NetBSD/dist/ntp/html/driver18.htm
2000-03-29 12:38:44 +00:00

236 lines
9.6 KiB
HTML

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="GENERATOR" CONTENT="Mozilla/4.01 [en] (Win95; I) [Netscape]">
<TITLE>NIST Modem Time Service
</TITLE>
</HEAD>
<BODY>
<H3>
NIST Modem Time Service</H3>
<HR>
<H4>
Synopsis</H4>
Address: 127.127.18.<I>u</I>
<BR>Reference ID: <TT>NIST</TT>
<BR>Driver ID: <TT>ACTS_NIST</TT>
<BR>Serial Port: <TT>/dev/acts<I>u</I></TT>; 1200 baud, 8-bits, no parity
<BR>Features: <TT>tty_clk</TT>
<BR>Requires: <TT>/usr/include/sys/termios.h</TT> header file with modem
control
<H4>
Description</H4>
This driver supports the NIST Automated Computer Time Service (ACTS). It
periodically dials a prespecified telephone number, receives the NIST timecode
data and calculates the local clock correction. It designed primarily for
use when neither a radio clock nor connectivity to Internet time servers
is available. For the best accuracy, the individual telephone line/modem
delay needs to be calibrated using outside sources.
<P>The ACTS is located at NIST Boulder, CO, telephone 303 494 4774. A toll
call from Newark, DE, costs between three and four cents, although it is
not clear what carrier and time of day discounts apply. The modem dial
string will differ depending on local telephone configuration, etc., and
is specified by the phone command in the configuration file. The argument
to this command is an AT command for a Hayes compatible modem.
<P>The driver can operate in either of two modes, as determined by the
mode parameter in the server configuration command. In mode 0 the driver
operates continuously at intervals determined by the fudge time1 parameter,
as described above. In mode 1 the driver is enabled only when no other
sources of synchronization are available and when we have gone more than
MAXOUTAGE (3600 s) since last synchronized by other sources of synchronization.
<P>The accuracy produced by this driver should be in the range of a millisecond
or two, but may need correction due to the delay characteristics of the
individual modem involved. For undetermined reasons, some modems work with
the ACTS echo-delay measurement scheme and some don't. This driver tries
to do the best it can with what it gets. Initial experiments with a Practical
Peripherals 9600SA modem here in Delaware suggest an accuracy of a millisecond
or two can be achieved without the scheme by using a fudge time1 value
of 65.0 ms. In either case, the dispersion for a single call involving
ten samples is about 1.3 ms.
<P>For reliable call management, this driver requires a 1200-bps modem
with a Hayes-compatible command set and control over the modem data terminal
ready (DTR) control line. Present restrictions require the use of a POSIX-compatible
programming interface, although other interfaces may work as well. The
ACTS telephone number and modem setup string are hard-coded in the driver
and may require changes for nonstandard modems or special circumstances.
<P>The fudge time1 parameter represents a propagation-delay correction
factor which is added to the value computed by ACTS when the echo-delay
scheme is used. This scheme does not work with all modems; for those that
don't, fudge flag2 should be set to disable the feature. In this case the
fudge time1 parameter represents the total propagation delay due to all
causes and must be determined by external calibration.
<P>The ACTS call interval is determined by a counter initially set to the
fudge time2 parameter. At each poll interval, minpoll (usually 64 s) is
subtracted from the counter. When the counter is equal to or less than
zero, the fudge flag1 is set, which causes up to three call attempts to
be made to ACTS. The fudge flag1 is reset after a valid clock update has
been determined or by a device fault, timeout or manually using <TT>ntpdc</TT>.
After a valid clock update, the counter is reset for the next interval.
Setting the <TT>fudge time2</TT> parameter to zero disables automatic call
attempts. Manual call attempts can be made at any time by setting <TT>fudge
flag1</TT> using ntpdc.
<P>The NIST timecode message is transmitted at 1200 bps in the following
format:
<PRE>
jjjjj yy-mm-dd hh:mm:ss tt l uuu mmmmm UTC(NIST) *
jjjjj = modified Julian day
yy-mm-dd = year, month, day
hh:mm:ss = hours, minutes, seconds
tt = DST indicator (see driver listing)
l = leap-second warning (see driver listing)
uuu = DUT1 correction (see driver listing)
mmmmm = modem calibration (see driver listing)
on-time = '*'</PRE>
The timecode message is transmitted continuously after a signon banner,
which this driver ignores. The driver also ignores all but the yy-mm-dd,
hh:mm:ss and on-time character '*' fields, although it checks the format
of all fields of the message. A timestamp is captured at the '*' character,
as required by the ACTS specification, and used as the reference time of
the timecode. If a message with an on-time character of '#' is received,
the driver updates the propagation delay. The driver disconnects when (a)
ten valid messages have been received, (b) no message has been received
for 15 s, (c) an on-time character of '#' is received. These messages are
processed by a trimmed-mean filter to reduce timing noise and then by the
usual NTP algorithms to develop the clock correction.
