NetBSD/sys/dev/ic/atw.c
2003-10-25 21:32:44 +00:00

3864 lines
98 KiB
C

/* $NetBSD: atw.c,v 1.7 2003/10/25 21:32:44 christos Exp $ */
/*-
* Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.7 2003/10/25 21:32:44 christos Exp $");
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/time.h>
#include <machine/endian.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_compat.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/ic/atwreg.h>
#include <dev/ic/atwvar.h>
#include <dev/ic/smc93cx6var.h>
/* XXX TBD open questions
*
*
* When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
* modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
* handle this for me?
*
*/
/* device attachment
*
* print TOFS[012]
*
* device initialization
*
* clear ATW_FRCTL_MAXPSP to disable max power saving
* set ATW_TXBR_ALCUPDATE to enable ALC
* set TOFS[012]? (hope not)
* disable rx/tx
* set ATW_PAR_SWR (software reset)
* wait for ATW_PAR_SWR clear
* disable interrupts
* ack status register
* enable interrupts
*
* rx/tx initialization
*
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
* allocate and init descriptor rings
* write ATW_PAR_DSL (descriptor skip length)
* write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
* write ATW_NAR_SQ for one/both transmit descriptor rings
* write ATW_NAR_SQ for one/both transmit descriptor rings
* enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
*
* rx/tx end
*
* stop DMA
* disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
* flush tx w/ ATW_NAR_HF
*
* scan
*
* initialize rx/tx
*
* IBSS join/create
*
* set ATW_NAR_EA (is set by ASIC?)
*
* BSS join: (re)association response
*
* set ATW_FRCTL_AID
*
* optimizations ???
*
*/
#define VOODOO_DUR_11_ROUNDING 0x01 /* necessary */
#define VOODOO_DUR_2_4_SPECIALCASE 0x02 /* NOT necessary */
int atw_voodoo = VOODOO_DUR_11_ROUNDING;
int atw_rfio_enable_delay = 20 * 1000;
int atw_rfio_disable_delay = 2 * 1000;
int atw_writewep_delay = 5;
int atw_beacon_len_adjust = 4;
int atw_dwelltime = 200;
#ifdef ATW_DEBUG
int atw_xhdrctl = 0;
int atw_xrtylmt = ~0;
int atw_xservice = IEEE80211_PLCP_SERVICE;
int atw_xpaylen = 0;
int atw_debug = 0;
#define ATW_DPRINTF(x) if (atw_debug > 0) printf x
#define ATW_DPRINTF2(x) if (atw_debug > 1) printf x
#define ATW_DPRINTF3(x) if (atw_debug > 2) printf x
#define DPRINTF(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
#define DPRINTF2(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
#define DPRINTF3(sc, x) if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
static void atw_print_regs(struct atw_softc *, const char *);
static void atw_rf3000_print(struct atw_softc *);
static void atw_si4126_print(struct atw_softc *);
static void atw_dump_pkt(struct ifnet *, struct mbuf *);
#else
#define ATW_DPRINTF(x)
#define ATW_DPRINTF2(x)
#define ATW_DPRINTF3(x)
#define DPRINTF(sc, x) /* nothing */
#define DPRINTF2(sc, x) /* nothing */
#define DPRINTF3(sc, x) /* nothing */
#endif
#ifdef ATW_STATS
void atw_print_stats __P((struct atw_softc *));
#endif
void atw_start __P((struct ifnet *));
void atw_watchdog __P((struct ifnet *));
int atw_ioctl __P((struct ifnet *, u_long, caddr_t));
int atw_init __P((struct ifnet *));
void atw_stop __P((struct ifnet *, int));
void atw_reset __P((struct atw_softc *));
int atw_read_srom __P((struct atw_softc *));
void atw_shutdown __P((void *));
void atw_rxdrain __P((struct atw_softc *));
int atw_add_rxbuf __P((struct atw_softc *, int));
void atw_idle __P((struct atw_softc *, u_int32_t));
int atw_enable __P((struct atw_softc *));
void atw_disable __P((struct atw_softc *));
void atw_power __P((int, void *));
void atw_rxintr __P((struct atw_softc *));
void atw_txintr __P((struct atw_softc *));
void atw_linkintr __P((struct atw_softc *, u_int32_t));
static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void atw_tsf(struct atw_softc *);
static void atw_start_beacon(struct atw_softc *, int);
static void atw_write_wep(struct atw_softc *);
static void atw_write_bssid(struct atw_softc *);
static void atw_write_bcn_thresh(struct atw_softc *);
static void atw_write_ssid(struct atw_softc *);
static void atw_write_sup_rates(struct atw_softc *);
static void atw_clear_sram(struct atw_softc *);
static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
static int atw_media_change(struct ifnet *);
static void atw_media_status(struct ifnet *, struct ifmediareq *);
static void atw_filter_setup(struct atw_softc *);
static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
struct ieee80211_node *, int, int, u_int32_t);
static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
struct ieee80211_node *, int, int, u_int32_t);
static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
static int atw_tune(struct atw_softc *);
static void atw_rfio_enable(struct atw_softc *, int);
/* RFMD RF3000 Baseband Processor */
static int atw_rf3000_init(struct atw_softc *);
static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
#ifdef ATW_DEBUG
static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
#endif /* ATW_DEBUG */
/* Silicon Laboratories Si4126 RF/IF Synthesizer */
static int atw_si4126_tune(struct atw_softc *, u_int8_t);
static int atw_si4126_write(struct atw_softc *, u_int, u_int);
#ifdef ATW_DEBUG
static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
#endif /* ATW_DEBUG */
const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
const char *atw_tx_state[] = {
"STOPPED",
"RUNNING - FETCH",
"RUNNING - WAIT",
"RUNNING - READING",
"-- RESERVED1 --",
"-- RESERVED2 --",
"SUSPENDED",
"RUNNING - CLOSE"
};
const char *atw_rx_state[] = {
"STOPPED",
"RUNNING - FETCH",
"RUNNING - CHECK",
"RUNNING - WAIT",
"SUSPENDED",
"RUNNING - CLOSE",
"RUNNING - FLUSH",
"RUNNING - QUEUE"
};
int
atw_activate(struct device *self, enum devact act)
{
struct atw_softc *sc = (struct atw_softc *)self;
int rv = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
rv = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_ic.ic_if);
break;
}
splx(s);
return rv;
}
/*
* atw_enable:
*
* Enable the ADM8211 chip.
*/
int
atw_enable(sc)
struct atw_softc *sc;
{
if (ATW_IS_ENABLED(sc) == 0) {
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
printf("%s: device enable failed\n",
sc->sc_dev.dv_xname);
return (EIO);
}
sc->sc_flags |= ATWF_ENABLED;
}
return (0);
}
/*
* atw_disable:
*
* Disable the ADM8211 chip.
*/
void
atw_disable(sc)
struct atw_softc *sc;
{
if (!ATW_IS_ENABLED(sc))
return;
if (sc->sc_disable != NULL)
(*sc->sc_disable)(sc);
sc->sc_flags &= ~ATWF_ENABLED;
}
/* Returns -1 on failure. */
int
atw_read_srom(struct atw_softc *sc)
{
struct seeprom_descriptor sd;
u_int32_t reg;
(void)memset(&sd, 0, sizeof(sd));
reg = ATW_READ(sc, ATW_TEST0);
if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
return -1;
}
switch (reg & ATW_TEST0_EPTYP_MASK) {
case ATW_TEST0_EPTYP_93c66:
ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
sc->sc_sromsz = 512;
sd.sd_chip = C56_66;
break;
case ATW_TEST0_EPTYP_93c46:
ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
sc->sc_sromsz = 128;
sd.sd_chip = C46;
break;
default:
printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
return -1;
}
sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
if (sc->sc_srom == NULL) {
printf("%s: unable to allocate SROM buffer\n",
sc->sc_dev.dv_xname);
return -1;
}
(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
/* ADM8211 has a single 32-bit register for controlling the
* 93cx6 SROM. Bit SRS enables the serial port. There is no
* "ready" bit. The ADM8211 input/output sense is the reverse
* of read_seeprom's.
