efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
157 lines
5.2 KiB
C
157 lines
5.2 KiB
C
/* mpfr_acosh -- inverse hyperbolic cosine
|
|
|
|
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#define MPFR_NEED_LONGLONG_H
|
|
#include "mpfr-impl.h"
|
|
|
|
/* The computation of acosh is done by *
|
|
* acosh= ln(x + sqrt(x^2-1)) */
|
|
|
|
int
|
|
mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mpfr_rnd_t rnd_mode)
|
|
{
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
int inexact;
|
|
int comp;
|
|
|
|
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
|
("y[%#R]=%R inexact=%d", y, y, inexact));
|
|
|
|
/* Deal with special cases */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
{
|
|
/* Nan, or zero or -Inf */
|
|
if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
|
|
{
|
|
MPFR_SET_INF (y);
|
|
MPFR_SET_POS (y);
|
|
MPFR_RET (0);
|
|
}
|
|
else /* Nan, or zero or -Inf */
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
}
|
|
comp = mpfr_cmp_ui (x, 1);
|
|
if (MPFR_UNLIKELY (comp < 0))
|
|
{
|
|
MPFR_SET_NAN (y);
|
|
MPFR_RET_NAN;
|
|
}
|
|
else if (MPFR_UNLIKELY (comp == 0))
|
|
{
|
|
MPFR_SET_ZERO (y); /* acosh(1) = 0 */
|
|
MPFR_SET_POS (y);
|
|
MPFR_RET (0);
|
|
}
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
/* General case */
|
|
{
|
|
/* Declaration of the intermediary variables */
|
|
mpfr_t t;
|
|
/* Declaration of the size variables */
|
|
mpfr_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */
|
|
mpfr_prec_t Nt; /* Precision of the intermediary variable */
|
|
mpfr_exp_t err, exp_te, d; /* Precision of error */
|
|
MPFR_ZIV_DECL (loop);
|
|
|
|
/* compute the precision of intermediary variable */
|
|
/* the optimal number of bits : see algorithms.tex */
|
|
Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
|
|
|
|
/* initialization of intermediary variables */
|
|
mpfr_init2 (t, Nt);
|
|
|
|
/* First computation of acosh */
|
|
MPFR_ZIV_INIT (loop, Nt);
|
|
for (;;)
|
|
{
|
|
MPFR_BLOCK_DECL (flags);
|
|
|
|
/* compute acosh */
|
|
MPFR_BLOCK (flags, mpfr_mul (t, x, x, MPFR_RNDD)); /* x^2 */
|
|
if (MPFR_OVERFLOW (flags))
|
|
{
|
|
mpfr_t ln2;
|
|
mpfr_prec_t pln2;
|
|
|
|
/* As x is very large and the precision is not too large, we
|
|
assume that we obtain the same result by evaluating ln(2x).
|
|
We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
|
|
write a proof and add an MPFR_ASSERTN. */
|
|
mpfr_log (t, x, MPFR_RNDN); /* err(log) < 1/2 ulp(t) */
|
|
pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
|
|
MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
|
|
mpfr_init2 (ln2, pln2);
|
|
mpfr_const_log2 (ln2, MPFR_RNDN); /* err(ln2) < 1/2 ulp(t) */
|
|
mpfr_add (t, t, ln2, MPFR_RNDN); /* err <= 3/2 ulp(t) */
|
|
mpfr_clear (ln2);
|
|
err = 1;
|
|
}
|
|
else
|
|
{
|
|
exp_te = MPFR_GET_EXP (t);
|
|
mpfr_sub_ui (t, t, 1, MPFR_RNDD); /* x^2-1 */
|
|
if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
|
|
{
|
|
/* This means that x is very close to 1: x = 1 + t with
|
|
t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
|
|
with 0 < eps(t) < t / 12. */
|
|
mpfr_sub_ui (t, x, 1, MPFR_RNDD); /* t = x - 1 */
|
|
mpfr_mul_2ui (t, t, 1, MPFR_RNDN); /* 2t */
|
|
mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(2t) */
|
|
err = 1;
|
|
}
|
|
else
|
|
{
|
|
d = exp_te - MPFR_GET_EXP (t);
|
|
mpfr_sqrt (t, t, MPFR_RNDN); /* sqrt(x^2-1) */
|
|
mpfr_add (t, t, x, MPFR_RNDN); /* sqrt(x^2-1)+x */
|
|
mpfr_log (t, t, MPFR_RNDN); /* ln(sqrt(x^2-1)+x) */
|
|
|
|
/* error estimate -- see algorithms.tex */
|
|
err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
|
|
/* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
|
|
err = MAX (0, 1 + err);
|
|
}
|
|
}
|
|
|
|
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
|
|
break;
|
|
|
|
/* reactualisation of the precision */
|
|
MPFR_ZIV_NEXT (loop, Nt);
|
|
mpfr_set_prec (t, Nt);
|
|
}
|
|
MPFR_ZIV_FREE (loop);
|
|
|
|
inexact = mpfr_set (y, t, rnd_mode);
|
|
|
|
mpfr_clear (t);
|
|
}
|
|
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return mpfr_check_range (y, inexact, rnd_mode);
|
|
}
|