NetBSD/sys/dev/rnd.c

1085 lines
24 KiB
C

/* $NetBSD: rnd.c,v 1.82 2011/10/11 23:55:30 yamt Exp $ */
/*-
* Copyright (c) 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Michael Graff <explorer@flame.org>. This code uses ideas and
* algorithms from the Linux driver written by Ted Ts'o.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rnd.c,v 1.82 2011/10/11 23:55:30 yamt Exp $");
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/select.h>
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/rnd.h>
#include <sys/vnode.h>
#include <sys/pool.h>
#include <sys/kauth.h>
#include <sys/once.h>
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
#include <machine/cpu_counter.h>
#endif
#ifdef RND_DEBUG
#define DPRINTF(l,x) if (rnd_debug & (l)) printf x
int rnd_debug = 0;
#else
#define DPRINTF(l,x)
#endif
#define RND_DEBUG_WRITE 0x0001
#define RND_DEBUG_READ 0x0002
#define RND_DEBUG_IOCTL 0x0004
#define RND_DEBUG_SNOOZE 0x0008
/*
* list devices attached
*/
#if 0
#define RND_VERBOSE
#endif
/*
* The size of a temporary buffer, kmem_alloc()ed when needed, and used for
* reading and writing data.
*/
#define RND_TEMP_BUFFER_SIZE 128
/*
* This is a little bit of state information attached to each device that we
* collect entropy from. This is simply a collection buffer, and when it
* is full it will be "detached" from the source and added to the entropy
* pool after entropy is distilled as much as possible.
*/
#define RND_SAMPLE_COUNT 64 /* collect N samples, then compress */
typedef struct _rnd_sample_t {
SIMPLEQ_ENTRY(_rnd_sample_t) next;
rndsource_t *source;
int cursor;
int entropy;
u_int32_t ts[RND_SAMPLE_COUNT];
u_int32_t values[RND_SAMPLE_COUNT];
} rnd_sample_t;
/*
* The event queue. Fields are altered at an interrupt level.
* All accesses must be protected with the mutex.
*/
volatile int rnd_timeout_pending;
SIMPLEQ_HEAD(, _rnd_sample_t) rnd_samples;
kmutex_t rnd_mtx;
/*
* our select/poll queue
*/
struct selinfo rnd_selq;
/*
* Memory pool for sample buffers
*/
static struct pool rnd_mempool;
/*
* Our random pool. This is defined here rather than using the general
* purpose one defined in rndpool.c.
*
* Samples are collected and queued into a separate mutex-protected queue
* (rnd_samples, see above), and processed in a timeout routine; therefore,
* the mutex protecting the random pool is at IPL_SOFTCLOCK() as well.
*/
rndpool_t rnd_pool;
kmutex_t rndpool_mtx;
kcondvar_t rndpool_cv;
/*
* This source is used to easily "remove" queue entries when the source
* which actually generated the events is going away.
*/
static rndsource_t rnd_source_no_collect = {
{ 'N', 'o', 'C', 'o', 'l', 'l', 'e', 'c', 't', 0, 0, 0, 0, 0, 0, 0 },
0, 0, 0, 0,
RND_TYPE_UNKNOWN,
(RND_FLAG_NO_COLLECT | RND_FLAG_NO_ESTIMATE | RND_TYPE_UNKNOWN),
NULL
};
struct callout rnd_callout;
void rndattach(int);
dev_type_open(rndopen);
dev_type_read(rndread);
dev_type_write(rndwrite);
dev_type_ioctl(rndioctl);
dev_type_poll(rndpoll);
dev_type_kqfilter(rndkqfilter);
const struct cdevsw rnd_cdevsw = {
rndopen, nullclose, rndread, rndwrite, rndioctl,
nostop, notty, rndpoll, nommap, rndkqfilter, D_OTHER|D_MPSAFE,
};
static inline void rnd_wakeup_readers(void);
static inline u_int32_t rnd_estimate_entropy(rndsource_t *, u_int32_t);
static inline u_int32_t rnd_counter(void);
static void rnd_timeout(void *);
static u_int32_t rnd_extract_data_locked(void *, u_int32_t, u_int32_t);
static int rnd_ready = 0;
static int rnd_have_entropy = 0;
LIST_HEAD(, __rndsource_element) rnd_sources;
/*
* Generate a 32-bit counter. This should be more machine dependent,
* using cycle counters and the like when possible.