*/
sd.sd_tag = sc->sc_st;
sd.sd_bsh = sc->sc_sh;
sd.sd_regsize = 4;
sd.sd_control_offset = ATW_SPR;
sd.sd_status_offset = ATW_SPR;
sd.sd_dataout_offset = ATW_SPR;
sd.sd_CK = ATW_SPR_SCLK;
sd.sd_CS = ATW_SPR_SCS;
sd.sd_DI = ATW_SPR_SDO;
sd.sd_DO = ATW_SPR_SDI;
sd.sd_MS = ATW_SPR_SRS;
sd.sd_RDY = 0;
if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
free(sc->sc_srom, M_DEVBUF);
return -1;
}
#ifdef ATW_DEBUG
{
int i;
ATW_DPRINTF2(("\nSerial EEPROM:\n\t"));
for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
if (((i % 8) == 0) && (i != 0)) {
ATW_DPRINTF2(("\n\t"));
}
ATW_DPRINTF2((" 0x%x", sc->sc_srom[i]));
}
ATW_DPRINTF2(("\n"));
}
#endif /* ATW_DEBUG */
return 0;
}
#ifdef ATW_DEBUG
static void
atw_print_regs(struct atw_softc *sc, const char *where)
{
#define PRINTREG(sc, reg) \
ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
PRINTREG(sc, ATW_PAR);
PRINTREG(sc, ATW_FRCTL);
PRINTREG(sc, ATW_TDR);
PRINTREG(sc, ATW_WTDP);
PRINTREG(sc, ATW_RDR);
PRINTREG(sc, ATW_WRDP);
PRINTREG(sc, ATW_RDB);
PRINTREG(sc, ATW_CSR3A);
PRINTREG(sc, ATW_TDBD);
PRINTREG(sc, ATW_TDBP);
PRINTREG(sc, ATW_STSR);
PRINTREG(sc, ATW_CSR5A);
PRINTREG(sc, ATW_NAR);
PRINTREG(sc, ATW_CSR6A);
PRINTREG(sc, ATW_IER);
PRINTREG(sc, ATW_CSR7A);
PRINTREG(sc, ATW_LPC);
PRINTREG(sc, ATW_TEST1);
PRINTREG(sc, ATW_SPR);
PRINTREG(sc, ATW_TEST0);
PRINTREG(sc, ATW_WCSR);
PRINTREG(sc, ATW_WPDR);
PRINTREG(sc, ATW_GPTMR);
PRINTREG(sc, ATW_GPIO);
PRINTREG(sc, ATW_BBPCTL);
PRINTREG(sc, ATW_SYNCTL);
PRINTREG(sc, ATW_PLCPHD);
PRINTREG(sc, ATW_MMIWADDR);
PRINTREG(sc, ATW_MMIRADDR1);
PRINTREG(sc, ATW_MMIRADDR2);
PRINTREG(sc, ATW_TXBR);
PRINTREG(sc, ATW_CSR15A);
PRINTREG(sc, ATW_ALCSTAT);
PRINTREG(sc, ATW_TOFS2);
PRINTREG(sc, ATW_CMDR);
PRINTREG(sc, ATW_PCIC);
PRINTREG(sc, ATW_PMCSR);
PRINTREG(sc, ATW_PAR0);
PRINTREG(sc, ATW_PAR1);
PRINTREG(sc, ATW_MAR0);
PRINTREG(sc, ATW_MAR1);
PRINTREG(sc, ATW_ATIMDA0);
PRINTREG(sc, ATW_ABDA1);
PRINTREG(sc, ATW_BSSID0);
PRINTREG(sc, ATW_TXLMT);
PRINTREG(sc, ATW_MIBCNT);
PRINTREG(sc, ATW_BCNT);
PRINTREG(sc, ATW_TSFTH);
PRINTREG(sc, ATW_TSC);
PRINTREG(sc, ATW_SYNRF);
PRINTREG(sc, ATW_BPLI);
PRINTREG(sc, ATW_CAP0);
PRINTREG(sc, ATW_CAP1);
PRINTREG(sc, ATW_RMD);
PRINTREG(sc, ATW_CFPP);
PRINTREG(sc, ATW_TOFS0);
PRINTREG(sc, ATW_TOFS1);
PRINTREG(sc, ATW_IFST);
PRINTREG(sc, ATW_RSPT);
PRINTREG(sc, ATW_TSFTL);
PRINTREG(sc, ATW_WEPCTL);
PRINTREG(sc, ATW_WESK);
PRINTREG(sc, ATW_WEPCNT);
PRINTREG(sc, ATW_MACTEST);
PRINTREG(sc, ATW_FER);
PRINTREG(sc, ATW_FEMR);
PRINTREG(sc, ATW_FPSR);
PRINTREG(sc, ATW_FFER);
#undef PRINTREG
}
#endif /* ATW_DEBUG */
/*
* Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end.
*/
void
atw_attach(struct atw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int country_code, error, i, nrate;
u_int32_t reg;
static const char *type_strings[] = {"Intersil (not supported)",
"RFMD", "Marvel (not supported)"};
static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
sc->sc_txth = atw_txthresh_tab_lo;
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
#ifdef ATW_DEBUG
atw_print_regs(sc, "atw_attach");
#endif /* ATW_DEBUG */
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
1, &sc->sc_cdnseg, 0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct atw_control_data), 1,
sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct atw_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
sc->sc_ntxsegs = ATW_NTXSEGS;
for (i = 0; i < ATW_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
sc->sc_ntxsegs, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < ATW_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* Reset the chip to a known state. */
atw_reset(sc);
if (atw_read_srom(sc) == -1)
return;
sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
ATW_SR_RFTYPE_MASK);
sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
ATW_SR_BBPTYPE_MASK);
if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
return;
}
if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
return;
}
printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
/* XXX There exists a Linux driver which seems to use RFType = 0 for
* MARVEL. My bug, or theirs?
*/
reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
switch (sc->sc_rftype) {
case ATW_RFTYPE_INTERSIL:
reg |= ATW_SYNCTL_CS1;
break;
case ATW_RFTYPE_RFMD:
reg |= ATW_SYNCTL_CS0;
break;
case ATW_RFTYPE_MARVEL:
break;
}
sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
switch (sc->sc_bbptype) {
case ATW_RFTYPE_INTERSIL:
reg |= ATW_BBPCTL_TWI;
break;
case ATW_RFTYPE_RFMD:
reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
ATW_BBPCTL_CCA_ACTLO;
break;
case ATW_RFTYPE_MARVEL:
break;
}
sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
ATW_DPRINTF2((" SROM MAC %04x%04x%04x",
htole16(sc->sc_srom[ATW_SR_MAC00]),
htole16(sc->sc_srom[ATW_SR_MAC01]),
htole16(sc->sc_srom[ATW_SR_MAC10])));
country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
ATW_SR_CTRY_MASK);
#define ADD_CHANNEL(_ic, _chan) do { \
_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \
_ic->ic_channels[_chan].ic_freq = \
ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
} while (0)
/* Find available channels */
switch (country_code) {
case COUNTRY_MMK2: /* 1-14 */
ADD_CHANNEL(ic, 14);
/*FALLTHROUGH*/
case COUNTRY_ETSI: /* 1-13 */
for (i = 1; i <= 13; i++)
ADD_CHANNEL(ic, i);
break;
case COUNTRY_FCC: /* 1-11 */
case COUNTRY_IC: /* 1-11 */
for (i = 1; i <= 11; i++)
ADD_CHANNEL(ic, i);
break;
case COUNTRY_MMK: /* 14 */
ADD_CHANNEL(ic, 14);
break;
case COUNTRY_FRANCE: /* 10-13 */
for (i = 10; i <= 13; i++)
ADD_CHANNEL(ic, i);
break;
default: /* assume channels 10-11 */
case COUNTRY_SPAIN: /* 10-11 */
for (i = 10; i <= 11; i++)
ADD_CHANNEL(ic, i);
break;
}
/* Read the MAC address. */
reg = ATW_READ(sc, ATW_PAR0);
ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
reg = ATW_READ(sc, ATW_PAR1);
ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
printf(" could not get mac address, attach failed\n");
return;
}
printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
IFF_NOTRAILERS;
ifp->if_ioctl = atw_ioctl;
ifp->if_start = atw_start;
ifp->if_watchdog = atw_watchdog;
ifp->if_init = atw_init;
ifp->if_stop = atw_stop;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
nrate = 0;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
/*
* Call MI attach routines.
*/
if_attach(ifp);
ieee80211_ifattach(ifp);
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = atw_newstate;
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
ic->ic_recv_mgmt = atw_recv_mgmt;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = atw_node_free;
sc->sc_node_alloc = ic->ic_node_alloc;
ic->ic_node_alloc = atw_node_alloc;
/* possibly we should fill in our own sc_send_prresp, since
* the ADM8211 is probably sending probe responses in ad hoc
* mode.
*/
/* complete initialization */
ieee80211_media_init(ifp, atw_media_change, atw_media_status);
callout_init(&sc->sc_scan_ch);
#if 0
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO, /* ??? */,
&sc->sc_radiobpf);
#endif
#endif
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
/*
* Add a suspend hook to make sure we come back up after a
* resume.
*/
sc->sc_powerhook = powerhook_establish(atw_power, sc);
if (sc->sc_powerhook == NULL)
printf("%s: WARNING: unable to establish power hook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < ATW_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < ATW_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct atw_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
fail_0:
return;
}
static struct ieee80211_node *
atw_node_alloc(struct ieee80211com *ic)
{
struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
return ni;
}
static void
atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
{
struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
ether_sprintf(ni->ni_bssid)));
(*sc->sc_node_free)(ic, ni);
}
/*
* atw_reset:
*
* Perform a soft reset on the ADM8211.
*/
void
atw_reset(sc)
struct atw_softc *sc;
{
int i;
if (ATW_IS_ENABLED(sc) == 0)
return;
ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
for (i = 0; i < 10000; i++) {
if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
break;
DELAY(1);
}
DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
/* Turn off maximum power saving. */
ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
/* Recall EEPROM. */
ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
DELAY(10 * 1000);
/* A reset seems to affect the SRAM contents, so put them into
* a known state.
*/
atw_clear_sram(sc);
memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
sc->sc_lost_bcn_thresh = 0;
}
static void
atw_clear_sram(sc)
struct atw_softc *sc;
{
#if 0
for (addr = 0; addr < 448; addr++) {
ATW_WRITE(sc, ATW_WEPCTL,
ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0 | addr);
DELAY(1000);
ATW_WRITE(sc, ATW_WESK, 0);
DELAY(1000); /* paranoia */
}
return;
#endif
memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
/* XXX not for revision 0x20. */
atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
}
/* TBD atw_init
*
* set MAC based on ic->ic_bss->myaddr
* write WEP keys
* set TX rate
*/
/*
* atw_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
int
atw_init(ifp)
struct ifnet *ifp;
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct atw_txsoft *txs;
struct atw_rxsoft *rxs;
u_int32_t reg;
int i, error = 0;
if ((error = atw_enable(sc)) != 0)
goto out;
/*
* Cancel any pending I/O. This also resets.
