2124 lines
53 KiB
C
2124 lines
53 KiB
C
/* $NetBSD: kern_sysctl.c,v 1.157 2003/12/29 04:19:28 atatat Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2003 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Brown.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Mike Karels at Berkeley Software Design, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sysctl.c 8.9 (Berkeley) 5/20/95
|
|
*/
|
|
|
|
/*
|
|
* sysctl system call.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_sysctl.c,v 1.157 2003/12/29 04:19:28 atatat Exp $");
|
|
|
|
#include "opt_defcorename.h"
|
|
#include "opt_insecure.h"
|
|
#include "ksyms.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/ksyms.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <machine/stdarg.h>
|
|
|
|
MALLOC_DEFINE(M_SYSCTLNODE, "sysctlnode", "sysctl node structures");
|
|
MALLOC_DEFINE(M_SYSCTLDATA, "sysctldata", "misc sysctl data");
|
|
|
|
static int sysctl_mmap(SYSCTLFN_RWPROTO);
|
|
static int sysctl_alloc(struct sysctlnode *, int);
|
|
static int sysctl_realloc(struct sysctlnode *);
|
|
|
|
/*
|
|
* the "root" of the new sysctl tree
|
|
*/
|
|
static struct sysctlnode sysctl_root = {
|
|
.sysctl_flags = SYSCTL_ROOT|
|
|
SYSCTL_READWRITE|
|
|
CTLTYPE_NODE,
|
|
.sysctl_num = 0,
|
|
.sysctl_size = sizeof(struct sysctlnode),
|
|
.sysctl_name = "(root)",
|
|
};
|
|
|
|
/*
|
|
* link set of functions that add nodes at boot time (see also
|
|
* sysctl_buildtree())
|
|
*/
|
|
__link_set_decl(sysctl_funcs, sysctl_setup_func);
|
|
|
|
/*
|
|
* The `sysctl_lock' is intended to serialize access to the sysctl
|
|
* tree. Given that it is now (a) dynamic, and (b) most consumers of
|
|
* sysctl are going to be copying data out, the old `sysctl_memlock'
|
|
* has been `upgraded' to simply guard the whole tree.
|
|
*
|
|
* The two new data here are to keep track of the locked chunk of
|
|
* memory, if there is one, so that it can be released more easily
|
|
* from anywhere.
|
|
*/
|
|
struct lock sysctl_treelock;
|
|
caddr_t sysctl_memaddr;
|
|
size_t sysctl_memsize;
|
|
|
|
/*
|
|
* Attributes stored in the kernel.
|
|
*/
|
|
char hostname[MAXHOSTNAMELEN];
|
|
int hostnamelen;
|
|
|
|
char domainname[MAXHOSTNAMELEN];
|
|
int domainnamelen;
|
|
|
|
long hostid;
|
|
|
|
#ifdef INSECURE
|
|
int securelevel = -1;
|
|
#else
|
|
int securelevel = 0;
|
|
#endif
|
|
|
|
#ifndef DEFCORENAME
|
|
#define DEFCORENAME "%n.core"
|
|
#endif
|
|
char defcorename[MAXPATHLEN] = DEFCORENAME;
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 0: Some simple glue
|
|
* ********************************************************************
|
|
* By wrapping copyin(), copyout(), and copyinstr() like this, we can
|
|
* stop caring about who's calling us and simplify some code a bunch.
|
|
* ********************************************************************
|
|
*/
|
|
static inline int
|
|
sysctl_copyin(const struct lwp *l, const void *uaddr, void *kaddr, size_t len)
|
|
{
|
|
|
|
if (l != NULL)
|
|
return (copyin(uaddr, kaddr, len));
|
|
else
|
|
return (kcopy(uaddr, kaddr, len));
|
|
}
|
|
|
|
static inline int
|
|
sysctl_copyout(const struct lwp *l, const void *kaddr, void *uaddr, size_t len)
|
|
{
|
|
|
|
if (l != NULL)
|
|
return (copyout(kaddr, uaddr, len));
|
|
else
|
|
return (kcopy(kaddr, uaddr, len));
|
|
}
|
|
|
|
static inline int
|
|
sysctl_copyinstr(const struct lwp *l, const void *uaddr, void *kaddr,
|
|
size_t len, size_t *done)
|
|
{
|
|
|
|
if (l != NULL)
|
|
return (copyinstr(uaddr, kaddr, len, done));
|
|
else
|
|
return (copystr(uaddr, kaddr, len, done));
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Initialize sysctl subsystem.