*/
static inline u_int32_t
rnd_counter(void)
{
struct timeval tv;
#if defined(__HAVE_CPU_COUNTER) && !defined(_RUMPKERNEL) /* XXX: bad pooka */
if (cpu_hascounter())
return (cpu_counter32());
#endif
if (rnd_ready) {
microtime(&tv);
return (tv.tv_sec * 1000000 + tv.tv_usec);
}
/* when called from rnd_init, its too early to call microtime safely */
return (0);
}
/*
* Check to see if there are readers waiting on us. If so, kick them.
*/
static inline void
rnd_wakeup_readers(void)
{
/*
* If we have added new bits, and now have enough to do something,
* wake up sleeping readers.
*/
mutex_enter(&rndpool_mtx);
if (rndpool_get_entropy_count(&rnd_pool) > RND_ENTROPY_THRESHOLD * 8) {
cv_broadcast(&rndpool_cv);
selnotify(&rnd_selq, 0, 0);
#ifdef RND_VERBOSE
if (!rnd_have_entropy)
printf("rnd: have initial entropy (%u)\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
rnd_have_entropy = 1;
}
mutex_exit(&rndpool_mtx);
}
/*
* Use the timing of the event to estimate the entropy gathered.
* If all the differentials (first, second, and third) are non-zero, return
* non-zero. If any of these are zero, return zero.
*/
static inline u_int32_t
rnd_estimate_entropy(rndsource_t *rs, u_int32_t t)
{
int32_t delta, delta2, delta3;
/*
* If the time counter has overflowed, calculate the real difference.
* If it has not, it is simplier.
*/
if (t < rs->last_time)
delta = UINT_MAX - rs->last_time + t;
else
delta = rs->last_time - t;
if (delta < 0)
delta = -delta;
/*
* Calculate the second and third order differentials
*/
delta2 = rs->last_delta - delta;
if (delta2 < 0)
delta2 = -delta2;
delta3 = rs->last_delta2 - delta2;
if (delta3 < 0)
delta3 = -delta3;
rs->last_time = t;
rs->last_delta = delta;
rs->last_delta2 = delta2;
/*
* If any delta is 0, we got no entropy. If all are non-zero, we
* might have something.
*/
if (delta == 0 || delta2 == 0 || delta3 == 0)
return (0);
return (1);
}
static int
rnd_mempool_init(void)
{
pool_init(&rnd_mempool, sizeof(rnd_sample_t), 0, 0, 0, "rndsample",
NULL, IPL_VM);
return 0;
}
static ONCE_DECL(rnd_mempoolinit_ctrl);
/*
* "Attach" the random device. This is an (almost) empty stub, since
* pseudo-devices don't get attached until after config, after the
* entropy sources will attach. We just use the timing of this event
* as another potential source of initial entropy.
*/
void
rndattach(int num)
{
u_int32_t c;
RUN_ONCE(&rnd_mempoolinit_ctrl, rnd_mempool_init);
/* Trap unwary players who don't call rnd_init() early */
KASSERT(rnd_ready);
/* mix in another counter */
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
}
/*
* initialize the global random pool for our use.
* rnd_init() must be called very early on in the boot process, so
* the pool is ready for other devices to attach as sources.