*/
atw_stop(ifp, 0);
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
__func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
/* Turn off APM??? (A binary-only driver does this.)
*
* Set Rx store-and-forward mode.
*/
reg = ATW_READ(sc, ATW_CMDR);
reg &= ~ATW_CMDR_APM;
reg &= ~ATW_CMDR_DRT_MASK;
reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
ATW_WRITE(sc, ATW_CMDR, reg);
/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
*
* XXX a binary-only driver sets a different service field than
* 0. why?
*/
reg = ATW_READ(sc, ATW_PLCPHD);
reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
ATW_WRITE(sc, ATW_PLCPHD, reg);
/* XXX */
reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */
LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */
LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */
LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */
LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */
LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */
ATW_WRITE(sc, ATW_TOFS2, reg);
ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
/* XXX this resets an Intersil RF front-end? */
/* TBD condition on Intersil RFType? */
ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
DELAY(10 * 1000);
ATW_WRITE(sc, ATW_SYNRF, 0);
DELAY(5 * 1000);
/* 16 TU max duration for contention-free period */
reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
/* XXX I guess that the Cardbus clock is 22MHz?
* I am assuming that the role of ATW_TOFS0_USCNT is
* to divide the bus clock to get a 1MHz clock---the datasheet is not
* very clear on this point. It says in the datasheet that it is
* possible for the ADM8211 to accomodate bus speeds between 22MHz
* and 33MHz; maybe this is the way? I see a binary-only driver write
* these values. These values are also the power-on default.
*/
ATW_WRITE(sc, ATW_TOFS0,
LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
/* Initialize interframe spacing. EIFS=0x64 is used by a binary-only
* driver. go figure.
*/
reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
ATW_IFST_SIFS_MASK) |
LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
ATW_WRITE(sc, ATW_IFST, reg);
ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
/* Set up the MMI read/write addresses for the BBP.
*
* TBD find out the Marvel settings.
*/
switch (sc->sc_bbptype) {
case ATW_BBPTYPE_INTERSIL:
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
break;
case ATW_BBPTYPE_MARVEL:
break;
case ATW_BBPTYPE_RFMD:
ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
default:
break;
}
sc->sc_wepctl = 0;
ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
if ((error = atw_rf3000_init(sc)) != 0)
goto out;
/*
* Initialize the PCI Access Register.
*/
sc->sc_busmode = ATW_PAR_BAR; /* XXX what is this? */
/*
* If we're allowed to do so, use Memory Read Line
* and Memory Read Multiple.
*
* XXX Should we use Memory Write and Invalidate?
*/
if (sc->sc_flags & ATWF_MRL)
sc->sc_busmode |= ATW_PAR_MRLE;
if (sc->sc_flags & ATWF_MRM)
sc->sc_busmode |= ATW_PAR_MRME;
if (sc->sc_flags & ATWF_MWI)
sc->sc_busmode |= ATW_PAR_MWIE;
if (sc->sc_maxburst == 0)
sc->sc_maxburst = 8; /* ADM8211 default */
switch (sc->sc_cacheline) {
default:
/* Use burst length. */
break;
case 8:
sc->sc_busmode |= ATW_PAR_CAL_8DW;
break;
case 16:
sc->sc_busmode |= ATW_PAR_CAL_16DW;
break;
case 32:
sc->sc_busmode |= ATW_PAR_CAL_32DW;
break;
}
switch (sc->sc_maxburst) {
case 1:
sc->sc_busmode |= ATW_PAR_PBL_1DW;
break;
case 2:
sc->sc_busmode |= ATW_PAR_PBL_2DW;
break;
case 4:
sc->sc_busmode |= ATW_PAR_PBL_4DW;
break;
case 8:
sc->sc_busmode |= ATW_PAR_PBL_8DW;
break;
case 16:
sc->sc_busmode |= ATW_PAR_PBL_16DW;
break;
case 32:
sc->sc_busmode |= ATW_PAR_PBL_32DW;
break;
default:
sc->sc_busmode |= ATW_PAR_PBL_8DW;
break;
}
ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
ATW_READ(sc, ATW_PAR), sc->sc_busmode));
/*
* Initialize the OPMODE register. We don't write it until
* we're ready to begin the transmit and receive processes.
*/
sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
sc->sc_txth[sc->sc_txthresh].txth_opmode;
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < ATW_NTXDESC; i++) {
/* no transmit chaining */
sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
sc->sc_txdescs[i].at_buf2 =
htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
}
/* use ring mode */
sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = ATW_NTXDESC;
sc->sc_txnext = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < ATW_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = atw_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
atw_rxdrain(sc);
goto out;
}
} else
ATW_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
/* disable all wake-up events */
ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
/* ack all wake-up events */
ATW_SET(sc, ATW_WCSR, 0);
/*
* Initialize the interrupt mask and enable interrupts.
*/
/* normal interrupts */
sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
/* abnormal interrupts */
sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
ATW_INTR_TRT;
sc->sc_linkint_mask &= sc->sc_inten;
sc->sc_rxint_mask &= sc->sc_inten;
sc->sc_txint_mask &= sc->sc_inten;
ATW_WRITE(sc, ATW_IER, sc->sc_inten);
ATW_WRITE(sc, ATW_STSR, 0xffffffff);
if (sc->sc_intr_ack != NULL)
(*sc->sc_intr_ack)(sc);
DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
/*
* Give the transmit and receive rings to the ADM8211.
*/
ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
/* common 802.11 configuration */
ic->ic_flags &= ~IEEE80211_F_IBSSON;
switch (ic->ic_opmode) {
case IEEE80211_M_HOSTAP: /* XXX */
case IEEE80211_M_STA:
sc->sc_opmode &= ~ATW_NAR_EA;
break;
case IEEE80211_M_AHDEMO: /* XXX */
case IEEE80211_M_IBSS:
/* EA bit seems important for ad hoc reception. */
sc->sc_opmode |= ATW_NAR_EA;
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
case IEEE80211_M_MONITOR: /* XXX */
break;
}
atw_start_beacon(sc, 0);
switch (ic->ic_opmode) {
case IEEE80211_M_IBSS:
case IEEE80211_M_STA:
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
if (error)
goto out;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
ic->ic_bss->ni_intval = ic->ic_lintval;
ic->ic_bss->ni_rssi = 0;
ic->ic_bss->ni_rstamp = 0;
ic->ic_state = IEEE80211_S_SCAN; /*XXX*/
error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
if (error)
goto out;
break;
case IEEE80211_M_MONITOR: /* XXX */
break;
}
atw_write_ssid(sc);
atw_write_sup_rates(sc);
if (ic->ic_caps & IEEE80211_C_WEP)
atw_write_wep(sc);
/*
* Set the receive filter. This will start the transmit and
* receive processes.
*/
atw_filter_setup(sc);
/*
* Start the receive process.
*/
ATW_WRITE(sc, ATW_RDR, 0x1);
/*
* Note that the interface is now running.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ic->ic_state = IEEE80211_S_INIT;
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
}
#ifdef ATW_DEBUG
atw_print_regs(sc, "end of init");
#endif /* ATW_DEBUG */
return (error);
}
/* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
* 0: MAC control of RF3000/Si4126.
*
* Applies power, or selects RF front-end? Sets reset condition.
*
* TBD support non-RFMD BBP, non-SiLabs synth.
*/
static void
atw_rfio_enable(struct atw_softc *sc, int enable)
{
if (enable) {
ATW_WRITE(sc, ATW_SYNRF,
ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
DELAY(atw_rfio_enable_delay);
} else {
ATW_WRITE(sc, ATW_SYNRF, 0);
DELAY(atw_rfio_disable_delay); /* shorter for some reason */
}
}
static int
atw_tune(sc)
struct atw_softc *sc;
{
int rc;
u_int32_t reg;
int chan;
struct ieee80211com *ic = &sc->sc_ic;
chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
if (chan == IEEE80211_CHAN_ANY)
panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
if (chan == sc->sc_cur_chan)
return 0;
DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
sc->sc_cur_chan, chan));
atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
(rc = atw_rf3000_tune(sc, chan)) != 0)
printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
chan);
reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
ATW_WRITE(sc, ATW_CAP0,
reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
if (rc == 0)
sc->sc_cur_chan = chan;
return rc;
}
#ifdef ATW_DEBUG
static void
atw_si4126_print(sc)
struct atw_softc *sc;
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
u_int addr, val;
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
return;
for (addr = 0; addr <= 8; addr++) {
printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
if (atw_si4126_read(sc, addr, &val) == 0) {
printf("<unknown> (quitting print-out)\n");
break;
}
printf("%05x\n", val);
}
}
#endif /* ATW_DEBUG */
/* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
*
* The RF/IF synthesizer produces two reference frequencies for
* the RF2948B transceiver. The first frequency the RF2948B requires
* is two times the so-called "intermediate frequency" (IF). Since
* a SAW filter on the radio fixes the IF at 374MHz, I program the
* Si4126 to generate IF LO = 374MHz x 2 = 748MHz. The second
* frequency required by the transceiver is the radio frequency
* (RF). This is a superheterodyne transceiver; for f(chan) the
* center frequency of the channel we are tuning, RF = f(chan) -
* IF.
