NetBSD/sys/arch/pmax/dev/scc.c
jonathan 88b9b7eb4a Update DECstation drivers to use new-style config, removing
old-style config support, except for SCSI disks and tapes.
1995-08-10 04:21:35 +00:00

1134 lines
27 KiB
C

/* $NetBSD: scc.c,v 1.10 1995/08/10 04:21:41 jonathan Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Ralph Campbell and Rick Macklem.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)scc.c 8.2 (Berkeley) 11/30/93
* $Id: scc.c,v 1.10 1995/08/10 04:21:41 jonathan Exp $
*/
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <scc.h>
#if NSCC > 0
/*
* Intel 82530 dual usart chip driver. Supports the serial port(s) on the
* Personal DECstation 5000/xx and DECstation 5000/1xx, plus the keyboard
* and mouse on the 5000/1xx. (Don't ask me where the A channel signals
* are on the 5000/xx.)
*
* See: Intel MicroCommunications Handbook, Section 2, pg. 155-173, 1992.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/proc.h>
#include <sys/map.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <machine/autoconf.h>
#include <machine/machConst.h>
#include <machine/pmioctl.h>
#include <pmax/dev/device.h>
#include <pmax/dev/pdma.h>
#include <pmax/dev/sccreg.h>
#include <pmax/dev/fbreg.h>
#include <pmax/pmax/cons.h>
#include <pmax/pmax/pmaxtype.h>
#include <pmax/pmax/maxine.h>
#include <pmax/pmax/asic.h>
#include "sccvar.h"
extern int pmax_boardtype;
extern struct consdev cn_tab;
extern void ttrstrt __P((void *));
/*
* Autoconfiguration data for config.new.
* Use the statically-allocated softc until old autoconfig code and
* config.old are completely gone.
*
*/
int sccmatch __P((struct device * parent, void *cfdata, void *aux));
void sccattach __P((struct device *parent, struct device *self, void *aux));
void sccintr __P((int unit));
int scc_doprobe __P((void *addr, int unit, int flags, int priority));
extern struct cfdriver scccd;
struct cfdriver scccd = {
NULL, "scc", sccmatch, sccattach, DV_DULL, sizeof(struct device), 0
};
/*
* Autoconfiguration data for config.old
*/
void sccintr(), sccstart();
int sccGetc __P((dev_t));
void sccPutc __P((dev_t, int));
#define NSCCLINE (NSCC*2)
#define SCCUNIT(dev) (minor(dev) >> 1)
#define SCCLINE(dev) (minor(dev) & 0x1)
struct tty *scc_tty[NSCCLINE];
void (*sccDivertXInput)(); /* X windows keyboard input routine */
void (*sccMouseEvent)(); /* X windows mouse motion event routine */
void (*sccMouseButtons)(); /* X windows mouse buttons event routine */
#ifdef DEBUG
int debugChar;
#endif
static void scc_modem_intr(), sccreset();
struct scc_softc {
struct pdma scc_pdma[2];
struct {
u_char wr1;
u_char wr3;
u_char wr4;
u_char wr5;
u_char wr14;
} scc_wreg[2];
int scc_softCAR;
} scc_softc[NSCC];
struct speedtab sccspeedtab[] = {
0, 0,
50, 4606,
75, 3070,
110, 2093,
134, 1711,
150, 1534,
300, 766,
600, 382,
1200, 190,
1800, 126,
2400, 94,
4800, 46,
9600, 22,
19200, 10,
38400, 4,
-1, -1
};
#ifndef PORTSELECTOR
#define ISPEED TTYDEF_SPEED
#define LFLAG TTYDEF_LFLAG
#else
#define ISPEED B4800
#define LFLAG (TTYDEF_LFLAG & ~ECHO)
#endif
/*
* Match driver based on name
*/
int
sccmatch(parent, match, aux)
struct device *parent;
void *match;
void *aux;
{
struct cfdata *cf = match;
struct confargs *ca = aux;
static int nunits = 0;
if (!BUS_MATCHNAME(ca, "scc"))
return (0);
/*
* Use statically-allocated softc and attach code until
* old config is completely gone. Don't over-run softc.