|
|
* ********************************************************************
|
|
*/
|
|
void
|
|
sysctl_init(void)
|
|
{
|
|
sysctl_setup_func **sysctl_setup, f;
|
|
|
|
lockinit(&sysctl_treelock, PRIBIO|PCATCH, "sysctl", 0, 0);
|
|
|
|
/*
|
|
* dynamic mib numbers start here
|
|
*/
|
|
sysctl_root.sysctl_num = CREATE_BASE;
|
|
|
|
__link_set_foreach(sysctl_setup, sysctl_funcs) {
|
|
/*
|
|
* XXX - why do i have to coerce the pointers like this?
|
|
*/
|
|
f = (void*)*sysctl_setup;
|
|
(*f)();
|
|
}
|
|
|
|
/*
|
|
* setting this means no more permanent nodes can be added,
|
|
* trees that claim to be readonly at the root now are, and if
|
|
* the main tree is readonly, *everything* is.
|
|
*/
|
|
sysctl_root.sysctl_flags |= SYSCTL_PERMANENT;
|
|
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* The main native sysctl system call itself.
|
|
* ********************************************************************
|
|
*/
|
|
int
|
|
sys___sysctl(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys___sysctl_args /* {
|
|
syscallarg(int *) name;
|
|
syscallarg(u_int) namelen;
|
|
syscallarg(void *) old;
|
|
syscallarg(size_t *) oldlenp;
|
|
syscallarg(void *) new;
|
|
syscallarg(size_t) newlen;
|
|
} */ *uap = v;
|
|
int error, nerror, name[CTL_MAXNAME];
|
|
size_t oldlen, savelen, *oldlenp;
|
|
|
|
/*
|
|
* get oldlen
|
|
*/
|
|
oldlen = 0;
|
|
oldlenp = SCARG(uap, oldlenp);
|
|
if (oldlenp != NULL) {
|
|
error = copyin(oldlenp, &oldlen, sizeof(oldlen));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
savelen = oldlen;
|
|
|
|
/*
|
|
* top-level sysctl names may or may not be non-terminal, but
|
|
* we don't care
|
|
*/
|
|
if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 1)
|
|
return (EINVAL);
|
|
error = copyin(SCARG(uap, name), &name,
|
|
SCARG(uap, namelen) * sizeof(int));
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* wire old so that copyout() is less likely to fail?
|
|
*/
|
|
error = sysctl_lock(l, SCARG(uap, old), savelen);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* do sysctl work (NULL means main built-in default tree)
|
|
*/
|
|
error = sysctl_dispatch(&name[0], SCARG(uap, namelen),
|
|
SCARG(uap, old), &oldlen,
|
|
SCARG(uap, new), SCARG(uap, newlen),
|
|
&name[0], l, NULL);
|
|
|
|
/*
|
|
* release the sysctl lock
|
|
*/
|
|
sysctl_unlock(l);
|
|
|
|
/*
|
|
* set caller's oldlen to new value even in the face of an
|
|
* error (if this gets an error and they didn't have one, they
|
|
* get this one)
|
|
*/
|
|
if (oldlenp) {
|
|
nerror = copyout(&oldlen, oldlenp, sizeof(oldlen));
|
|
if (error == 0)
|
|
error = nerror;
|
|
}
|
|
|
|
/*
|
|
* if the only problem is that we weren't given enough space,
|
|
* that's an ENOMEM error
|
|
*/
|
|
if (error == 0 && SCARG(uap, old) != NULL && savelen < oldlen)
|
|
error = ENOMEM;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 1: How the tree is used
|
|
* ********************************************************************
|
|
* Implementations of sysctl for emulations should typically need only
|
|
* these three functions in this order: lock the tree, dispatch
|
|
* request into it, unlock the tree.
|
|
* ********************************************************************
|
|
*/
|
|
int
|
|
sysctl_lock(struct lwp *l, void *oldp, size_t savelen)
|
|
{
|
|
int error = 0;
|
|
|
|
error = lockmgr(&sysctl_treelock, LK_EXCLUSIVE, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
if (l != NULL && oldp != NULL && savelen) {
|
|
error = uvm_vslock(l->l_proc, oldp, savelen, VM_PROT_WRITE);
|
|
if (error) {
|
|
(void) lockmgr(&sysctl_treelock, LK_RELEASE, NULL);
|
|
return (error);
|
|
}
|
|
sysctl_memaddr = oldp;
|
|
sysctl_memsize = savelen;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* the main sysctl dispatch routine. scans the given tree and picks a
|
|
* function to call based on what it finds.