*
* XXX I am told by SiLabs that the Si4126 will accept a broader range
* of XIN than the 2-25MHz mentioned by the datasheet, even *without*
* XINDIV2 = 1. I've tried this (it is necessary to double R) and it
* works, but I have still programmed for XINDIV2 = 1 to be safe.
*/
static int
atw_si4126_tune(sc, chan)
struct atw_softc *sc;
u_int8_t chan;
{
int rc = 0;
u_int mhz;
u_int R;
u_int32_t reg;
u_int16_t gain;
#ifdef ATW_DEBUG
atw_si4126_print(sc);
#endif /* ATW_DEBUG */
if (chan == 14)
mhz = 2484;
else
mhz = 2412 + 5 * (chan - 1);
/* Tune IF to 748MHz to suit the IF LO input of the
* RF2494B, which is 2 x IF. No need to set an IF divider
* because an IF in 526MHz - 952MHz is allowed.
*
* XIN is 44.000MHz, so divide it by two to get allowable
* range of 2-25MHz. SiLabs tells me that this is not
* strictly necessary.
*/
R = 44;
atw_rfio_enable(sc, 1);
/* Power-up RF, IF synthesizers. */
if ((rc = atw_si4126_write(sc, SI4126_POWER,
SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
goto out;
/* If RF2 N > 2047, then set KP2 to 1. */
gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
goto out;
/* set LPWR, too? */
if ((rc = atw_si4126_write(sc, SI4126_MAIN,
SI4126_MAIN_XINDIV2)) != 0)
goto out;
/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN. XIN = 44MHz.
* I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
*/
if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
goto out;
if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
goto out;
/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
* then RF1 becomes the active RF synthesizer, even on the Si4126,
* which has no RF1!
*/
if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
goto out;
if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
goto out;
/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
* where IF = 374MHz. Let's divide XIN to 1MHz. So R = 44.
* Now let's multiply it to mhz. So mhz - IF = N.
*/
if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
goto out;
if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
goto out;
/* wait 100us from power-up for RF, IF to settle */
DELAY(100);
if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
/* XXX there is a binary driver which sends
* ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
* that this enables the Si4126 by raising its PWDN#, but I
* think that it actually sets the Prism RF front-end
* to a special mode for channel 14.
*/
reg = ATW_READ(sc, ATW_GPIO);
reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
ATW_WRITE(sc, ATW_GPIO, reg);
}
#ifdef ATW_DEBUG
atw_si4126_print(sc);
#endif /* ATW_DEBUG */
out:
atw_rfio_enable(sc, 0);
return rc;
}
/* Baseline initialization of RF3000 BBP: set CCA mode, enable antenna
* diversity, and write some magic.
*
* Call this w/ Tx/Rx suspended.
*/
static int
atw_rf3000_init(sc)
struct atw_softc *sc;
{
int rc = 0;
atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
atw_rfio_enable(sc, 1);
/* enable diversity */
rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
if (rc != 0)
goto out;
/* sensible setting from a binary-only driver */
rc = atw_rf3000_write(sc, RF3000_GAINCTL,
LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
if (rc != 0)
goto out;
/* magic from a binary-only driver */
rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
if (rc != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
if (rc != 0)
goto out;
/* magic derived from binary-only driver */
rc = atw_rf3000_write(sc, RF3000_MAGIC0, RF3000_MAGIC0_VAL);
if (rc != 0)
goto out;
rc = atw_rf3000_write(sc, RF3000_MAGIC1, RF3000_MAGIC1_VAL);
if (rc != 0)
goto out;
/* CCA is acquisition sensitive */
rc = atw_rf3000_write(sc, RF3000_CCACTL,
LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
if (rc != 0)
goto out;
out:
atw_rfio_enable(sc, 0);
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
return rc;
}
#ifdef ATW_DEBUG
static void
atw_rf3000_print(sc)
struct atw_softc *sc;
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
u_int addr, val;
if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
return;
for (addr = 0x01; addr <= 0x15; addr++) {
printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
if (atw_rf3000_read(sc, addr, &val) != 0) {
printf("<unknown> (quitting print-out)\n");
break;
}
printf("%08x\n", val);
}
}
#endif /* ATW_DEBUG */
/* Set the power settings on the BBP for channel `chan'. */
static int
atw_rf3000_tune(sc, chan)
struct atw_softc *sc;
u_int8_t chan;
{
int rc = 0;
u_int32_t reg;
u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
atw_rfio_enable(sc, 1);
txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
/* odd channels: LSB, even channels: MSB */
if (chan % 2 == 1) {
txpower &= 0xFF;
lpf_cutoff &= 0xFF;
lna_gs_thresh &= 0xFF;
} else {
txpower >>= 8;
lpf_cutoff >>= 8;
lna_gs_thresh >>= 8;
}
#ifdef ATW_DEBUG
atw_rf3000_print(sc);
#endif /* ATW_DEBUG */
DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
"lna_gs_thresh %02x\n",
sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
goto out;
if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
goto out;
if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
goto out;
/* from a binary-only driver. */
reg = ATW_READ(sc, ATW_PLCPHD);
reg &= ~ATW_PLCPHD_SERVICE_MASK;
reg |= LSHIFT(txpower << 2, ATW_PLCPHD_SERVICE_MASK);
ATW_WRITE(sc, ATW_PLCPHD, reg);
#ifdef ATW_DEBUG
atw_rf3000_print(sc);
#endif /* ATW_DEBUG */
out:
atw_rfio_enable(sc, 0);
return rc;
}
/* Write a register on the RF3000 baseband processor using the
* registers provided by the ADM8211 for this purpose.
*
* Return 0 on success.
*/
static int
atw_rf3000_write(sc, addr, val)
struct atw_softc *sc;
u_int addr, val;
{
u_int32_t reg;
int i;
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
reg = sc->sc_bbpctl_wr |
LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
ATW_WRITE(sc, ATW_BBPCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
break;
}
ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
if (i < 0) {
printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
return 0;
}
/* Read a register on the RF3000 baseband processor using the registers
* the ADM8211 provides for this purpose.
*
* The 7-bit register address is addr. Record the 8-bit data in the register
* in *val.
*
* Return 0 on success.
*
* XXX This does not seem to work. The ADM8211 must require more or
* different magic to read the chip than to write it. Possibly some
* of the magic I have derived from a binary-only driver concerns
* the "chip address" (see the RF3000 manual).
*/
#ifdef ATW_DEBUG
static int
atw_rf3000_read(sc, addr, val)
struct atw_softc *sc;
u_int addr, *val;
{
u_int32_t reg;
int i;
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: start atw_rf3000_read, BBPCTL busy\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
ATW_WRITE(sc, ATW_BBPCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
break;
}
ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
if (i < 0) {
printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
sc->sc_dev.dv_xname, reg);
return ETIMEDOUT;
}
if (val != NULL)
*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
return 0;
}
#endif /* ATW_DEBUG */
/* Write a register on the Si4126 RF/IF synthesizer using the registers
* provided by the ADM8211 for that purpose.
*
* val is 18 bits of data, and val is the 4-bit address of the register.
*
* Return 0 on success.
*/
static int
atw_si4126_write(sc, addr, val)
struct atw_softc *sc;
u_int addr, val;
{
u_int32_t reg;
int i;
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: start atw_si4126_write, SYNCTL busy\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
reg = sc->sc_synctl_wr |
LSHIFT(((val & 0x3ffff) << 4) | (addr & 0xf), ATW_SYNCTL_DATA_MASK);
ATW_WRITE(sc, ATW_SYNCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
break;
}
/* restore to acceptable starting condition */
ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
if (i < 0) {
printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
sc->sc_dev.dv_xname, reg);
return ETIMEDOUT;
}
return 0;
}
/* Read 18-bit data from the 4-bit address addr in Si4126
* RF synthesizer and write the data to *val. Return 0 on success.
*
* XXX This does not seem to work. The ADM8211 must require more or
* different magic to read the chip than to write it.
*/
#ifdef ATW_DEBUG
static int
atw_si4126_read(sc, addr, val)
struct atw_softc *sc;
u_int addr;
u_int *val;
{
u_int32_t reg;
int i;
for (i = 1000; --i >= 0; ) {
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
break;
DELAY(100);
}
if (i < 0) {
printf("%s: start atw_si4126_read, SYNCTL busy\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
reg = sc->sc_synctl_rd | LSHIFT(addr & 0xf, ATW_SYNCTL_DATA_MASK);
ATW_WRITE(sc, ATW_SYNCTL, reg);
for (i = 1000; --i >= 0; ) {
DELAY(100);
if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
break;
}
ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
if (i < 0) {
printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
sc->sc_dev.dv_xname, reg);
return ETIMEDOUT;
}
if (val != NULL)
*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
ATW_SYNCTL_DATA_MASK);
return 0;
}
#endif /* ATW_DEBUG */
/* XXX is the endianness correct? test. */
#define atw_calchash(addr) \
(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
/*
* atw_filter_setup:
*
* Set the ADM8211's receive filter.
*/
static void
atw_filter_setup(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
struct ethercom *ec = &ic->ic_ec;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int hash;
u_int32_t hashes[2] = { 0, 0 };
struct ether_multi *enm;
struct ether_multistep step;
DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
sc->sc_dev.dv_xname, sc->sc_flags));
/*
* If we're running, idle the receive engine. If we're NOT running,
* we're being called from atw_init(), and our writing ATW_NAR will
* start the transmit and receive processes in motion.