*/
if (nunits > NSCC) {
printf("scc: too many units for old config\n");
return (0);
}
nunits++;
return (1);
}
void
sccattach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
register struct confargs *ca = aux;
(void) scc_doprobe((void*)MACH_PHYS_TO_UNCACHED(BUS_CVTADDR(ca)),
self->dv_unit, self->dv_cfdata->cf_flags,
ca->ca_slot);
/* tie pseudo-slot to device */
BUS_INTR_ESTABLISH(ca, sccintr, self->dv_unit);
printf("\n");
}
/*
* Test to see if device is present.
* Return true if found and initialized ok.
*/
int
scc_doprobe(addr, unit, flags, priority)
void *addr;
int unit, flags, priority;
{
register struct scc_softc *sc;
register struct pdma *pdp;
register struct tty *tp;
register int cntr;
struct tty ctty;
struct termios cterm;
int s;
if (unit >= NSCC)
return (0);
if (badaddr(addr, 2))
return (0);
/*
* For a remote console, wait a while for previous output to
* complete.
*/
if (major(cn_tab.cn_dev) == SCCDEV && cn_tab.cn_screen == 0 &&
SCCUNIT(cn_tab.cn_dev) == unit)
DELAY(10000);
sc = &scc_softc[unit];
pdp = &sc->scc_pdma[0];
/* init pseudo DMA structures */
for (cntr = 0; cntr < 2; cntr++) {
pdp->p_addr = (void *)addr;
tp = scc_tty[unit * 2 + cntr] = ttymalloc();
pdp->p_arg = (int)tp;
pdp->p_fcn = (void (*)())0;
tp->t_dev = (dev_t)((unit << 1) | cntr);
pdp++;
}
sc->scc_softCAR = flags | 0x2;
/* reset chip */
sccreset(sc);
/*
* Special handling for consoles.
*/
if (cn_tab.cn_screen) {
if (cn_tab.cn_kbdgetc == sccGetc) {
if (unit == 1) {
s = spltty();
ctty.t_dev = makedev(SCCDEV, SCCKBD_PORT);
cterm.c_cflag = CS8;
cterm.c_ospeed = cterm.c_ispeed = 4800;
(void) sccparam(&ctty, &cterm);
DELAY(10000);
#ifdef notyet
/*
* For some reason doing this hangs the 3min
* during booting. Fortunately the keyboard
* works ok without it.
*/
KBDReset(ctty.t_dev, sccPutc);
#endif
DELAY(10000);
splx(s);
} else if (unit == 0) {
s = spltty();
ctty.t_dev = makedev(SCCDEV, SCCMOUSE_PORT);
cterm.c_cflag = CS8 | PARENB | PARODD;
cterm.c_ospeed = cterm.c_ispeed = 4800;
(void) sccparam(&ctty, &cterm);
DELAY(10000);
MouseInit(ctty.t_dev, sccPutc, sccGetc);
DELAY(10000);
splx(s);
}
}
} else if (SCCUNIT(cn_tab.cn_dev) == unit) {
s = spltty();
ctty.t_dev = cn_tab.cn_dev;
cterm.c_cflag = CS8 | CLOCAL;
cterm.c_ospeed = cterm.c_ispeed = 9600;
(void) sccparam(&ctty, &cterm);
DELAY(1000);
cn_tab.cn_disabled = 0;
splx(s);
}
return (1);
}
/*
* Reset the chip.