|
|
* ********************************************************************
|
|
*/
|
|
int
|
|
sysctl_dispatch(SYSCTLFN_RWARGS)
|
|
{
|
|
int error;
|
|
sysctlfn fn;
|
|
int ni;
|
|
|
|
fn = NULL;
|
|
error = sysctl_locate(l, name, namelen, &rnode, &ni);
|
|
|
|
/*
|
|
* the node we ended up at has a function, so call it. it can
|
|
* hand off to query or create if it wants to.
|
|
*/
|
|
if (rnode->sysctl_func != NULL)
|
|
fn = rnode->sysctl_func;
|
|
|
|
/*
|
|
* we found the node they were looking for, so do a lookup.
|
|
*/
|
|
else if (error == 0)
|
|
fn = (sysctlfn)sysctl_lookup; /* XXX may write to rnode */
|
|
|
|
/*
|
|
* prospective parent node found, but the terminal node was
|
|
* not. generic operations associate with the parent.
|
|
*/
|
|
else if (error == ENOENT && (ni + 1) == namelen && name[ni] < 0) {
|
|
switch (name[ni]) {
|
|
case CTL_QUERY:
|
|
fn = sysctl_query;
|
|
break;
|
|
case CTL_CREATE:
|
|
#if NKSYMS > 0
|
|
case CTL_CREATESYM:
|
|
#endif /* NKSYMS > 0 */
|
|
fn = (sysctlfn)sysctl_create; /* we own the rnode */
|
|
break;
|
|
case CTL_DESTROY:
|
|
fn = (sysctlfn)sysctl_destroy; /* we own the rnode */
|
|
break;
|
|
case CTL_MMAP:
|
|
fn = (sysctlfn)sysctl_mmap; /* we own the rnode */
|
|
break;
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* after all of that, maybe we found someone who knows how to
|
|
* get us what we want?
|
|
*/
|
|
if (fn != NULL)
|
|
error = (*fn)(name + ni, namelen - ni, oldp, oldlenp,
|
|
newp, newlen, name, l, rnode);
|
|
|
|
else if (error == 0)
|
|
error = EOPNOTSUPP;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Releases the tree lock. Note that if uvm_vslock() was called when
|
|
* the lock was taken, we release that memory now. By keeping track
|
|
* of where and how much by ourselves, the lock can be released much
|
|
* more easily from anywhere.
|
|
* ********************************************************************
|
|
*/
|
|
void
|
|
sysctl_unlock(struct lwp *l)
|
|
{
|
|
|
|
if (l != NULL && sysctl_memsize != 0) {
|
|
uvm_vsunlock(l->l_proc, sysctl_memaddr, sysctl_memsize);
|
|
sysctl_memsize = 0;
|
|
}
|
|
|
|
(void) lockmgr(&sysctl_treelock, LK_RELEASE, NULL);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 2: The main tree interfaces
|
|
* ********************************************************************
|
|
* This is how sysctl_dispatch() does its work, and you can too, by
|
|
* calling these routines from helpers (though typically only
|
|
* sysctl_lookup() will be used). The tree MUST BE LOCKED when these
|
|
* are called.
|
|
* ********************************************************************
|
|
*/
|
|
|
|
/*
|
|
* sysctl_locate -- Finds the node matching the given mib under the
|
|
* given tree (via rv). If no tree is given, we fall back to the
|
|
* native tree. The current process (via l) is used for access
|
|
* control on the tree (some nodes may be traversable only by root) and
|
|
* on return, nip will show how many numbers in the mib were consumed.