*/
if (ifp->if_flags & IFF_RUNNING)
atw_idle(sc, ATW_NAR_SR);
sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_opmode |= ATW_NAR_PR;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
goto setit;
}
/*
* Program the 64-bit multicast hash filter.
*/
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
/* XXX */
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
hash = atw_calchash(enm->enm_addrlo);
hashes[hash >> 5] |= 1 << (hash & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
if (ifp->if_flags & IFF_BROADCAST) {
hash = atw_calchash(etherbroadcastaddr);
hashes[hash >> 5] |= 1 << (hash & 0x1f);
}
/* all bits set => hash is useless */
if (~(hashes[0] & hashes[1]) == 0)
goto allmulti;
setit:
if (ifp->if_flags & IFF_ALLMULTI)
sc->sc_opmode |= ATW_NAR_MM;
/* XXX in scan mode, do not filter packets. maybe this is
* unnecessary.
*/
if (ic->ic_state == IEEE80211_S_SCAN)
sc->sc_opmode |= ATW_NAR_PR;
ATW_WRITE(sc, ATW_MAR0, hashes[0]);
ATW_WRITE(sc, ATW_MAR1, hashes[1]);
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
ATW_READ(sc, ATW_NAR), sc->sc_opmode));
DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
}
/* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
* a beacon's BSSID and SSID against the preferred BSSID and SSID
* before it will raise ATW_INTR_LINKON. When the ADM8211 receives
* no beacon with the preferred BSSID and SSID in the number of
* beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
*/
static void
atw_write_bssid(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
u_int8_t *bssid;
bssid = ic->ic_bss->ni_bssid;
ATW_WRITE(sc, ATW_ABDA1,
(ATW_READ(sc, ATW_ABDA1) &
~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
ATW_WRITE(sc, ATW_BSSID0,
LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
ether_sprintf(sc->sc_bssid)));
DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
}
/* Tell the ADM8211 how many beacon intervals must pass without
* receiving a beacon with the preferred BSSID & SSID set by
* atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
* raised.
*/
static void
atw_write_bcn_thresh(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
int lost_bcn_thresh;
/* Lose link after one second or 7 beacons, whichever comes
* first, but do not lose link before 2 beacons are lost.
*
* In host AP mode, set the lost-beacon threshold to 0.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
lost_bcn_thresh = 0;
else
lost_bcn_thresh = MAX(2,
MIN(1000000/(IEEE80211_DUR_TU * ic->ic_bss->ni_intval), 7));
/* XXX resets wake-up status bits */
ATW_WRITE(sc, ATW_WCSR,
(ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
(LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
sc->sc_lost_bcn_thresh = lost_bcn_thresh;
DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
}
/* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
* 16-bit word.
*/
static void
atw_write_sram(sc, ofs, buf, buflen)
struct atw_softc *sc;
u_int ofs;
u_int8_t *buf;
u_int buflen;
{
u_int i;
u_int8_t *ptr;
memcpy(&sc->sc_sram[ofs], buf, buflen);
if (ofs % 2 != 0) {
ofs--;
buflen++;
}
if (buflen % 2 != 0)
buflen++;
assert(buflen + ofs <= ATW_SRAM_SIZE);
ptr = &sc->sc_sram[ofs];
for (i = 0; i < buflen; i += 2) {
ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
DELAY(atw_writewep_delay);
ATW_WRITE(sc, ATW_WESK,
LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
DELAY(atw_writewep_delay);
}
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
if (sc->sc_if.if_flags & IFF_DEBUG) {
int n_octets = 0;
printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
for (i = 0; i < buflen; i++) {
printf(" %02x", ptr[i]);
if (++n_octets % 24 == 0)
printf("\n");
}
if (n_octets % 24 != 0)
printf("\n");
}
}
/* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
static void
atw_write_wep(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
/* SRAM shared-key record format: key0 flags key1 ... key12 */
u_int8_t buf[IEEE80211_WEP_NKID]
[1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
u_int32_t reg;
int i;
sc->sc_wepctl = 0;
ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
return;
memset(&buf[0][0], 0, sizeof(buf));
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (ic->ic_nw_keys[i].wk_len > 5) {
buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
} else if (ic->ic_nw_keys[i].wk_len != 0) {
buf[i][1] = ATW_WEP_ENABLED;
} else {
buf[i][1] = 0;
continue;
}
buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
ic->ic_nw_keys[i].wk_len - 1);
}
reg = ATW_READ(sc, ATW_MACTEST);
reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
reg &= ~ATW_MACTEST_KEYID_MASK;
reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
ATW_WRITE(sc, ATW_MACTEST, reg);
/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
* throughout.)
*/
sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
if (sc->sc_if.if_flags & IFF_LINK2)
sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
sizeof(buf));
}
const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
static void
atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
{
struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
/* do nothing: hardware answers probe request */
break;
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
case IEEE80211_FC0_SUBTYPE_BEACON:
atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
break;
default:
(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
break;
}
return;
}
/* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
* of IBSSs with like SSID/channel but different BSSID. It joins the
* oldest IBSS (i.e., with greatest TSF time), since that is the WECA
* convention. Possibly the ADMtek chip does this for us; I will have
* to test to find out.
*
* XXX we should add the duration field of the received beacon to
* the TSF time it contains before comparing it with the ADM8211's
* TSF.
*/
static void
atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
{
struct atw_softc *sc;
struct ieee80211_frame *wh;
u_int64_t tsft, bcn_tsft;
u_int32_t tsftl, tsfth;
int do_print = 0;
sc = (struct atw_softc*)ic->ic_if.if_softc;
if (ic->ic_if.if_flags & IFF_DEBUG)
do_print = (ic->ic_if.if_flags & IFF_LINK0)
? 1 : ratecheck(&sc->sc_last_beacon, &atw_beacon_mininterval);
wh = mtod(m0, struct ieee80211_frame *);
(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
if (ic->ic_state != IEEE80211_S_RUN) {
if (do_print)
printf("%s: atw_recv_beacon: not running\n",
sc->sc_dev.dv_xname);
return;
}
if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
ic->ic_bss->ni_chan)) == NULL) {
if (do_print)
printf("%s: atw_recv_beacon: no node %s\n",
sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
return;
}
if (ieee80211_match_bss(ic, ni) != 0) {
if (do_print)
printf("%s: atw_recv_beacon: ssid mismatch %s\n",
sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
return;
}
if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
return;
if (do_print)
printf("%s: atw_recv_beacon: bssid mismatch %s\n",
sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
if (sc->sc_opmode != IEEE80211_M_IBSS)
return;
/* If we read TSFTL right before rollover, we read a TSF timer
* that is too high rather than too low. This prevents a spurious
* synchronization down the line, however, our IBSS could suffer
* from a creeping TSF....
*/
tsftl = ATW_READ(sc, ATW_TSFTL);
tsfth = ATW_READ(sc, ATW_TSFTH);
tsft = (u_int64_t)tsfth << 32 | tsftl;
bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
if (do_print)
printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
sc->sc_dev.dv_xname, tsft, bcn_tsft);
/* we are faster, let the other guy catch up */
if (bcn_tsft < tsft)
return;
if (do_print)
printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
ether_sprintf(wh->i_addr2));
ic->ic_flags &= ~IEEE80211_F_SIBSS;
#if 0
atw_tsf(sc);
#endif
/* negotiate rates with new IBSS */
ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
if (ni->ni_rates.rs_nrates == 0) {
printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
ether_sprintf(ni->ni_bssid));
return;
}
if (do_print) {
printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
ether_sprintf(ic->ic_bss->ni_bssid));
printf("%s ", ether_sprintf(ni->ni_bssid));
printf("(from %s)\n", ether_sprintf(wh->i_addr2));
}
(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
atw_write_bssid(sc);
atw_write_bcn_thresh(sc);
atw_start_beacon(sc, 1);
}
/* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
* In ad hoc mode, the SSID is written to the beacons sent by the
* ADM8211. In both ad hoc and infrastructure mode, beacons received
* with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
* indications.
*/
static void
atw_write_ssid(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
u_int8_t buf[1 /* length */ + IEEE80211_NWID_LEN +
1 /* for a round number */];
memset(buf, 0, sizeof(buf));
buf[0] = ic->ic_bss->ni_esslen;
memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
}
/* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
* In ad hoc mode, the supported rates are written to beacons sent by the
* ADM8211.
*/
static void
atw_write_sup_rates(sc)
struct atw_softc *sc;
{
struct ieee80211com *ic = &sc->sc_ic;
/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
* supported rates
*/
u_int8_t buf[1 /* length */ + IEEE80211_RATE_SIZE +
1 /* for a round number */];
memset(buf, 0, sizeof(buf));
buf[0] = ic->ic_bss->ni_rates.rs_nrates;
memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
ic->ic_bss->ni_rates.rs_nrates);
atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
}
/* Start/stop sending beacons. */
void
atw_start_beacon(struct atw_softc *sc, int start)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int32_t len, capinfo, reg_bcnt, reg_cap1;
if (ATW_IS_ENABLED(sc) == 0)
return;
len = capinfo = 0;
/* start beacons */
len = sizeof(struct ieee80211_frame) +
8 /* timestamp */ + 2 /* beacon interval */ +
2 /* capability info */ +
2 + ic->ic_bss->ni_esslen /* SSID element */ +
2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
3 /* DS parameters */ +
IEEE80211_CRC_LEN;
reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
ATW_WRITE(sc, ATW_CAP1, reg_cap1);
if (!start)
return;
/* TBD use ni_capinfo */
if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_WEPON)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
switch (ic->ic_opmode) {
case IEEE80211_M_IBSS:
len += 4; /* IBSS parameters */
capinfo |= IEEE80211_CAPINFO_IBSS;
break;
case IEEE80211_M_HOSTAP:
/* XXX 6-byte minimum TIM */
len += atw_beacon_len_adjust;
capinfo |= IEEE80211_CAPINFO_ESS;
break;
default:
return;
}
reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
ATW_WRITE(sc, ATW_CAP1, reg_cap1);
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
sc->sc_dev.dv_xname, reg_bcnt));
DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
sc->sc_dev.dv_xname, reg_cap1));
}
/* First beacon was sent at time 0 microseconds, current time is
* tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
* microseconds. Return the expected time in microseconds for the
* beacon after next.