*/
static void
sccreset(sc)
register struct scc_softc *sc;
{
register scc_regmap_t *regs;
register u_char val;
regs = (scc_regmap_t *)sc->scc_pdma[0].p_addr;
/*
* Chip once-only initialization
*
* NOTE: The wiring we assume is the one on the 3min:
*
* out A-TxD --> TxD keybd or mouse
* in A-RxD --> RxD keybd or mouse
* out A-DTR~ --> DTR comm
* out A-RTS~ --> RTS comm
* in A-CTS~ --> SI comm
* in A-DCD~ --> RI comm
* in A-SYNCH~--> DSR comm
* out B-TxD --> TxD comm
* in B-RxD --> RxD comm
* in B-RxC --> TRxCB comm
* in B-TxC --> RTxCB comm
* out B-RTS~ --> SS comm
* in B-CTS~ --> CTS comm
* in B-DCD~ --> CD comm
*/
SCC_INIT_REG(regs, SCC_CHANNEL_A);
SCC_INIT_REG(regs, SCC_CHANNEL_B);
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, SCC_WR9_HW_RESET);
DELAY(50000); /*enough ? */
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, 0);
/* program the interrupt vector */
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR2, 0xf0);
SCC_WRITE_REG(regs, SCC_CHANNEL_B, SCC_WR2, 0xf0);
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR9, SCC_WR9_VIS);
/* timing base defaults */
sc->scc_wreg[SCC_CHANNEL_A].wr4 = SCC_WR4_CLK_x16;
sc->scc_wreg[SCC_CHANNEL_B].wr4 = SCC_WR4_CLK_x16;
/* enable DTR, RTS and SS */
sc->scc_wreg[SCC_CHANNEL_B].wr5 = SCC_WR5_RTS;
sc->scc_wreg[SCC_CHANNEL_A].wr5 = SCC_WR5_RTS | SCC_WR5_DTR;
/* baud rates */
val = SCC_WR14_BAUDR_ENABLE|SCC_WR14_BAUDR_SRC;
sc->scc_wreg[SCC_CHANNEL_B].wr14 = val;
sc->scc_wreg[SCC_CHANNEL_A].wr14 = val;
/* interrupt conditions */
val = SCC_WR1_RXI_ALL_CHAR | SCC_WR1_PARITY_IE |
SCC_WR1_EXT_IE;
sc->scc_wreg[SCC_CHANNEL_A].wr1 = val;
sc->scc_wreg[SCC_CHANNEL_B].wr1 = val;
}
sccopen(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct scc_softc *sc;
register struct tty *tp;
register int unit, line;
int s, error = 0;
unit = SCCUNIT(dev);
if (unit >= NSCC)
return (ENXIO);
line = SCCLINE(dev);
sc = &scc_softc[unit];
if (sc->scc_pdma[line].p_addr == (void *)0)
return (ENXIO);
tp = scc_tty[minor(dev)];
if (tp == NULL)
tp = scc_tty[minor(dev)] = ttymalloc();
tp->t_oproc = sccstart;
tp->t_param = sccparam;
tp->t_dev = dev;
if ((tp->t_state & TS_ISOPEN) == 0) {
tp->t_state |= TS_WOPEN;
ttychars(tp);
#ifndef PORTSELECTOR
if (tp->t_ispeed == 0) {
#endif
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
tp->t_lflag = LFLAG;
tp->t_ispeed = tp->t_ospeed = ISPEED;
#ifdef PORTSELECTOR
tp->t_cflag |= HUPCL;
#else
}
#endif
(void) sccparam(tp, &tp->t_termios);
ttsetwater(tp);
} else if ((tp->t_state & TS_XCLUDE) && curproc->p_ucred->cr_uid != 0)
return (EBUSY);
(void) sccmctl(dev, DML_DTR, DMSET);
#ifdef FOO
s = spltty();
while (!(flag & O_NONBLOCK) && !(tp->t_cflag & CLOCAL) &&
!(tp->t_state & TS_CARR_ON)) {
tp->t_state |= TS_WOPEN;
if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
ttopen, 0))
break;
}
splx(s);
#endif
if (error)
return (error);
return ((*linesw[tp->t_line].l_open)(dev, tp));
}
/*ARGSUSED*/
sccclose(dev, flag, mode, p)