*/
void
rnd_init(void)
{
u_int32_t c;
if (rnd_ready)
return;
mutex_init(&rnd_mtx, MUTEX_DEFAULT, IPL_VM);
callout_init(&rnd_callout, CALLOUT_MPSAFE);
/*
* take a counter early, hoping that there's some variance in
* the following operations
*/
c = rnd_counter();
LIST_INIT(&rnd_sources);
SIMPLEQ_INIT(&rnd_samples);
selinit(&rnd_selq);
rndpool_init(&rnd_pool);
mutex_init(&rndpool_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
cv_init(&rndpool_cv, "rndread");
/* Mix *something*, *anything* into the pool to help it get started.
* However, it's not safe for rnd_counter() to call microtime() yet,
* so on some platforms we might just end up with zeros anyway.
* XXX more things to add would be nice.
*/
if (c) {
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
}
rnd_ready = 1;
#ifdef RND_VERBOSE
printf("rnd: initialised (%u)%s", RND_POOLBITS,
c ? " with counter\n" : "\n");
#endif
}
int
rndopen(dev_t dev, int flags, int ifmt,
struct lwp *l)
{
if (rnd_ready == 0)
return (ENXIO);
if (minor(dev) == RND_DEV_URANDOM || minor(dev) == RND_DEV_RANDOM)
return (0);
return (ENXIO);
}
int
rndread(dev_t dev, struct uio *uio, int ioflag)
{
u_int8_t *bf;
u_int32_t entcnt, mode, n, nread;
int ret;
DPRINTF(RND_DEBUG_READ,
("Random: Read of %zu requested, flags 0x%08x\n",
uio->uio_resid, ioflag));
if (uio->uio_resid == 0)
return (0);
switch (minor(dev)) {
case RND_DEV_RANDOM:
mode = RND_EXTRACT_GOOD;
break;
case RND_DEV_URANDOM:
mode = RND_EXTRACT_ANY;
break;
default:
/* Can't happen, but this is cheap */
return (ENXIO);
}
ret = 0;
bf = kmem_alloc(RND_TEMP_BUFFER_SIZE, KM_SLEEP);
while (uio->uio_resid > 0) {
n = min(RND_TEMP_BUFFER_SIZE, uio->uio_resid);
/*
* Make certain there is data available. If there
* is, do the I/O even if it is partial. If not,
* sleep unless the user has requested non-blocking
* I/O.
*
* If not requesting strong randomness, we can always read.
*/
mutex_enter(&rndpool_mtx);
if (mode != RND_EXTRACT_ANY) {
for (;;) {
/*
* How much entropy do we have?
* If it is enough for one hash, we can read.
*/
entcnt = rndpool_get_entropy_count(&rnd_pool);
if (entcnt >= RND_ENTROPY_THRESHOLD * 8)
break;
/*
* Data is not available.
*/
if (ioflag & IO_NDELAY) {
mutex_exit(&rndpool_mtx);
ret = EWOULDBLOCK;
goto out;
}
ret = cv_wait_sig(&rndpool_cv, &rndpool_mtx);
if (ret) {
mutex_exit(&rndpool_mtx);
goto out;
}
}
}
nread = rnd_extract_data_locked(bf, n, mode);
mutex_exit(&rndpool_mtx);
/*
* Copy (possibly partial) data to the user.
* If an error occurs, or this is a partial
* read, bail out.
*/
ret = uiomove((void *)bf, nread, uio);
if (ret != 0 || nread != n)
goto out;
}
out:
kmem_free(bf, RND_TEMP_BUFFER_SIZE);
return (ret);
}
int
rndwrite(dev_t dev, struct uio *uio, int ioflag)
{
u_int8_t *bf;
int n, ret;
DPRINTF(RND_DEBUG_WRITE,
("Random: Write of %zu requested\n", uio->uio_resid));
if (uio->uio_resid == 0)
return (0);
ret = 0;
bf = kmem_alloc(RND_TEMP_BUFFER_SIZE, KM_SLEEP);
while (uio->uio_resid > 0) {
n = min(RND_TEMP_BUFFER_SIZE, uio->uio_resid);
ret = uiomove((void *)bf, n, uio);
if (ret != 0)
break;
/*
* Mix in the bytes.