*/
static __inline u_int64_t
atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
{
return tsft + (tbtt - tsft % tbtt);
}
/* If we've created an IBSS, write the TSF time in the ADM8211 to
* the ieee80211com.
*
* Predict the next target beacon transmission time (TBTT) and
* write it to the ADM8211.
*/
static void
atw_tsf(struct atw_softc *sc)
{
#define TBTTOFS 20 /* TU */
struct ieee80211com *ic = &sc->sc_ic;
u_int64_t tsft, tbtt;
if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
((ic->ic_opmode == IEEE80211_M_IBSS) &&
(ic->ic_flags & IEEE80211_F_SIBSS))) {
tsft = ATW_READ(sc, ATW_TSFTH);
tsft <<= 32;
tsft |= ATW_READ(sc, ATW_TSFTL);
*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
} else
tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
tbtt = atw_predict_beacon(tsft,
ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
/* skip one more beacon so that the TBTT cannot pass before
* we've programmed it, and also so that we can subtract a
* few TU so that we wake a little before TBTT.
*/
tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
/* wake up a little early */
tbtt -= TBTTOFS * IEEE80211_DUR_TU;
DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
sc->sc_dev.dv_xname, tsft, tbtt));
ATW_WRITE(sc, ATW_TOFS1,
LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
LSHIFT(
MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
ATW_TOFS1_TBTTPRE_MASK));
#undef TBTTOFS
}
static void
atw_next_scan(void *arg)
{
struct atw_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int s;
/* don't call atw_start w/o network interrupts blocked */
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ifp);
splx(s);
}
/* Synchronize the hardware state with the software state. */
static int
atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = &ic->ic_if;
struct atw_softc *sc = ifp->if_softc;
enum ieee80211_state ostate;
int error;
ostate = ic->ic_state;
if (nstate == IEEE80211_S_INIT) {
callout_stop(&sc->sc_scan_ch);
sc->sc_cur_chan = IEEE80211_CHAN_ANY;
atw_start_beacon(sc, 0);
return (*sc->sc_newstate)(ic, nstate, arg);
}
if ((error = atw_tune(sc)) != 0)
return error;
switch (nstate) {
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_INIT:
panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
break;
case IEEE80211_S_SCAN:
memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
atw_write_bssid(sc);
callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
atw_next_scan, sc);
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_STA)
break;
/*FALLTHROUGH*/
case IEEE80211_S_AUTH:
atw_write_bssid(sc);
atw_write_bcn_thresh(sc);
atw_write_ssid(sc);
atw_write_sup_rates(sc);
if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
ic->ic_opmode == IEEE80211_M_MONITOR)
break;
/* set listen interval
* XXX do software units agree w/ hardware?
*/
ATW_WRITE(sc, ATW_BPLI,
LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
ATW_BPLI_LI_MASK));
DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
atw_tsf(sc);
break;
}
if (ostate == IEEE80211_S_SCAN && nstate != IEEE80211_S_SCAN)
callout_stop(&sc->sc_scan_ch);
if (nstate == IEEE80211_S_RUN &&
(ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS))
atw_start_beacon(sc, 1);
else
atw_start_beacon(sc, 0);
return (*sc->sc_newstate)(ic, nstate, arg);
}
/*
* atw_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
atw_add_rxbuf(sc, idx)
struct atw_softc *sc;
int idx;
{
struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("atw_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
ATW_INIT_RXDESC(sc, idx);
return (0);
}
/*
* atw_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
void
atw_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct atw_txsoft *txs;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Disable interrupts. */
ATW_WRITE(sc, ATW_IER, 0);
/* Stop the transmit and receive processes. */
sc->sc_opmode = 0;
ATW_WRITE(sc, ATW_NAR, 0);
ATW_WRITE(sc, ATW_TDBD, 0);
ATW_WRITE(sc, ATW_TDBP, 0);
ATW_WRITE(sc, ATW_RDB, 0);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (disable) {
atw_rxdrain(sc);
atw_disable(sc);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
/* XXX */
atw_reset(sc);
}
/*
* atw_rxdrain:
*
* Drain the receive queue.
*/
void
atw_rxdrain(sc)
struct atw_softc *sc;
{
struct atw_rxsoft *rxs;
int i;
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL)
continue;
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
/*
* atw_detach:
*
* Detach an ADM8211 interface.
*/
int
atw_detach(sc)
struct atw_softc *sc;
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct atw_rxsoft *rxs;
struct atw_txsoft *txs;
int i;
/*
* Succeed now if there isn't any work to do.
*/
if ((sc->sc_flags & ATWF_ATTACHED) == 0)
return (0);
ieee80211_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < ATW_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
}
for (i = 0; i < ATW_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct atw_control_data));
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
shutdownhook_disestablish(sc->sc_sdhook);
powerhook_disestablish(sc->sc_powerhook);
if (sc->sc_srom)
free(sc->sc_srom, M_DEVBUF);
return (0);
}
/* atw_shutdown: make sure the interface is stopped at reboot time. */
void
atw_shutdown(arg)
void *arg;
{
struct atw_softc *sc = arg;
atw_stop(&sc->sc_ic.ic_if, 1);
}
int
atw_intr(arg)
void *arg;
{
struct atw_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
u_int32_t status, rxstatus, txstatus, linkstatus;
int handled = 0, txthresh;
#ifdef DEBUG
if (ATW_IS_ENABLED(sc) == 0)
panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
#endif
/*
* If the interface isn't running, the interrupt couldn't
* possibly have come from us.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
(sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return (0);
for (;;) {
status = ATW_READ(sc, ATW_STSR);
if (status)
ATW_WRITE(sc, ATW_STSR, status);
if (sc->sc_intr_ack != NULL)
(*sc->sc_intr_ack)(sc);
#ifdef ATW_DEBUG
#define PRINTINTR(flag) do { \
if ((status & flag) != 0) { \
printf("%s" #flag, delim); \
delim = ","; \
} \
} while (0)
if (atw_debug > 1 && status) {
const char *delim = "<";
printf("%s: reg[STSR] = %x",
sc->sc_dev.dv_xname, status);
PRINTINTR(ATW_INTR_FBE);
PRINTINTR(ATW_INTR_LINKOFF);
PRINTINTR(ATW_INTR_LINKON);
PRINTINTR(ATW_INTR_RCI);
PRINTINTR(ATW_INTR_RDU);
PRINTINTR(ATW_INTR_RPS);
PRINTINTR(ATW_INTR_TCI);
PRINTINTR(ATW_INTR_TDU);
PRINTINTR(ATW_INTR_TLT);
PRINTINTR(ATW_INTR_TPS);
PRINTINTR(ATW_INTR_TRT);
PRINTINTR(ATW_INTR_TUF);
PRINTINTR(ATW_INTR_BCNTC);
PRINTINTR(ATW_INTR_ATIME);
PRINTINTR(ATW_INTR_TBTT);
PRINTINTR(ATW_INTR_TSCZ);
PRINTINTR(ATW_INTR_TSFTF);
printf(">\n");
}
#undef PRINTINTR
#endif /* ATW_DEBUG */
if ((status & sc->sc_inten) == 0)
break;
handled = 1;
rxstatus = status & sc->sc_rxint_mask;
txstatus = status & sc->sc_txint_mask;
linkstatus = status & sc->sc_linkint_mask;
if (linkstatus) {
atw_linkintr(sc, linkstatus);
}
if (rxstatus) {
/* Grab any new packets. */
atw_rxintr(sc);
if (rxstatus & ATW_INTR_RDU) {
printf("%s: receive ring overrun\n",
sc->sc_dev.dv_xname);
/* Get the receive process going again. */
ATW_WRITE(sc, ATW_RDR, 0x1);
break;
}
}
if (txstatus) {
/* Sweep up transmit descriptors. */
atw_txintr(sc);
if (txstatus & ATW_INTR_TLT)
DPRINTF(sc, ("%s: tx lifetime exceeded\n",
sc->sc_dev.dv_xname));
if (txstatus & ATW_INTR_TRT)
DPRINTF(sc, ("%s: tx retry limit exceeded\n",
sc->sc_dev.dv_xname));
/* If Tx under-run, increase our transmit threshold
* if another is available.
*/
txthresh = sc->sc_txthresh + 1;
if ((txstatus & ATW_INTR_TUF) &&
sc->sc_txth[txthresh].txth_name != NULL) {
/* Idle the transmit process. */
atw_idle(sc, ATW_NAR_ST);
sc->sc_txthresh = txthresh;
sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
sc->sc_opmode |=
sc->sc_txth[txthresh].txth_opmode;
printf("%s: transmit underrun; new "
"threshold: %s\n", sc->sc_dev.dv_xname,
sc->sc_txth[txthresh].txth_name);
/* Set the new threshold and restart
* the transmit process.