dev_t dev;
int flag, mode;
struct proc *p;
{
register struct scc_softc *sc = &scc_softc[SCCUNIT(dev)];
register struct tty *tp;
register int bit, line;
tp = scc_tty[minor(dev)];
line = SCCLINE(dev);
if (sc->scc_wreg[line].wr5 & SCC_WR5_SEND_BREAK) {
sc->scc_wreg[line].wr5 &= ~SCC_WR5_SEND_BREAK;
ttyoutput(0, tp);
}
(*linesw[tp->t_line].l_close)(tp, flag);
if ((tp->t_cflag & HUPCL) || (tp->t_state & TS_WOPEN) ||
!(tp->t_state & TS_ISOPEN))
(void) sccmctl(dev, 0, DMSET);
return (ttyclose(tp));
}
sccread(dev, uio, flag)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
tp = scc_tty[minor(dev)];
return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
}
sccwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
{
register struct tty *tp;
tp = scc_tty[minor(dev)];
return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
}
struct tty *
scctty(dev)
dev_t dev;
{
struct tty *tp = scc_tty [minor (dev)];
return (tp);
}
/*ARGSUSED*/
sccioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd;
caddr_t data;
int flag;
struct proc *p;
{
register struct scc_softc *sc;
register struct tty *tp;
int error, line;
tp = scc_tty[minor(dev)];
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flag, p);
if (error >= 0)
return (error);
line = SCCLINE(dev);
sc = &scc_softc[SCCUNIT(dev)];
switch (cmd) {
case TIOCSBRK:
sc->scc_wreg[line].wr5 |= SCC_WR5_SEND_BREAK;
ttyoutput(0, tp);
break;
case TIOCCBRK:
sc->scc_wreg[line].wr5 &= ~SCC_WR5_SEND_BREAK;
ttyoutput(0, tp);
break;
case TIOCSDTR:
(void) sccmctl(dev, DML_DTR|DML_RTS, DMBIS);
break;
case TIOCCDTR:
(void) sccmctl(dev, DML_DTR|DML_RTS, DMBIC);
break;
case TIOCMSET:
(void) sccmctl(dev, *(int *)data, DMSET);
break;
case TIOCMBIS:
(void) sccmctl(dev, *(int *)data, DMBIS);
break;
case TIOCMBIC:
(void) sccmctl(dev, *(int *)data, DMBIC);
break;
case TIOCMGET:
*(int *)data = sccmctl(dev, 0, DMGET);
break;
default:
return (ENOTTY);
}
return (0);
}
sccparam(tp, t)
register struct tty *tp;
register struct termios *t;
{
register struct scc_softc *sc;
register scc_regmap_t *regs;
register int line;
register u_char value, wvalue;
register int cflag = t->c_cflag;
int ospeed;
if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
return (EINVAL);
sc = &scc_softc[SCCUNIT(tp->t_dev)];
line = SCCLINE(tp->t_dev);
regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr;
ospeed = ttspeedtab(t->c_ospeed, sccspeedtab);
if (ospeed < 0)
return (EINVAL);
/* and copy to tty */
tp->t_ispeed = t->c_ispeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = cflag;
/*
* Handle console specially.
*/
if (cn_tab.cn_screen) {
if (minor(tp->t_dev) == SCCKBD_PORT) {
cflag = CS8;
ospeed = ttspeedtab(4800, sccspeedtab);
} else if (minor(tp->t_dev) == SCCMOUSE_PORT) {
cflag = CS8 | PARENB | PARODD;
ospeed = ttspeedtab(4800, sccspeedtab);
}
} else if (tp->t_dev == cn_tab.cn_dev) {
cflag = CS8;
ospeed = ttspeedtab(9600, sccspeedtab);
}
if (ospeed == 0) {
(void) sccmctl(tp->t_dev, 0, DMSET); /* hang up line */
