;
}
if ((cap[0] & ACPI_OSC_QUERY) != 0) {
ACPI_FREE(buf.Pointer);
cap[0] &= ~ACPI_OSC_QUERY;
goto again;
}
/*
* It is permitted for _OSC to return all
* bits cleared, but this is specified to
* vary on per-device basis. Assume that
* everything rather than nothing will be
* supported in this case; we do not need
* the firmware to know the CPU features.
*/
*val = (ptr[1] != 0) ? ptr[1] : cap[1];
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static void
acpicpu_notify(ACPI_HANDLE hdl, uint32_t evt, void *aux)
{
ACPI_OSD_EXEC_CALLBACK func;
struct acpicpu_softc *sc;
device_t self = aux;
sc = device_private(self);
if (sc->sc_cold != false)
return;
if (acpicpu_dynamic != true)
return;
switch (evt) {
case ACPICPU_C_NOTIFY:
if ((sc->sc_flags & ACPICPU_FLAG_C) == 0)
return;
func = acpicpu_cstate_callback;
break;
case ACPICPU_P_NOTIFY:
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
return;
func = acpicpu_pstate_callback;
break;
case ACPICPU_T_NOTIFY:
if ((sc->sc_flags & ACPICPU_FLAG_T) == 0)
return;
func = acpicpu_tstate_callback;
break;
default:
aprint_error_dev(sc->sc_dev, "unknown notify: 0x%02X\n", evt);
return;
}
(void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
}
static bool
acpicpu_suspend(device_t self, const pmf_qual_t *qual)
{
struct acpicpu_softc *sc = device_private(self);
if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
(void)acpicpu_cstate_suspend(self);
if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
(void)acpicpu_pstate_suspend(self);
if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
(void)acpicpu_tstate_suspend(self);
sc->sc_cold = true;
return true;
}
static bool
acpicpu_resume(device_t self, const pmf_qual_t *qual)
{
struct acpicpu_softc *sc = device_private(self);
static const int handler = OSL_NOTIFY_HANDLER;
sc->sc_cold = false;
if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
(void)AcpiOsExecute(handler, acpicpu_cstate_resume, self);
if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
(void)AcpiOsExecute(handler, acpicpu_pstate_resume, self);
if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
(void)AcpiOsExecute(handler, acpicpu_tstate_resume, self);
return true;
}
static void
acpicpu_evcnt_attach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
struct acpicpu_cstate *cs;
struct acpicpu_pstate *ps;
struct acpicpu_tstate *ts;
const char *str;
uint32_t i;
for (i = 0; i < __arraycount(sc->sc_cstate); i++) {
cs = &sc->sc_cstate[i];
if (cs->cs_method == 0)
continue;
str = "HALT";
if (cs->cs_method == ACPICPU_C_STATE_FFH)
str = "MWAIT";
if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
str = "I/O";
(void)snprintf(cs->cs_name, sizeof(cs->cs_name),
"C%d (%s)", i, str);
evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), cs->cs_name);
}
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq == 0)
continue;
(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
"P%u (%u MHz)", i, ps->ps_freq);
evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), ps->ps_name);
}
for (i = 0; i < sc->sc_tstate_count; i++) {
ts = &sc->sc_tstate[i];
if (ts->ts_percent == 0)
continue;
(void)snprintf(ts->ts_name, sizeof(ts->ts_name),
"T%u (%u %%)", i, ts->ts_percent);
evcnt_attach_dynamic(&ts->ts_evcnt, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), ts->ts_name);
}
}
static void
acpicpu_evcnt_detach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
struct acpicpu_cstate *cs;
struct acpicpu_pstate *ps;
struct acpicpu_tstate *ts;
uint32_t i;
for (i = 0; i < __arraycount(sc->sc_cstate); i++) {
cs = &sc->sc_cstate[i];
if (cs->cs_method != 0)
evcnt_detach(&cs->cs_evcnt);
}
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq != 0)
evcnt_detach(&ps->ps_evcnt);
}
for (i = 0; i < sc->sc_tstate_count; i++) {
ts = &sc->sc_tstate[i];
if (ts->ts_percent != 0)
evcnt_detach(&ts->ts_evcnt);
}
}
static void
acpicpu_debug_print(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
struct cpu_info *ci = sc->sc_ci;
struct acpicpu_cstate *cs;
struct acpicpu_pstate *ps;
struct acpicpu_tstate *ts;
static bool once = false;
struct acpicpu_dep *dep;
uint32_t i, method;
if (once != true) {
for (i = 0; i < __arraycount(sc->sc_cstate); i++) {
cs = &sc->sc_cstate[i];
if (cs->cs_method == 0)
continue;
aprint_verbose_dev(sc->sc_dev, "C%d: %3s, "
"lat %3u us, pow %5u mW%s\n", i,
acpicpu_debug_print_method_c(cs->cs_method),
cs->cs_latency, cs->cs_power,
(cs->cs_flags != 0) ? ", bus master check" : "");
}
method = sc->sc_pstate_control.reg_spaceid;
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq == 0)
continue;
aprint_verbose_dev(sc->sc_dev, "P%d: %3s, "
"lat %3u us, pow %5u mW, %4u MHz%s\n", i,
acpicpu_debug_print_method_pt(method),
ps->ps_latency, ps->ps_power, ps->ps_freq,
(ps->ps_flags & ACPICPU_FLAG_P_TURBO) != 0 ?