|
|
*/
|
|
int
|
|
sysctl_locate(struct lwp *l, const int *name, u_int namelen,
|
|
struct sysctlnode **rv, int *nip)
|
|
{
|
|
struct sysctlnode *node, *pnode;
|
|
int tn, si, ni, error, alias;
|
|
|
|
/*
|
|
* basic checks and setup
|
|
*/
|
|
if (*rv == NULL)
|
|
*rv = &sysctl_root;
|
|
if (nip)
|
|
*nip = 0;
|
|
if (namelen < 0)
|
|
return (EINVAL);
|
|
if (namelen == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* search starts from "root"
|
|
*/
|
|
pnode = *rv;
|
|
node = pnode->sysctl_child;
|
|
error = 0;
|
|
|
|
/*
|
|
* scan for node to which new node should be attached
|
|
*/
|
|
for (ni = 0; ni < namelen; ni++) {
|
|
/*
|
|
* walked off bottom of tree
|
|
*/
|
|
if (node == NULL) {
|
|
if (SYSCTL_TYPE(pnode->sysctl_flags) == CTLTYPE_NODE)
|
|
error = ENOENT;
|
|
else
|
|
error = ENOTDIR;
|
|
break;
|
|
}
|
|
/*
|
|
* can anyone traverse this node or only root?
|
|
*/
|
|
if (l != NULL && (pnode->sysctl_flags & SYSCTL_PRIVATE) &&
|
|
(error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag))
|
|
!= 0)
|
|
return (error);
|
|
/*
|
|
* find a child node with the right number
|
|
*/
|
|
tn = name[ni];
|
|
alias = 0;
|
|
for (si = 0; si < pnode->sysctl_clen; si++) {
|
|
if (node[si].sysctl_num == tn ||
|
|
(tn >= 0 &&
|
|
node[si].sysctl_flags & SYSCTL_ANYNUMBER)) {
|
|
if (node[si].sysctl_flags & SYSCTL_ALIAS) {
|
|
if (alias++ == 4)
|
|
si = pnode->sysctl_clen - 1;
|
|
else {
|
|
tn = node[si].sysctl_alias;
|
|
si = -1;
|
|
}
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* if we ran off the end, it obviously doesn't exist
|
|
*/
|
|
if (si == pnode->sysctl_clen) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
/*
|
|
* so far so good, move on down the line
|
|
*/
|
|
pnode = &node[si];
|
|
if (SYSCTL_TYPE(pnode->sysctl_flags) == CTLTYPE_NODE)
|
|
node = node[si].sysctl_child;
|
|
else
|
|
node = NULL;
|
|
}
|
|
|
|
*rv = pnode;
|
|
if (nip)
|
|
*nip = ni;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sysctl_query -- The auto-discovery engine. Copies out the
|
|
* descriptions on nodes under the given node and handles overlay
|
|
* trees.
|
|
*/
|
|
int
|
|
sysctl_query(SYSCTLFN_ARGS)
|
|
{
|
|
int error, ni, elim;
|
|
size_t out, left, t;
|
|
struct sysctlnode *enode, *onode;
|
|
|
|
if (newp != NULL)
|
|
return (EPERM);
|
|
if (SYSCTL_TYPE(rnode->sysctl_flags) != CTLTYPE_NODE)
|
|
return (ENOTDIR);
|
|
if (namelen != 1 || name[0] != CTL_QUERY)
|
|
return (EINVAL);
|
|
|
|
error = 0;
|
|
out = 0;
|
|
left = *oldlenp;
|
|
elim = 0;
|
|
enode = NULL;
|
|
|
|
/*
|
|
* process has overlay tree
|
|
*/
|
|
if (l && l->l_proc->p_emul->e_sysctlovly) {
|
|
enode = (void*)l->l_proc->p_emul->e_sysctlovly;
|
|
elim = (name - oname);
|
|
error = sysctl_locate(l, oname, elim, &enode, NULL);
|
|
if (error == 0) {
|
|
/* ah, found parent in overlay */
|
|
elim = enode->sysctl_clen;
|
|
enode = enode->sysctl_child;
|
|
}
|
|
else {
|
|
error = 0;
|
|
elim = 0;
|
|
enode = NULL;
|
|
}
|
|
}
|
|
|
|
for (ni = 0; ni < rnode->sysctl_clen; ni++) {
|
|
t = MIN(left, sizeof(struct sysctlnode));
|
|
onode = &rnode->sysctl_child[ni];
|
|
if (enode && enode->sysctl_num == onode->sysctl_num) {
|
|
if (SYSCTL_TYPE(enode->sysctl_flags) !=
|
|
CTLTYPE_NODE)
|
|
onode = enode;
|
|
if (--elim > 0)
|
|
enode++;
|
|
else
|
|
enode = NULL;
|
|
}
|
|
if (oldp != NULL && t > 0)
|
|
error = sysctl_copyout(l, onode, (char*)oldp + out, t);
|
|
if (error)
|
|
return (error);
|
|
out += sizeof(struct sysctlnode);
|
|
left -= t;
|
|
}
|
|
|
|
/*
|
|
* overlay trees *MUST* be entirely consumed
|
|
*/
|
|
KASSERT(enode == NULL);
|
|
|
|
*oldlenp = out;
|
|
|
|
return (error);
|
|
}
|
|
|
|
#ifdef SYSCTL_DEBUG_CREATE
|
|
#undef sysctl_create
|
|
#endif /* SYSCTL_DEBUG_CREATE */
|
|
|
|
/*
|
|
* sysctl_create -- Adds a node (the description of which is taken
|
|
* from newp) to the tree, returning a copy of it in the space pointed
|
|
* to by oldp. In the event that the requested slot is already taken
|
|
* (either by name or by number), the offending node is returned
|
|
* instead. Yes, this is complex, but we want to make sure everything
|
|
* is proper.