return (0);
}
/* reset line */
if (line == SCC_CHANNEL_A)
value = SCC_WR9_RESET_CHA_A;
else
value = SCC_WR9_RESET_CHA_B;
SCC_WRITE_REG(regs, line, SCC_WR9, value);
DELAY(25);
/* stop bits, normally 1 */
value = sc->scc_wreg[line].wr4 & 0xf0;
if (cflag & CSTOPB)
value |= SCC_WR4_2_STOP;
else
value |= SCC_WR4_1_STOP;
if ((cflag & PARODD) == 0)
value |= SCC_WR4_EVEN_PARITY;
if (cflag & PARENB)
value |= SCC_WR4_PARITY_ENABLE;
/* set it now, remember it must be first after reset */
sc->scc_wreg[line].wr4 = value;
SCC_WRITE_REG(regs, line, SCC_WR4, value);
/* vector again */
SCC_WRITE_REG(regs, line, SCC_WR2, 0xf0);
/* clear break, keep rts dtr */
wvalue = sc->scc_wreg[line].wr5 & (SCC_WR5_DTR|SCC_WR5_RTS);
switch (cflag & CSIZE) {
case CS5:
value = SCC_WR3_RX_5_BITS;
wvalue |= SCC_WR5_TX_5_BITS;
break;
case CS6:
value = SCC_WR3_RX_6_BITS;
wvalue |= SCC_WR5_TX_6_BITS;
break;
case CS7:
value = SCC_WR3_RX_7_BITS;
wvalue |= SCC_WR5_TX_7_BITS;
break;
case CS8:
default:
value = SCC_WR3_RX_8_BITS;
wvalue |= SCC_WR5_TX_8_BITS;
};
sc->scc_wreg[line].wr3 = value;
SCC_WRITE_REG(regs, line, SCC_WR3, value);
sc->scc_wreg[line].wr5 = wvalue;
SCC_WRITE_REG(regs, line, SCC_WR5, wvalue);
SCC_WRITE_REG(regs, line, SCC_WR6, 0);
SCC_WRITE_REG(regs, line, SCC_WR7, 0);
SCC_WRITE_REG(regs, line, SCC_WR9, SCC_WR9_VIS);
SCC_WRITE_REG(regs, line, SCC_WR10, 0);
value = SCC_WR11_RCLK_BAUDR | SCC_WR11_XTLK_BAUDR |
SCC_WR11_TRc_OUT | SCC_WR11_TRcOUT_BAUDR;
SCC_WRITE_REG(regs, line, SCC_WR11, value);
SCC_SET_TIMING_BASE(regs, line, ospeed);
value = sc->scc_wreg[line].wr14;
SCC_WRITE_REG(regs, line, SCC_WR14, value);
value = SCC_WR15_BREAK_IE | SCC_WR15_CTS_IE | SCC_WR15_DCD_IE;
SCC_WRITE_REG(regs, line, SCC_WR15, value);
/* and now the enables */
value = sc->scc_wreg[line].wr3 | SCC_WR3_RX_ENABLE;
SCC_WRITE_REG(regs, line, SCC_WR3, value);
value = sc->scc_wreg[line].wr5 | SCC_WR5_TX_ENABLE;
sc->scc_wreg[line].wr5 = value;
SCC_WRITE_REG(regs, line, SCC_WR5, value);
/* master inter enable */
value = SCC_WR9_MASTER_IE | SCC_WR9_VIS;
SCC_WRITE_REG(regs, line, SCC_WR9, value);
SCC_WRITE_REG(regs, line, SCC_WR1, sc->scc_wreg[line].wr1);
MachEmptyWriteBuffer();
return (0);
}
/*
* Check for interrupts from all devices.
*/
void
sccintr(unit)
register int unit;
{
register scc_regmap_t *regs;
register struct tty *tp;
register struct pdma *dp;
register struct scc_softc *sc;
register int cc, chan, rr1, rr2, rr3;
int overrun = 0;
sc = &scc_softc[unit];
regs = (scc_regmap_t *)sc->scc_pdma[0].p_addr;
unit <<= 1;
for (;;) {
SCC_READ_REG(regs, SCC_CHANNEL_B, SCC_RR2, rr2);
rr2 = SCC_RR2_STATUS(rr2);
/* are we done yet ? */
if (rr2 == 6) { /* strange, distinguished value */
SCC_READ_REG(regs, SCC_CHANNEL_A, SCC_RR3, rr3);
if (rr3 == 0)
return;
}
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_RR0, SCC_RESET_HIGHEST_IUS);
if ((rr2 == SCC_RR2_A_XMIT_DONE) || (rr2 == SCC_RR2_B_XMIT_DONE)) {
chan = (rr2 == SCC_RR2_A_XMIT_DONE) ?