*/
ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
/* XXX Log every Nth underrun from
* XXX now on?
*/
}
}
if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
if (status & ATW_INTR_TPS)
printf("%s: transmit process stopped\n",
sc->sc_dev.dv_xname);
if (status & ATW_INTR_RPS)
printf("%s: receive process stopped\n",
sc->sc_dev.dv_xname);
(void)atw_init(ifp);
break;
}
if (status & ATW_INTR_FBE) {
printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
(void)atw_init(ifp);
break;
}
/*
* Not handled:
*
* Transmit buffer unavailable -- normal
* condition, nothing to do, really.
*
* Early receive interrupt -- not available on
* all chips, we just use RI. We also only
* use single-segment receive DMA, so this
* is mostly useless.
*
* TBD others
*/
}
/* Try to get more packets going. */
atw_start(ifp);
return (handled);
}
/*
* atw_idle:
*
* Cause the transmit and/or receive processes to go idle.
*
* XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
* process in STSR if I clear SR or ST after the process has already
* ceased. Fair enough. But the Rx process status bits in ATW_TEST0
* do not seem to be too reliable. Perhaps I have the sense of the
* Rx bits switched with the Tx bits?
*/
void
atw_idle(sc, bits)
struct atw_softc *sc;
u_int32_t bits;
{
u_int32_t ackmask = 0, opmode, stsr, test0;
int i, s;
/* without this, somehow we run concurrently w/ interrupt handler */
s = splnet();
opmode = sc->sc_opmode & ~bits;
if (bits & ATW_NAR_SR)
ackmask |= ATW_INTR_RPS;
if (bits & ATW_NAR_ST) {
ackmask |= ATW_INTR_TPS;
/* set ATW_NAR_HF to flush TX FIFO. */
opmode |= ATW_NAR_HF;
}
ATW_WRITE(sc, ATW_NAR, opmode);
for (i = 0; i < 1000; i++) {
stsr = ATW_READ(sc, ATW_STSR);
if ((stsr & ackmask) == ackmask)
break;
DELAY(10);
}
ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
if ((stsr & ackmask) == ackmask)
goto out;
test0 = ATW_READ(sc, ATW_TEST0);
if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
(test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
printf("%s: transmit process not idle [%s]\n",
sc->sc_dev.dv_xname,
atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
printf("%s: bits %08x test0 %08x stsr %08x\n",
sc->sc_dev.dv_xname, bits, test0, stsr);
}
if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
(test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
sc->sc_dev.dv_xname,
atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
sc->sc_dev.dv_xname, bits, test0, stsr));
}
out:
splx(s);
return;
}
/*
* atw_linkintr:
*
* Helper; handle link-status interrupts.
*/
void
atw_linkintr(sc, linkstatus)
struct atw_softc *sc;
u_int32_t linkstatus;
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (linkstatus & ATW_INTR_LINKON) {
DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
sc->sc_rescan_timer = 0;
} else if (linkstatus & ATW_INTR_LINKOFF) {
DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
switch (ic->ic_opmode) {
case IEEE80211_M_IBSS:
if (ic->ic_flags & IEEE80211_F_SIBSS)
return;
/* FALL THROUGH */
case IEEE80211_M_STA:
sc->sc_rescan_timer = 3;
ic->ic_if.if_timer = 1;
break;
default:
break;
}
}
}
/*
* atw_rxintr:
*
* Helper; handle receive interrupts.
*/
void
atw_rxintr(sc)
struct atw_softc *sc;
{
static int rate_tbl[] = {2, 4, 11, 22, 44};
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
struct ifnet *ifp = &ic->ic_if;
struct atw_rxsoft *rxs;
struct mbuf *m;
u_int32_t rxstat;
int i, len, rate, rate0, rssi;
for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
if (rxstat & ATW_RXSTAT_OWN)
break; /* We have processed all receive buffers. */
ATW_DPRINTF3(("%s: rssi %d\n", sc->sc_dev.dv_xname, rssi));
/*
* Make sure the packet fit in one buffer. This should
* always be the case.
*/
if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
(ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
printf("%s: incoming packet spilled, resetting\n",
sc->sc_dev.dv_xname);
(void)atw_init(ifp);
return;
}
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
* If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
* error.
*/
if ((rxstat & ATW_RXSTAT_ES) != 0 &&
((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
(rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
ATW_RXSTAT_ICVE)) != 0)) {
#define PRINTERR(bit, str) \
if (rxstat & (bit)) \
printf("%s: receive error: %s\n", \
sc->sc_dev.dv_xname, str)
ifp->if_ierrors++;
PRINTERR(ATW_RXSTAT_DE, "descriptor error");
PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
#undef PRINTERR
ATW_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note the ADM8211
* includes the CRC in promiscuous mode.
*/
len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (atw_add_rxbuf(sc, i) != 0) {
ifp->if_ierrors++;
ATW_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
ifp->if_ipackets++;
if (sc->sc_opmode & ATW_NAR_PR)
m->m_flags |= M_HASFCS;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
rate = 0;
else
rate = rate_tbl[rate0];
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if it's for us.
*/
if (sc->sc_radiobpf) {
/* TBD capture DLT_IEEE802_11_RADIO */
}
#endif /* NPBFILTER > 0 */
wh = mtod(m, struct ieee80211_frame *);
if (ic->ic_opmode != IEEE80211_M_STA) {
ni = ieee80211_find_node(ic, wh->i_addr2);
if (ni == NULL)
ni = ieee80211_ref_node(ic->ic_bss);
} else
ni = ieee80211_ref_node(ic->ic_bss);
ieee80211_input(ifp, m, ni, rssi, 0);
/*
* The frame may have caused the node to be marked for
* reclamation (e.g. in response to a DEAUTH message)
* so use free_node here instead of unref_node.
*/
if (ni == ic->ic_bss)
ieee80211_unref_node(&ni);
else
ieee80211_free_node(ic, ni);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* atw_txintr:
*
* Helper; handle transmit interrupts.
*/
void
atw_txintr(sc)
struct atw_softc *sc;
{
#define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
#define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
"\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct atw_txsoft *txs;
u_int32_t txstat;
DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
sc->sc_dev.dv_xname, sc->sc_flags));
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
ATW_CDTXSYNC(sc, txs->txs_lastdesc,
txs->txs_ndescs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
#ifdef ATW_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
int i;
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
printf(" descriptor %d:\n", i);
printf(" at_status: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_stat));
printf(" at_flags: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_flags));
printf(" at_buf1: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_buf1));
printf(" at_buf2: 0x%08x\n",
le32toh(sc->sc_txdescs[i].at_buf2));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
if (txstat & ATW_TXSTAT_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
(txstat & TXSTAT_ERRMASK) != 0) {
bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
txstat_buf, sizeof(txstat_buf));
printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
txstat_buf,
MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
}
/*
* Check for errors and collisions.
*/
if (txstat & ATW_TXSTAT_TUF)
sc->sc_stats.ts_tx_tuf++;
if (txstat & ATW_TXSTAT_TLT)
sc->sc_stats.ts_tx_tlt++;
if (txstat & ATW_TXSTAT_TRT)
sc->sc_stats.ts_tx_trt++;
if (txstat & ATW_TXSTAT_TRO)
sc->sc_stats.ts_tx_tro++;
if (txstat & ATW_TXSTAT_SOFBR) {
sc->sc_stats.ts_tx_sofbr++;
}
if ((txstat & ATW_TXSTAT_ES) == 0)
ifp->if_collisions +=
MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
else
ifp->if_oerrors++;
ifp->if_opackets++;
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL)
sc->sc_tx_timer = 0;
#undef TXSTAT_ERRMASK
#undef TXSTAT_FMT
}
/*
* atw_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
atw_watchdog(ifp)
struct ifnet *ifp;
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (ATW_IS_ENABLED(sc) == 0)
return;
if (sc->sc_rescan_timer) {
if (--sc->sc_rescan_timer == 0)
(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0 &&
!SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
printf("%s: transmit timeout\n", ifp->if_xname);
ifp->if_oerrors++;
(void)atw_init(ifp);
atw_start(ifp);
}
}
if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
ifp->if_timer = 1;
ieee80211_watchdog(ifp);
}
/* Compute the 802.11 Duration field and the PLCP Length fields for
* a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
* Write the fields to the ADM8211 Tx header, frm.
*
* TBD use the fragmentation threshold to find the right duration for
* the first & last fragments.
*
* TBD make certain of the duration fields applied by the ADM8211 to each
* fragment. I think that the ADM8211 knows how to subtract the CTS
* duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
* I also think that the ADM8211 does *some* arithmetic for us, because
* otherwise I think we would have to set a first duration for CTS/first
* fragment, a second duration for fragments between the first and the
* last, and a third duration for the last fragment.
*
* TBD make certain that duration fields reflect addition of FCS/WEP
* and correct duration arithmetic as necessary.
*/
static void
atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
int len)
{
int remainder;
/* deal also with encrypted fragments */
if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
sc->sc_dev.dv_xname));
len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_CRCLEN;
}
/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
* duration (XXX added by MAC?).