*/
mutex_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, bf, n, 0);
mutex_exit(&rndpool_mtx);
DPRINTF(RND_DEBUG_WRITE, ("Random: Copied in %d bytes\n", n));
}
kmem_free(bf, RND_TEMP_BUFFER_SIZE);
return (ret);
}
int
rndioctl(dev_t dev, u_long cmd, void *addr, int flag,
struct lwp *l)
{
rndsource_element_t *rse;
rndstat_t *rst;
rndstat_name_t *rstnm;
rndctl_t *rctl;
rnddata_t *rnddata;
u_int32_t count, start;
int ret;
ret = 0;
switch (cmd) {
case FIONBIO:
case FIOASYNC:
case RNDGETENTCNT:
break;
case RNDGETPOOLSTAT:
case RNDGETSRCNUM:
case RNDGETSRCNAME:
ret = kauth_authorize_device(l->l_cred,
KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
if (ret)
return (ret);
break;
case RNDCTL:
ret = kauth_authorize_device(l->l_cred,
KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
if (ret)
return (ret);
break;
case RNDADDDATA:
ret = kauth_authorize_device(l->l_cred,
KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
if (ret)
return (ret);
break;
default:
return (EINVAL);
}
switch (cmd) {
/*
* Handled in upper layer really, but we have to return zero
* for it to be accepted by the upper layer.
*/
case FIONBIO:
case FIOASYNC:
break;
case RNDGETENTCNT:
mutex_enter(&rndpool_mtx);
*(u_int32_t *)addr = rndpool_get_entropy_count(&rnd_pool);
mutex_exit(&rndpool_mtx);
break;
case RNDGETPOOLSTAT:
mutex_enter(&rndpool_mtx);
rndpool_get_stats(&rnd_pool, addr, sizeof(rndpoolstat_t));
mutex_exit(&rndpool_mtx);
break;
case RNDGETSRCNUM:
rst = (rndstat_t *)addr;
if (rst->count == 0)
break;
if (rst->count > RND_MAXSTATCOUNT)
return (EINVAL);
/*
* Find the starting source by running through the
* list of sources.
*/
rse = rnd_sources.lh_first;
start = rst->start;
while (rse != NULL && start >= 1) {
rse = rse->list.le_next;
start--;
}
/*
* Return up to as many structures as the user asked
* for. If we run out of sources, a count of zero
* will be returned, without an error.
*/
for (count = 0; count < rst->count && rse != NULL; count++) {
memcpy(&rst->source[count], &rse->data,
sizeof(rndsource_t));
/* Zero out information which may leak */
rst->source[count].last_time = 0;
rst->source[count].last_delta = 0;
rst->source[count].last_delta2 = 0;
rst->source[count].state = 0;
rse = rse->list.le_next;
}
rst->count = count;
break;
case RNDGETSRCNAME:
/*
* Scan through the list, trying to find the name.
*/
rstnm = (rndstat_name_t *)addr;
rse = rnd_sources.lh_first;
while (rse != NULL) {
if (strncmp(rse->data.name, rstnm->name, 16) == 0) {
memcpy(&rstnm->source, &rse->data,
sizeof(rndsource_t));
return (0);
}
rse = rse->list.le_next;
}
ret = ENOENT; /* name not found */
break;
case RNDCTL:
/*
* Set flags to enable/disable entropy counting and/or
* collection.
*/
rctl = (rndctl_t *)addr;
rse = rnd_sources.lh_first;
/*
* Flags set apply to all sources of this type.