SCC_CHANNEL_A : SCC_CHANNEL_B;
tp = scc_tty[unit | chan];
dp = &sc->scc_pdma[chan];
if (dp->p_mem < dp->p_end) {
SCC_WRITE_DATA(regs, chan, *dp->p_mem++);
MachEmptyWriteBuffer();
} else {
tp->t_state &= ~TS_BUSY;
if (tp->t_state & TS_FLUSH)
tp->t_state &= ~TS_FLUSH;
else {
ndflush(&tp->t_outq, dp->p_mem -
(caddr_t) tp->t_outq.c_cf);
dp->p_end = dp->p_mem = tp->t_outq.c_cf;
}
if (tp->t_line)
(*linesw[tp->t_line].l_start)(tp);
else
sccstart(tp);
if (tp->t_outq.c_cc == 0 || !(tp->t_state & TS_BUSY)) {
SCC_READ_REG(regs, chan, SCC_RR15, cc);
cc &= ~SCC_WR15_TX_UNDERRUN_IE;
SCC_WRITE_REG(regs, chan, SCC_WR15, cc);
cc = sc->scc_wreg[chan].wr1 & ~SCC_WR1_TX_IE;
SCC_WRITE_REG(regs, chan, SCC_WR1, cc);
sc->scc_wreg[chan].wr1 = cc;
MachEmptyWriteBuffer();
}
}
} else if (rr2 == SCC_RR2_A_RECV_DONE ||
rr2 == SCC_RR2_B_RECV_DONE || rr2 == SCC_RR2_A_RECV_SPECIAL ||
rr2 == SCC_RR2_B_RECV_SPECIAL) {
if (rr2 == SCC_RR2_A_RECV_DONE || rr2 == SCC_RR2_A_RECV_SPECIAL)
chan = SCC_CHANNEL_A;
else
chan = SCC_CHANNEL_B;
tp = scc_tty[unit | chan];
SCC_READ_DATA(regs, chan, cc);
if (rr2 == SCC_RR2_A_RECV_SPECIAL ||
rr2 == SCC_RR2_B_RECV_SPECIAL) {
SCC_READ_REG(regs, chan, SCC_RR1, rr1);
SCC_WRITE_REG(regs, chan, SCC_RR0, SCC_RESET_ERROR);
if ((rr1 & SCC_RR1_RX_OVERRUN) && overrun == 0) {
log(LOG_WARNING, "scc%d,%d: silo overflow\n",
unit >> 1, chan);
overrun = 1;
}
}
/*
* Keyboard needs special treatment.
*/
if (tp == scc_tty[SCCKBD_PORT] && cn_tab.cn_screen) {
#ifdef KADB
if (cc == LK_DO) {
spl0();
kdbpanic();
return;
}
#endif
#ifdef DEBUG
debugChar = cc;
#endif
if (sccDivertXInput) {
(*sccDivertXInput)(cc);
continue;
}
if ((cc = kbdMapChar(cc)) < 0)
continue;
/*
* Now for mousey
*/
} else if (tp == scc_tty[SCCMOUSE_PORT] && sccMouseButtons) {
register MouseReport *mrp;
static MouseReport currentRep;
mrp = &currentRep;
mrp->byteCount++;
if (cc & MOUSE_START_FRAME) {
/*
* The first mouse report byte (button state).
*/
mrp->state = cc;
if (mrp->byteCount > 1)
mrp->byteCount = 1;
} else if (mrp->byteCount == 2) {
/*
* The second mouse report byte (delta x).
*/
mrp->dx = cc;
} else if (mrp->byteCount == 3) {
/*
* The final mouse report byte (delta y).
*/
mrp->dy = cc;
mrp->byteCount = 0;
if (mrp->dx != 0 || mrp->dy != 0) {
/*
* If the mouse moved,
* post a motion event.
*/
(*sccMouseEvent)(mrp);
}
(*sccMouseButtons)(mrp);
}
continue;
}
if (!(tp->t_state & TS_ISOPEN)) {
wakeup((caddr_t)&tp->t_rawq);
#ifdef PORTSELECTOR
if (!(tp->t_state & TS_WOPEN))
#endif
continue;
}
if (rr2 == SCC_RR2_A_RECV_SPECIAL ||
rr2 == SCC_RR2_B_RECV_SPECIAL) {
if (rr1 & SCC_RR1_PARITY_ERR)
cc |= TTY_PE;
if (rr1 & SCC_RR1_FRAME_ERR)
cc |= TTY_FE;
}
(*linesw[tp->t_line].l_rint)(cc, tp);
} else if ((rr2 == SCC_RR2_A_EXT_STATUS) || (rr2 == SCC_RR2_B_EXT_STATUS)) {
chan = (rr2 == SCC_RR2_A_EXT_STATUS) ?