*/
frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
if (rate <= 4)
/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
IEEE80211_DUR_DS_SHORT_PREAMBLE +
IEEE80211_DUR_DS_FAST_PLCPHDR) +
IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
else
/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
IEEE80211_DUR_DS_SHORT_PREAMBLE +
IEEE80211_DUR_DS_FAST_PLCPHDR) +
IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
/* lengthen duration if long preamble */
if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
frm->atw_head_dur +=
3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
IEEE80211_DUR_DS_FAST_PLCPHDR);
if (remainder != 0)
frm->atw_head_dur++;
if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
(rate == 2 || rate == 4)) {
/* derived from Linux: how could this be right? */
frm->atw_head_plcplen = frm->atw_head_dur;
} else {
frm->atw_head_plcplen = (16 * len) / rate;
remainder = (80 * len) % (rate * 5);
if (remainder != 0) {
frm->atw_head_plcplen++;
/* XXX magic */
if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
rate == 22 && remainder <= 30)
frm->atw_head_plcplen |= 0x8000;
}
}
frm->atw_tail_plcplen = frm->atw_head_plcplen =
htole16(frm->atw_head_plcplen);
frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
}
#ifdef ATW_DEBUG
static void
atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
{
struct atw_softc *sc = ifp->if_softc;
struct mbuf *m;
int i, noctets = 0;
printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
m0->m_pkthdr.len);
for (m = m0; m; m = m->m_next) {
if (m->m_len == 0)
continue;
for (i = 0; i < m->m_len; i++) {
printf(" %02x", ((u_int8_t*)m->m_data)[i]);
if (++noctets % 24 == 0)
printf("\n");
}
}
printf("%s%s: %d bytes emitted\n",
(noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
}
#endif /* ATW_DEBUG */
/*
* atw_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
atw_start(ifp)
struct ifnet *ifp;
{
struct atw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
struct atw_frame *hh;
struct mbuf *m0, *m;
struct atw_txsoft *txs, *last_txs;
struct atw_txdesc *txd;
int do_encrypt, rate;
bus_dmamap_t dmamap;
int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
#if 0 /* TBD ??? */
if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
return;
#endif
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = sc->sc_txnext;
DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
sc->sc_dev.dv_xname, ofree, firsttx));
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
do_encrypt = 0;
/*
* Grab a packet off the management queue, if it
* is not empty. Otherwise, from the data queue.
*/
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 != NULL) {
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
} else {
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
ifp->if_oerrors++;
break;
}
}
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ic->ic_rawbpf != NULL)
bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
if (sc->sc_radiobpf != NULL)
; /* TBD tap w/ radio header */
#endif /* NBPFILTER > 0 */
M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
if (ni != NULL && ni != ic->ic_bss)
ieee80211_free_node(ic, ni);
if (m0 == NULL) {
ifp->if_oerrors++;
break;
}
/* just to make sure. */
m0 = m_pullup(m0, sizeof(struct atw_frame));
if (m0 == NULL) {
ifp->if_oerrors++;
break;
}
hh = mtod(m0, struct atw_frame *);
wh = &hh->atw_ihdr;
do_encrypt = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
/* Copy everything we need from the 802.11 header:
* Frame Control; address 1, address 3, or addresses
* 3 and 4. NIC fills in BSSID, SA.
*/
if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
panic("%s: illegal WDS frame",
sc->sc_dev.dv_xname);
memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
} else
memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
/* initialize remaining Tx parameters */
memset(&hh->u, 0, sizeof(hh->u));
rate = MAX(ieee80211_get_rate(ic), 2);
hh->atw_rate = rate * 5;
/* XXX this could be incorrect if M_FCS. _encap should
* probably strip FCS just in case it sticks around in
* bridged packets.
*/
hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
hh->atw_paylen = htole16(m0->m_pkthdr.len -
sizeof(struct atw_frame));
#if 0
/* this virtually guaranteed that WEP-encrypted frames
* are fragmented. oops.
*/
hh->atw_fragthr = htole16(m0->m_pkthdr.len -
sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
#else
hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
#endif
hh->atw_rtylmt = 3;
hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
if (do_encrypt) {
hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
hh->atw_keyid = ic->ic_wep_txkey;
}
/* TBD 4-addr frames */
atw_frame_setdurs(sc, hh, rate,
m0->m_pkthdr.len - sizeof(struct atw_frame) +
sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
/* never fragment multicast frames */
if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
} else if (sc->sc_flags & ATWF_RTSCTS) {
hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
}
#ifdef ATW_DEBUG
/* experimental stuff */
if (atw_xrtylmt != ~0)
hh->atw_rtylmt = atw_xrtylmt;
if (atw_xhdrctl != 0)
hh->atw_hdrctl |= htole16(atw_xhdrctl);
if (atw_xservice != IEEE80211_PLCP_SERVICE)
hh->atw_service = atw_xservice;
if (atw_xpaylen != 0)
hh->atw_paylen = htole16(atw_xpaylen);
hh->atw_fragnum = 0;
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
printf("%s: dst = %s, rate = 0x%02x, "
"service = 0x%02x, paylen = 0x%04x\n",
sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
hh->atw_rate, hh->atw_service, hh->atw_paylen);
printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
"dur1 = 0x%04x, dur2 = 0x%04x, "
"dur3 = 0x%04x, rts_dur = 0x%04x\n",
sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
hh->atw_tail_plcplen, hh->atw_head_plcplen,
hh->atw_tail_dur, hh->atw_head_dur);
printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
"fragnum = 0x%02x, rtylmt = 0x%04x\n",
sc->sc_dev.dv_xname, hh->atw_hdrctl,
hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
printf("%s: keyid = %d\n",
sc->sc_dev.dv_xname, hh->atw_keyid);
atw_dump_pkt(ifp, m0);
}
#endif /* ATW_DEBUG */
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. Copy and try (once) again if the packet
* didn't fit in the alloted number of segments.
*/
for (first = 1;
(error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
first = 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->sc_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->sc_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
m_freem(m0);
m0 = m;
m = NULL;
}
if (error != 0) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->sc_dev.dv_xname, error);
m_freem(m0);
break;
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > sc->sc_txfree) {
/*
* Not enough free descriptors to transmit
* this packet. Unload the DMA map and
* drop the packet. Notify the upper layer
* that there are no more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX it is worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
m_freem(m0);
break;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* XXX arbitrary retry limit; 8 because I have seen it in
* use already and maybe 0 means "no tries" !
*/
ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
sc->sc_dev.dv_xname, rate * 5));
ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
/*
* Initialize the transmit descriptors.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = ATW_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
txd = &sc->sc_txdescs[nexttx];
txd->at_ctl = ctl |
((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
txd->at_flags =
htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
ATW_TXFLAG_TBS1_MASK)) |
((nexttx == (ATW_NTXDESC - 1))
? htole32(ATW_TXFLAG_TER) : 0);
lasttx = nexttx;
}
KASSERT(lasttx != -1, ("bad lastx"));
/* Set `first segment' and `last segment' appropriately. */
sc->sc_txdescs[sc->sc_txnext].at_flags |=
htole32(ATW_TXFLAG_FS);
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
#ifdef ATW_DEBUG
if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
printf(" txsoft %p transmit chain:\n", txs);
for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
printf(" descriptor %d:\n", seg);
printf(" at_ctl: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_ctl));
printf(" at_flags: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_flags));
printf(" at_buf1: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_buf1));
printf(" at_buf2: 0x%08x\n",
le32toh(sc->sc_txdescs[seg].at_buf2));
if (seg == lasttx)
break;
}
}
#endif
/* Sync the descriptors we're using. */
ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndescs = dmamap->dm_nsegs;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
last_txs = txs;
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
sc->sc_dev.dv_xname, lasttx, firsttx));
/*
* Cause a transmit interrupt to happen on the
* last packet we enqueued.
*/
sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
ATW_CDTXSYNC(sc, lasttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descriptor to the chip now.
*/
sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
ATW_CDTXSYNC(sc, firsttx, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Wake up the transmitter. */
/* XXX USE AUTOPOLLING? */
ATW_WRITE(sc, ATW_TDR, 0x1);
/* Set a watchdog timer in case the chip flakes out. */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
/*
* atw_power:
*
* Power management (suspend/resume) hook.
*/
void
atw_power(why, arg)
int why;
void *arg;
{
struct atw_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
s = splnet();
switch (why) {
case PWR_STANDBY:
/* XXX do nothing. */
break;
case PWR_SUSPEND:
atw_stop(ifp, 0);
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
atw_init(ifp);
}
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}
/*
* atw_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
atw_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct atw_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
/* XXX monkey see, monkey do. comes from wi_ioctl. */
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return ENXIO;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ATW_IS_ENABLED(sc)) {
/*
* To avoid rescanning another access point,
* do not call atw_init() here. Instead,
* only reflect media settings.
*/
atw_filter_setup(sc);
} else
error = atw_init(ifp);
} else if (ATW_IS_ENABLED(sc))
atw_stop(ifp, 1);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
ether_delmulti(ifr, &sc->sc_ic.ic_ec);
if (error == ENETRESET) {
if (ATW_IS_ENABLED(sc))
atw_filter_setup(sc); /* do not rescan */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (ATW_IS_ENABLED(sc))
error = atw_init(ifp);
else
error = 0;
}
break;
}
/* Try to get more packets going. */
if (ATW_IS_ENABLED(sc))
atw_start(ifp);
splx(s);
return (error);
}
static int
atw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
(IFF_RUNNING|IFF_UP))
atw_init(ifp); /* XXX lose error */
error = 0;
}
return error;
}
static void
atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct atw_softc *sc = ifp->if_softc;
if (ATW_IS_ENABLED(sc) == 0) {
imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
imr->ifm_status = 0;
return;
}
ieee80211_media_status(ifp, imr);
}