|
|
*/
|
|
int
|
|
sysctl_create(SYSCTLFN_RWARGS)
|
|
{
|
|
struct sysctlnode nnode, *node, *pnode;
|
|
int error, ni, at, nm, type, sz, flags, rw, anum;
|
|
void *own;
|
|
|
|
error = 0;
|
|
own = NULL;
|
|
anum = -1;
|
|
|
|
if (namelen != 1 || (name[namelen - 1] != CTL_CREATE
|
|
#if NKSYMS > 0
|
|
&& name[namelen - 1] != CTL_CREATESYM
|
|
#endif /* NKSYMS > 0 */
|
|
))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* processes can only add nodes at securelevel 0, must be
|
|
* root, and can't add nodes to a parent that's not writeable
|
|
*/
|
|
if (l != NULL) {
|
|
#ifndef SYSCTL_DISALLOW_CREATE
|
|
if (securelevel > 0)
|
|
return (EPERM);
|
|
error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag);
|
|
if (error)
|
|
return (error);
|
|
if (!(rnode->sysctl_flags & SYSCTL_READWRITE))
|
|
#endif /* SYSCTL_DISALLOW_CREATE */
|
|
return (EPERM);
|
|
}
|
|
|
|
/*
|
|
* nothing can add a node if:
|
|
* we've finished initial set up and
|
|
* the tree itself is not writeable or
|
|
* the entire sysctl system is not writeable
|
|
*/
|
|
if ((sysctl_root.sysctl_flags & SYSCTL_PERMANENT) &&
|
|
(!(sysctl_rootof(rnode)->sysctl_flags & SYSCTL_READWRITE) ||
|
|
!(sysctl_root.sysctl_flags & SYSCTL_READWRITE)))
|
|
return (EPERM);
|
|
|
|
/*
|
|
* it must be a "node", not a "int" or something
|
|
*/
|
|
if (SYSCTL_TYPE(rnode->sysctl_flags) != CTLTYPE_NODE)
|
|
return (ENOTDIR);
|
|
pnode = rnode;
|
|
|
|
if (newp == NULL || newlen != sizeof(struct sysctlnode))
|
|
return (EINVAL);
|
|
error = sysctl_copyin(l, newp, &nnode, sizeof(struct sysctlnode));
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* nodes passed in don't *have* parents
|
|
*/
|
|
if (nnode.sysctl_parent != NULL)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* if we are indeed adding it, it should be a "good" name and
|
|
* number
|
|
*/
|
|
nm = nnode.sysctl_num;
|
|
#if NKSYMS > 0
|
|
if (nm == CTL_CREATESYM)
|
|
nm = CTL_CREATE;
|
|
#endif /* NKSYMS > 0 */
|
|
if (nm < 0 && nm != CTL_CREATE)
|
|
return (EINVAL);
|
|
sz = 0;
|
|
|
|
/*
|
|
* the name can't start with a digit
|
|
*/
|
|
if (nnode.sysctl_name[sz] >= '0' &&
|
|
nnode.sysctl_name[sz] <= '9')
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* the name must be only alphanumerics or - or _, longer than
|
|
* 0 bytes and less that SYSCTL_NAMELEN
|
|
*/
|
|
while (sz < SYSCTL_NAMELEN && nnode.sysctl_name[sz] != '\0') {
|
|
if ((nnode.sysctl_name[sz] >= '0' &&
|
|
nnode.sysctl_name[sz] <= '9') ||
|
|
(nnode.sysctl_name[sz] >= 'A' &&
|
|
nnode.sysctl_name[sz] <= 'Z') ||
|
|
(nnode.sysctl_name[sz] >= 'a' &&
|
|
nnode.sysctl_name[sz] <= 'z') ||
|
|
nnode.sysctl_name[sz] == '-' ||
|
|
nnode.sysctl_name[sz] == '_')
|
|
sz++;
|
|
else
|
|
return (EINVAL);
|
|
}
|
|