", turbo boost" : "");
}
method = sc->sc_tstate_control.reg_spaceid;
for (i = 0; i < sc->sc_tstate_count; i++) {
ts = &sc->sc_tstate[i];
if (ts->ts_percent == 0)
continue;
aprint_verbose_dev(sc->sc_dev, "T%u: %3s, "
"lat %3u us, pow %5u mW, %3u %%\n", i,
acpicpu_debug_print_method_pt(method),
ts->ts_latency, ts->ts_power, ts->ts_percent);
}
once = true;
}
aprint_debug_dev(sc->sc_dev, "id %u, lapic id %u, "
"cap 0x%04x, flags 0x%08x\n", ci->ci_acpiid,
(uint32_t)ci->ci_cpuid, sc->sc_cap, sc->sc_flags);
if ((sc->sc_flags & ACPICPU_FLAG_C_DEP) != 0) {
dep = &sc->sc_cstate_dep;
aprint_debug_dev(sc->sc_dev, "C-state coordination: "
"%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
}
if ((sc->sc_flags & ACPICPU_FLAG_P_DEP) != 0) {
dep = &sc->sc_pstate_dep;
aprint_debug_dev(sc->sc_dev, "P-state coordination: "
"%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
}
if ((sc->sc_flags & ACPICPU_FLAG_T_DEP) != 0) {
dep = &sc->sc_tstate_dep;
aprint_debug_dev(sc->sc_dev, "T-state coordination: "
"%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
}
}
static const char *
acpicpu_debug_print_method_c(uint8_t val)
{
if (val == ACPICPU_C_STATE_FFH)
return "FFH";
if (val == ACPICPU_C_STATE_HALT)
return "HLT";
if (val == ACPICPU_C_STATE_SYSIO)
return "I/O";
return "???";
}
static const char *
acpicpu_debug_print_method_pt(uint8_t val)
{
if (val == ACPI_ADR_SPACE_SYSTEM_IO)
return "I/O";
if (val == ACPI_ADR_SPACE_FIXED_HARDWARE)
return "FFH";
return "???";
}
static const char *
acpicpu_debug_print_dep(uint32_t val)
{
switch (val) {
case ACPICPU_DEP_SW_ALL:
return "SW_ALL";
case ACPICPU_DEP_SW_ANY:
return "SW_ANY";
case ACPICPU_DEP_HW_ALL:
return "HW_ALL";
default:
return "unknown";
}
}
MODULE(MODULE_CLASS_DRIVER, acpicpu, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
acpicpu_modcmd(modcmd_t cmd, void *aux)
{
int rv = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
rv = config_init_component(cfdriver_ioconf_acpicpu,
cfattach_ioconf_acpicpu, cfdata_ioconf_acpicpu);
#endif
break;
case MODULE_CMD_FINI:
#ifdef _MODULE
rv = config_fini_component(cfdriver_ioconf_acpicpu,
cfattach_ioconf_acpicpu, cfdata_ioconf_acpicpu);
#endif
break;
default:
rv = ENOTTY;
}
return rv;
}