SCC_CHANNEL_A : SCC_CHANNEL_B;
SCC_WRITE_REG(regs, chan, SCC_RR0, SCC_RESET_EXT_IP);
scc_modem_intr(unit | chan);
}
}
}
void
sccstart(tp)
register struct tty *tp;
{
register struct pdma *dp;
register scc_regmap_t *regs;
register struct scc_softc *sc;
register int cc, chan;
u_char temp;
int s, sendone;
sc = &scc_softc[SCCUNIT(tp->t_dev)];
dp = &sc->scc_pdma[SCCLINE(tp->t_dev)];
regs = (scc_regmap_t *)dp->p_addr;
s = spltty();
if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP))
goto out;
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
if (tp->t_outq.c_cc == 0)
goto out;
/* handle console specially */
if (tp == scc_tty[SCCKBD_PORT] && cn_tab.cn_screen) {
while (tp->t_outq.c_cc > 0) {
cc = getc(&tp->t_outq) & 0x7f;
cnputc(cc);
}
/*
* After we flush the output queue we may need to wake
* up the process that made the output.
*/
if (tp->t_outq.c_cc <= tp->t_lowat) {
if (tp->t_state & TS_ASLEEP) {
tp->t_state &= ~TS_ASLEEP;
wakeup((caddr_t)&tp->t_outq);
}
selwakeup(&tp->t_wsel);
}
goto out;
}
#ifdef FOO
if (tp->t_flags & (RAW|LITOUT))
#endif
cc = ndqb(&tp->t_outq, 0);
#ifdef FOO
else {
cc = ndqb(&tp->t_outq, 0200);
if (cc == 0) {
cc = getc(&tp->t_outq);
timeout(ttrstrt, (void *)tp, (cc & 0x7f) + 6);
tp->t_state |= TS_TIMEOUT;
goto out;
}
}
#endif
tp->t_state |= TS_BUSY;
dp->p_end = dp->p_mem = tp->t_outq.c_cf;
dp->p_end += cc;
/*
* Enable transmission and send the first char, as required.
*/
chan = SCCLINE(tp->t_dev);
SCC_READ_REG(regs, chan, SCC_RR0, temp);
sendone = (temp & SCC_RR0_TX_EMPTY);
SCC_READ_REG(regs, chan, SCC_RR15, temp);
temp |= SCC_WR15_TX_UNDERRUN_IE;
SCC_WRITE_REG(regs, chan, SCC_WR15, temp);
temp = sc->scc_wreg[chan].wr1 | SCC_WR1_TX_IE;
SCC_WRITE_REG(regs, chan, SCC_WR1, temp);
sc->scc_wreg[chan].wr1 = temp;
if (sendone) {
#ifdef DIAGNOSTIC
if (cc == 0)
panic("sccstart: No chars");
#endif
SCC_WRITE_DATA(regs, chan, *dp->p_mem++);
}
MachEmptyWriteBuffer();
out:
splx(s);
}
/*
* Stop output on a line.
*/
/*ARGSUSED*/
sccstop(tp, flag)
register struct tty *tp;
{
register struct pdma *dp;
register struct scc_softc *sc;
register int s;
sc = &scc_softc[SCCUNIT(tp->t_dev)];
dp = &sc->scc_pdma[SCCLINE(tp->t_dev)];
s = spltty();
if (tp->t_state & TS_BUSY) {
dp->p_end = dp->p_mem;
if (!(tp->t_state & TS_TTSTOP))
tp->t_state |= TS_FLUSH;
}
splx(s);
}
sccmctl(dev, bits, how)
dev_t dev;
int bits, how;
{
register struct scc_softc *sc;
register scc_regmap_t *regs;
register int line, mbits;
register u_char value;
int s;
sc = &scc_softc[SCCUNIT(dev)];
line = SCCLINE(dev);
regs = (scc_regmap_t *)sc->scc_pdma[line].p_addr;
s = spltty();
/*
* only channel B has modem control, however the DTR and RTS
* pins on the comm port are wired to the DTR and RTS A channel
* signals.
