efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
193 lines
5.3 KiB
C
193 lines
5.3 KiB
C
/* mpfr_const_log2 -- compute natural logarithm of 2
|
|
|
|
Copyright 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* Declare the cache */
|
|
MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_log2, mpfr_const_log2_internal);
|
|
|
|
/* Set User interface */
|
|
#undef mpfr_const_log2
|
|
int
|
|
mpfr_const_log2 (mpfr_ptr x, mpfr_rnd_t rnd_mode) {
|
|
return mpfr_cache (x, __gmpfr_cache_const_log2, rnd_mode);
|
|
}
|
|
|
|
/* Auxiliary function: Compute the terms from n1 to n2 (excluded)
|
|
3/4*sum((-1)^n*n!^2/2^n/(2*n+1)!, n = n1..n2-1).
|
|
Numerator is T[0], denominator is Q[0],
|
|
Compute P[0] only when need_P is non-zero.
|
|
Need 1+ceil(log(n2-n1)/log(2)) cells in T[],P[],Q[].
|
|
*/
|
|
static void
|
|
S (mpz_t *T, mpz_t *P, mpz_t *Q, unsigned long n1, unsigned long n2, int need_P)
|
|
{
|
|
if (n2 == n1 + 1)
|
|
{
|
|
if (n1 == 0)
|
|
mpz_set_ui (P[0], 3);
|
|
else
|
|
{
|
|
mpz_set_ui (P[0], n1);
|
|
mpz_neg (P[0], P[0]);
|
|
}
|
|
if (n1 <= (ULONG_MAX / 4 - 1) / 2)
|
|
mpz_set_ui (Q[0], 4 * (2 * n1 + 1));
|
|
else /* to avoid overflow in 4 * (2 * n1 + 1) */
|
|
{
|
|
mpz_set_ui (Q[0], n1);
|
|
mpz_mul_2exp (Q[0], Q[0], 1);
|
|
mpz_add_ui (Q[0], Q[0], 1);
|
|
mpz_mul_2exp (Q[0], Q[0], 2);
|
|
}
|
|
mpz_set (T[0], P[0]);
|
|
}
|
|
else
|
|
{
|
|
unsigned long m = (n1 / 2) + (n2 / 2) + (n1 & 1UL & n2);
|
|
unsigned long v, w;
|
|
|
|
S (T, P, Q, n1, m, 1);
|
|
S (T + 1, P + 1, Q + 1, m, n2, need_P);
|
|
mpz_mul (T[0], T[0], Q[1]);
|
|
mpz_mul (T[1], T[1], P[0]);
|
|
mpz_add (T[0], T[0], T[1]);
|
|
if (need_P)
|
|
mpz_mul (P[0], P[0], P[1]);
|
|
mpz_mul (Q[0], Q[0], Q[1]);
|
|
|
|
/* remove common trailing zeroes if any */
|
|
v = mpz_scan1 (T[0], 0);
|
|
if (v > 0)
|
|
{
|
|
w = mpz_scan1 (Q[0], 0);
|
|
if (w < v)
|
|
v = w;
|
|
if (need_P)
|
|
{
|
|
w = mpz_scan1 (P[0], 0);
|
|
if (w < v)
|
|
v = w;
|
|
}
|
|
/* now v = min(val(T), val(Q), val(P)) */
|
|
if (v > 0)
|
|
{
|
|
mpz_fdiv_q_2exp (T[0], T[0], v);
|
|
mpz_fdiv_q_2exp (Q[0], Q[0], v);
|
|
if (need_P)
|
|
mpz_fdiv_q_2exp (P[0], P[0], v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Don't need to save / restore exponent range: the cache does it */
|
|
int
|
|
mpfr_const_log2_internal (mpfr_ptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
unsigned long n = MPFR_PREC (x);
|
|
mpfr_prec_t w; /* working precision */
|
|
unsigned long N;
|
|
mpz_t *T, *P, *Q;
|
|
mpfr_t t, q;
|
|
int inexact;
|
|
int ok = 1; /* ensures that the 1st try will give correct rounding */
|
|
unsigned long lgN, i;
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode), ("x[%#R]=%R inex=%d",x,x,inexact));
|
|
|
|
mpfr_init2 (t, MPFR_PREC_MIN);
|
|
mpfr_init2 (q, MPFR_PREC_MIN);
|
|
|
|
if (n < 1253)
|
|
w = n + 10; /* ensures correct rounding for the four rounding modes,
|
|
together with N = w / 3 + 1 (see below). */
|
|
else if (n < 2571)
|
|
w = n + 11; /* idem */
|
|
else if (n < 3983)
|
|
w = n + 12;
|
|
else if (n < 4854)
|
|
w = n + 13;
|
|
else if (n < 26248)
|
|
w = n + 14;
|
|
else
|
|
{
|
|
w = n + 15;
|
|
ok = 0;
|
|
}
|
|
|
|
MPFR_ZIV_INIT (loop, w);
|
|
for (;;)
|
|
{
|
|
N = w / 3 + 1; /* Warning: do not change that (even increasing N!)
|
|
without checking correct rounding in the above
|
|
ranges for n. */
|
|
|
|
/* the following are needed for error analysis (see algorithms.tex) */
|
|
MPFR_ASSERTD(w >= 3 && N >= 2);
|
|
|
|
lgN = MPFR_INT_CEIL_LOG2 (N) + 1;
|
|
T = (mpz_t *) (*__gmp_allocate_func) (3 * lgN * sizeof (mpz_t));
|
|
P = T + lgN;
|
|
Q = T + 2*lgN;
|
|
for (i = 0; i < lgN; i++)
|
|
{
|
|
mpz_init (T[i]);
|
|
mpz_init (P[i]);
|
|
mpz_init (Q[i]);
|
|
}
|
|
|
|
S (T, P, Q, 0, N, 0);
|
|
|
|
mpfr_set_prec (t, w);
|
|
mpfr_set_prec (q, w);
|
|
|
|
mpfr_set_z (t, T[0], MPFR_RNDN);
|
|
mpfr_set_z (q, Q[0], MPFR_RNDN);
|
|
mpfr_div (t, t, q, MPFR_RNDN);
|
|
|
|
for (i = 0; i < lgN; i++)
|
|
{
|
|
mpz_clear (T[i]);
|
|
mpz_clear (P[i]);
|
|
mpz_clear (Q[i]);
|
|
}
|
|
(*__gmp_free_func) (T, 3 * lgN * sizeof (mpz_t));
|
|
|
|
if (MPFR_LIKELY (ok != 0
|
|
|| mpfr_can_round (t, w - 2, MPFR_RNDN, rnd_mode, n)))
|
|
break;
|
|
|
|
MPFR_ZIV_NEXT (loop, w);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inexact = mpfr_set (x, t, rnd_mode);
|
|
|
|
mpfr_clear (t);
|
|
mpfr_clear (q);
|
|
|
|
return inexact;
|
|
}
|