<P>Since the accumulated error grows with the interval between calls, it
is important that the intrinsic frequency error be minimized. This can
be done by observing difference in offsets between two calls placed some
hours apart and calculating the uncorrected frequency error. This error,
as a fixed-point value in parts-per-million, should be installed in the
ntp.drift file before the daemon is started. Some experimentation may be
necessary in order to reduce the intrinsic frequency error to the order
of 1 ppm.
<P>The behavior of the clock selection algorithm is modified when this
driver is in use. The algorithm is designed so that this driver will never
be selected unless no other discipline source is available. This can be
overridden with the prefer keyword of the server configuration command,
in which case only this driver will be selected for synchronization and
all other discipline sources will be ignored.
<P>Unlike other drivers, each ACTS call generates one clock correction
and that correction is processed immediately. There is no wait to allow
the clock filter to accumulate samples. In addition, the watchdog timeout
of the local clock algorithm is disabled, so that a correction received
from this driver that exceeds CLOCK_MAX (128 ms) causes an immediate step/slew.
<P>Since the interval between updates can be much longer than used with
ordinary NTP peers, the local clock procedure has been modified to operate
in either of two modes, depending on whether the interval between updates
is less than or greater than CLOCK_MAXSEC (1200 s). If less than this value,
the local clock procedure operates using the standard NTP phase-lock loop
as with other NTP peers. If greater than this value, the procedure operates
using a modified frequency-lock loop suggested by Judah Levine in his lockclock
algorithm designed specifically for ACTS.
<H4>
Call Management</H4>
Since ACTS will be a toll call in most areas of the country, it is necessary
to carefully manage the call frequency. This can be done in two ways, by
specifying the interval between calls, or by setting a flag bit manually
or via a cron job. The call interval is determined by a counter initially
set to the fudge time2 parameter. At each poll interval, minpoll (usually
64 s) is subtracted from the counter. When the counter is equal to or less
than zero, the fudge flag1 is set, which causes up to three call attempts
to be made. The fudge flag1 is reset after ten offset samples have been
determined in a single call or by a device fault, timeout or manually using
ntpdc. Upon successful completion of a call, the eight samples have been
shifted into the clock filter, the local clock updated and the counter
reset for the next interval. Setting the fudge time2 parameter to zero
disables automatic call attempts.
<P>Manual call attempts can be made at any time by setting fudge flag1
using ntpdc. For example, the ntpdc command
<PRE>
fudge 127.127.18.1 flags 1</PRE>
will ask for a key identifier and password and, if authenticated by the
server, will set flag1. There may be a short delay until the expiration
of the current poll timeout.
<P>The flag1 can be set from a cron job in the following way. Construct
a file with contents
<PRE>keyid 11
passwd dialup
fudge 127.127.18.1 flags 1
quit</PRE>
Then, run the following program at specified times as required.
<PRE>/usr/local/bin/ntpdc &lt;file</PRE>
<H4>
Monitor Data</H4>
When enabled by the <TT>flag4</TT> fudge flag, every received timecode
is written as-is to the <TT>clockstats</TT> file.
<H4>
Fudge Factors</H4>
<DL>
<DT>
<TT>time1 <I>time</I></TT></DT>
<DD>
Specifies the time offset calibration factor, in seconds and fraction,
with default 0.0.</DD>
<DT>
<TT>time2 <I>time</I></TT></DT>
<DD>
Not used by this driver.</DD>
<DT>
<TT>stratum <I>number</I></TT></DT>
<DD>
Specifies the driver stratum, in decimal from 0 to 15, with default 0.</DD>
<DT>
<TT>refid <I>string</I></TT></DT>
<DD>
Specifies the driver reference identifier, an ASCII string from one to
four characters, with default <TT>NIST</TT>.</DD>
<DT>
<TT>flag1 0 | 1</TT></DT>
<DD>
Not used by this driver.</DD>
<DT>
<TT>flag2 0 | 1</TT></DT>
<DD>
Not used by this driver.</DD>
<DT>
<TT>flag3 0 | 1</TT></DT>
<DD>
Not used by this driver.</DD>
<DT>
<TT>flag4 0 | 1</TT></DT>
<DD>
Not used by this driver.</DD>
</DL>
Additional Information
<P><A HREF="refclock.htm">Reference Clock Drivers</A>&nbsp;
<HR>
<ADDRESS>
David L. Mills (mills@udel.edu)</ADDRESS>
</BODY>
</HTML>