*/
if (rctl->type != 0xff) {
while (rse != NULL) {
if (rse->data.type == rctl->type) {
rse->data.flags &= ~rctl->mask;
rse->data.flags |=
(rctl->flags & rctl->mask);
}
rse = rse->list.le_next;
}
return (0);
}
/*
* scan through the list, trying to find the name
*/
while (rse != NULL) {
if (strncmp(rse->data.name, rctl->name, 16) == 0) {
rse->data.flags &= ~rctl->mask;
rse->data.flags |= (rctl->flags & rctl->mask);
return (0);
}
rse = rse->list.le_next;
}
ret = ENOENT; /* name not found */
break;
case RNDADDDATA:
rnddata = (rnddata_t *)addr;
if (rnddata->len > sizeof(rnddata->data))
return EINVAL;
mutex_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, rnddata->data, rnddata->len,
rnddata->entropy);
mutex_exit(&rndpool_mtx);
rnd_wakeup_readers();
break;
default:
return (EINVAL);
}
return (ret);
}
int
rndpoll(dev_t dev, int events, struct lwp *l)
{
u_int32_t entcnt;
int revents;
/*
* We are always writable.
*/
revents = events & (POLLOUT | POLLWRNORM);
/*
* Save some work if not checking for reads.
*/
if ((events & (POLLIN | POLLRDNORM)) == 0)
return (revents);
/*
* If the minor device is not /dev/random, we are always readable.
*/
if (minor(dev) != RND_DEV_RANDOM) {
revents |= events & (POLLIN | POLLRDNORM);
return (revents);
}
/*
* Make certain we have enough entropy to be readable.
*/
mutex_enter(&rndpool_mtx);
entcnt = rndpool_get_entropy_count(&rnd_pool);
if (entcnt >= RND_ENTROPY_THRESHOLD * 8)
revents |= events & (POLLIN | POLLRDNORM);
else
selrecord(l, &rnd_selq);
mutex_exit(&rndpool_mtx);
return (revents);
}
static void
filt_rnddetach(struct knote *kn)
{
mutex_enter(&rndpool_mtx);
SLIST_REMOVE(&rnd_selq.sel_klist, kn, knote, kn_selnext);
mutex_exit(&rndpool_mtx);
}
static int
filt_rndread(struct knote *kn, long hint)
{
uint32_t entcnt;
mutex_enter(&rndpool_mtx);
entcnt = rndpool_get_entropy_count(&rnd_pool);
mutex_exit(&rndpool_mtx);
if (entcnt >= RND_ENTROPY_THRESHOLD * 8) {
kn->kn_data = RND_TEMP_BUFFER_SIZE;
return (1);
}
return (0);
}
static const struct filterops rnd_seltrue_filtops =
{ 1, NULL, filt_rnddetach, filt_seltrue };
static const struct filterops rndread_filtops =
{ 1, NULL, filt_rnddetach, filt_rndread };
int
rndkqfilter(dev_t dev, struct knote *kn)
{
struct klist *klist;
switch (kn->kn_filter) {
case EVFILT_READ:
klist = &rnd_selq.sel_klist;
if (minor(dev) == RND_DEV_URANDOM)
kn->kn_fop = &rnd_seltrue_filtops;
else
kn->kn_fop = &rndread_filtops;
break;
case EVFILT_WRITE:
klist = &rnd_selq.sel_klist;
kn->kn_fop = &rnd_seltrue_filtops;
break;
default:
return (EINVAL);
}
kn->kn_hook = NULL;
mutex_enter(&rndpool_mtx);
SLIST_INSERT_HEAD(klist, kn, kn_selnext);
mutex_exit(&rndpool_mtx);
return (0);
}
static rnd_sample_t *
rnd_sample_allocate(rndsource_t *source)
{
rnd_sample_t *c;
c = pool_get(&rnd_mempool, PR_WAITOK);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
/*
* Don't wait on allocation. To be used in an interrupt context.