*/
mbits = DML_DTR | DML_DSR | DML_CAR;
if (line == SCC_CHANNEL_B) {
if (sc->scc_wreg[SCC_CHANNEL_A].wr5 & SCC_WR5_DTR)
mbits = DML_DTR | DML_DSR;
else
mbits = 0;
SCC_READ_REG_ZERO(regs, SCC_CHANNEL_B, value);
if (value & SCC_RR0_DCD)
mbits |= DML_CAR;
}
switch (how) {
case DMSET:
mbits = bits;
break;
case DMBIS:
mbits |= bits;
break;
case DMBIC:
mbits &= ~bits;
break;
case DMGET:
(void) splx(s);
return (mbits);
}
if (line == SCC_CHANNEL_B) {
if (mbits & DML_DTR)
sc->scc_wreg[SCC_CHANNEL_A].wr5 |= SCC_WR5_DTR;
else
sc->scc_wreg[SCC_CHANNEL_A].wr5 &= ~SCC_WR5_DTR;
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR5,
sc->scc_wreg[SCC_CHANNEL_A].wr5);
}
if ((mbits & DML_DTR) && (sc->scc_softCAR & (1 << line)))
scc_tty[minor(dev)]->t_state |= TS_CARR_ON;
(void) splx(s);
return (mbits);
}
/*
* Check for carrier transition.
*/
static void
scc_modem_intr(dev)
dev_t dev;
{
register scc_regmap_t *regs;
register struct scc_softc *sc;
register struct tty *tp;
register int car, chan;
register u_char value;
int s;
sc = &scc_softc[SCCUNIT(dev)];
tp = scc_tty[minor(dev)];
chan = SCCLINE(dev);
regs = (scc_regmap_t *)sc->scc_pdma[chan].p_addr;
if (chan == SCC_CHANNEL_A)
return;
s = spltty();
if (sc->scc_softCAR & (1 << chan))
car = 1;
else {
SCC_READ_REG_ZERO(regs, chan, value);
car = value & SCC_RR0_DCD;
}
if (car) {
/* carrier present */
if (!(tp->t_state & TS_CARR_ON))
(void)(*linesw[tp->t_line].l_modem)(tp, 1);
} else if (tp->t_state & TS_CARR_ON)
(void)(*linesw[tp->t_line].l_modem)(tp, 0);
splx(s);
}
/*
* Get a char off the appropriate line via. a busy wait loop.
*/
int
sccGetc(dev)
dev_t dev;
{
register scc_regmap_t *regs;
register int c, line;
register u_char value;
int s;
line = SCCLINE(dev);
regs = (scc_regmap_t *)scc_softc[SCCUNIT(dev)].scc_pdma[line].p_addr;
if (!regs)
return (0);
s = spltty();
for (;;) {
SCC_READ_REG(regs, line, SCC_RR0, value);
if (value & SCC_RR0_RX_AVAIL) {
SCC_READ_REG(regs, line, SCC_RR1, value);
SCC_READ_DATA(regs, line, c);
if (value & (SCC_RR1_PARITY_ERR | SCC_RR1_RX_OVERRUN |
SCC_RR1_FRAME_ERR)) {
SCC_WRITE_REG(regs, line, SCC_WR0, SCC_RESET_ERROR);
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR0,
SCC_RESET_HIGHEST_IUS);
} else {
SCC_WRITE_REG(regs, SCC_CHANNEL_A, SCC_WR0,
SCC_RESET_HIGHEST_IUS);
splx(s);
return (c & 0xff);
}
} else
DELAY(10);
}
}
/*
* Send a char on a port, via a busy wait loop.
*/
void
sccPutc(dev, c)
dev_t dev;
int c;
{
register scc_regmap_t *regs;
register int line;
register u_char value;
int s;
s = spltty();
line = SCCLINE(dev);
regs = (scc_regmap_t *)scc_softc[SCCUNIT(dev)].scc_pdma[line].p_addr;
/*
* Wait for transmitter to be not busy.
*/
do {
SCC_READ_REG(regs, line, SCC_RR0, value);
if (value & SCC_RR0_TX_EMPTY)
break;
DELAY(100);
} while (1);
/*
* Send the char.
*/
SCC_WRITE_DATA(regs, line, c);
MachEmptyWriteBuffer();
splx(s);
}
#endif /* NSCC */