*/
static rnd_sample_t *
rnd_sample_allocate_isr(rndsource_t *source)
{
rnd_sample_t *c;
c = pool_get(&rnd_mempool, PR_NOWAIT);
if (c == NULL)
return (NULL);
c->source = source;
c->cursor = 0;
c->entropy = 0;
return (c);
}
static void
rnd_sample_free(rnd_sample_t *c)
{
memset(c, 0, sizeof(rnd_sample_t));
pool_put(&rnd_mempool, c);
}
/*
* Add a source to our list of sources.
*/
void
rnd_attach_source(rndsource_element_t *rs, const char *name, u_int32_t type,
u_int32_t flags)
{
u_int32_t ts;
RUN_ONCE(&rnd_mempoolinit_ctrl, rnd_mempool_init);
ts = rnd_counter();
strlcpy(rs->data.name, name, sizeof(rs->data.name));
rs->data.last_time = ts;
rs->data.last_delta = 0;
rs->data.last_delta2 = 0;
rs->data.total = 0;
/*
* Force network devices to not collect any entropy by
* default.
*/
if (type == RND_TYPE_NET)
flags |= (RND_FLAG_NO_COLLECT | RND_FLAG_NO_ESTIMATE);
rs->data.type = type;
rs->data.flags = flags;
rs->data.state = rnd_sample_allocate(&rs->data);
LIST_INSERT_HEAD(&rnd_sources, rs, list);
#ifdef RND_VERBOSE
printf("rnd: %s attached as an entropy source (", rs->data.name);
if (!(flags & RND_FLAG_NO_COLLECT)) {
printf("collecting");
if (flags & RND_FLAG_NO_ESTIMATE)
printf(" without estimation");
}
else
printf("off");
printf(")\n");
#endif
/*
* Again, put some more initial junk in the pool.
* XXX Bogus, but harder to guess than zeros.
*/
rndpool_add_data(&rnd_pool, &ts, sizeof(u_int32_t), 1);
}
/*
* Remove a source from our list of sources.
*/
void
rnd_detach_source(rndsource_element_t *rs)
{
rnd_sample_t *sample;
rndsource_t *source;
mutex_enter(&rnd_mtx);
LIST_REMOVE(rs, list);
source = &rs->data;
if (source->state) {
rnd_sample_free(source->state);
source->state = NULL;
}
/*
* If there are samples queued up "remove" them from the sample queue
* by setting the source to the no-collect pseudosource.
*/
sample = SIMPLEQ_FIRST(&rnd_samples);
while (sample != NULL) {
if (sample->source == source)
sample->source = &rnd_source_no_collect;
sample = SIMPLEQ_NEXT(sample, next);
}
mutex_exit(&rnd_mtx);
#ifdef RND_VERBOSE
printf("rnd: %s detached as an entropy source\n", rs->data.name);
#endif
}
/*
* Add a value to the entropy pool. The rs parameter should point to the
* source-specific source structure.
*/
void
rnd_add_uint32(rndsource_element_t *rs, u_int32_t val)
{
rndsource_t *rst;
rnd_sample_t *state;
u_int32_t ts;
rst = &rs->data;
if (rst->flags & RND_FLAG_NO_COLLECT)
return;
/*
* Sample the counter as soon as possible to avoid
* entropy overestimation.
*/
ts = rnd_counter();
/*
* If the sample buffer is NULL, try to allocate one here. If this
* fails, drop this sample.
*/
state = rst->state;
if (state == NULL) {
state = rnd_sample_allocate_isr(rst);
if (state == NULL)
return;
rst->state = state;
}
/*
* If we are estimating entropy on this source,
* calculate differentials.
*/
if ((rst->flags & RND_FLAG_NO_ESTIMATE) == 0)
state->entropy += rnd_estimate_entropy(rst, ts);
state->ts[state->cursor] = ts;
state->values[state->cursor] = val;
state->cursor++;
/*
* If the state arrays are not full, we're done.
*/
if (state->cursor < RND_SAMPLE_COUNT)
return;
/*
* State arrays are full. Queue this chunk on the processing queue.
*/
mutex_enter(&rnd_mtx);
SIMPLEQ_INSERT_HEAD(&rnd_samples, state, next);
rst->state = NULL;
/*
* If the timeout isn't pending, have it run in the near future.
*/
if (rnd_timeout_pending == 0) {
rnd_timeout_pending = 1;
callout_reset(&rnd_callout, 1, rnd_timeout, NULL);
}
mutex_exit(&rnd_mtx);
/*
* To get here we have to have queued the state up, and therefore
* we need a new state buffer. If we can, allocate one now;
* if we don't get it, it doesn't matter; we'll try again on
* the next random event.
*/
rst->state = rnd_sample_allocate_isr(rst);
}
void
rnd_add_data(rndsource_element_t *rs, void *data, u_int32_t len,
u_int32_t entropy)
{
rndsource_t *rst;
/* Mix in the random data directly into the pool. */
rndpool_add_data(&rnd_pool, data, len, entropy);
if (rs != NULL) {
rst = &rs->data;
rst->total += entropy;
if ((rst->flags & RND_FLAG_NO_ESTIMATE) == 0)
/* Estimate entropy using timing information */
rnd_add_uint32(rs, *(u_int8_t *)data);
}
/* Wake up any potential readers since we've just added some data. */
rnd_wakeup_readers();
}
/*
* Timeout, run to process the events in the ring buffer.
*/
static void
rnd_timeout(void *arg)
{
rnd_sample_t *sample;
rndsource_t *source;
u_int32_t entropy;
/*
* Sample queue is protected by rnd_mtx, take it briefly to dequeue.
*/
mutex_enter(&rnd_mtx);
rnd_timeout_pending = 0;
sample = SIMPLEQ_FIRST(&rnd_samples);
while (sample != NULL) {
SIMPLEQ_REMOVE_HEAD(&rnd_samples, next);
mutex_exit(&rnd_mtx);
source = sample->source;
/*
* We repeat this check here, since it is possible the source
* was disabled before we were called, but after the entry
* was queued.
*/
if ((source->flags & RND_FLAG_NO_COLLECT) == 0) {
entropy = sample->entropy;
if (source->flags & RND_FLAG_NO_ESTIMATE)
entropy = 0;
mutex_enter(&rndpool_mtx);
rndpool_add_data(&rnd_pool, sample->values,
RND_SAMPLE_COUNT * 4, 0);
rndpool_add_data(&rnd_pool, sample->ts,
RND_SAMPLE_COUNT * 4,
entropy);
mutex_exit(&rndpool_mtx);
source->total += sample->entropy;
}
rnd_sample_free(sample);
/* Get mtx back to dequeue the next one.. */
mutex_enter(&rnd_mtx);
sample = SIMPLEQ_FIRST(&rnd_samples);
}
mutex_exit(&rnd_mtx);
/*
* Wake up any potential readers waiting.
*/
rnd_wakeup_readers();
}
static u_int32_t
rnd_extract_data_locked(void *p, u_int32_t len, u_int32_t flags)
{
KASSERT(mutex_owned(&rndpool_mtx));
if (!rnd_have_entropy) {
u_int32_t c;
#ifdef RND_VERBOSE
printf("rnd: WARNING! initial entropy low (%u).\n",
rndpool_get_entropy_count(&rnd_pool));
#endif
/* Try once again to put something in the pool */
c = rnd_counter();
rndpool_add_data(&rnd_pool, &c, sizeof(u_int32_t), 1);
}
return rndpool_extract_data(&rnd_pool, p, len, flags);
}
u_int32_t
rnd_extract_data(void *p, u_int32_t len, u_int32_t flags)
{
uint32_t retval;
mutex_enter(&rndpool_mtx);
retval = rnd_extract_data_locked(p, len, flags);
mutex_exit(&rndpool_mtx);
return retval;
}