if (sz == 0 || sz == SYSCTL_NAMELEN)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* various checks revolve around size vs type, etc
|
|
*/
|
|
type = SYSCTL_TYPE(nnode.sysctl_flags);
|
|
flags = SYSCTL_FLAGS(nnode.sysctl_flags);
|
|
rw = (flags & SYSCTL_READWRITE) ? B_WRITE : B_READ;
|
|
sz = nnode.sysctl_size;
|
|
|
|
/*
|
|
* find out if there's a collision, and if so, let the caller
|
|
* know what they collided with
|
|
*/
|
|
node = pnode->sysctl_child;
|
|
if (((flags & SYSCTL_ANYNUMBER) && node) ||
|
|
(node && node->sysctl_flags & SYSCTL_ANYNUMBER))
|
|
return (EINVAL);
|
|
for (ni = at = 0; ni < pnode->sysctl_clen; ni++) {
|
|
if (nm == node[ni].sysctl_num ||
|
|
strcmp(nnode.sysctl_name, node[ni].sysctl_name) == 0) {
|
|
if (oldp != NULL) {
|
|
/*
|
|
* ignore error here, since we
|
|
* are already fixed on EEXIST
|
|
*/
|
|
(void)sysctl_copyout(l, &node[ni], oldp,
|
|
MIN(*oldlenp, sizeof(struct sysctlnode)));
|
|
}
|
|
*oldlenp = sizeof(struct sysctlnode);
|
|
return (EEXIST);
|
|
}
|
|
if (nm > node[ni].sysctl_num)
|
|
at++;
|
|
}
|
|
|
|
/*
|
|
* use sysctl_ver to add to the tree iff it hasn't changed
|
|
*/
|
|
if (nnode.sysctl_ver != 0) {
|
|
/*
|
|
* a specified value must match either the parent
|
|
* node's version or the root node's version
|
|
*/
|
|
if (nnode.sysctl_ver != sysctl_rootof(rnode)->sysctl_ver &&
|
|
nnode.sysctl_ver != rnode->sysctl_ver) {
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* only the kernel can assign functions to entries
|
|
*/
|
|
if (l != NULL && nnode.sysctl_func != NULL)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* only the kernel can create permanent entries, and only then
|
|
* before the kernel is finished setting itself up
|
|
*/
|
|
if (l != NULL && (flags & ~SYSCTL_USERFLAGS))
|
|
return (EPERM);
|
|
if ((flags & SYSCTL_PERMANENT) &
|
|
(sysctl_root.sysctl_flags & SYSCTL_PERMANENT))
|
|
return (EPERM);
|
|
if ((flags & (SYSCTL_OWNDATA | SYSCTL_IMMEDIATE)) ==
|
|
(SYSCTL_OWNDATA | SYSCTL_IMMEDIATE))
|
|
return (EINVAL);
|
|
if ((flags & SYSCTL_IMMEDIATE) &&
|
|
type != CTLTYPE_INT && type != CTLTYPE_QUAD)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* check size, or set it if unset and we can figure it out.
|
|
* kernel created nodes are allowed to have a function instead
|
|
* of a size (or a data pointer).
|
|
*/
|
|
switch (type) {
|
|
case CTLTYPE_NODE:
|
|
/*
|
|
* only *i* can assert the size of a node
|
|
*/
|
|
if (flags & SYSCTL_ALIAS) {
|
|
anum = nnode.sysctl_alias;
|
|
if (anum < 0)
|
|
return (EINVAL);
|
|
nnode.sysctl_alias = 0;
|
|
}
|
|
if (sz != 0 || nnode.sysctl_data != NULL)
|
|
return (EINVAL);
|
|
if (nnode.sysctl_csize != 0 ||
|
|
nnode.sysctl_clen != 0 ||
|
|
nnode.sysctl_child != 0)
|
|
return (EINVAL);
|
|
if (flags & SYSCTL_OWNDATA)
|
|
return (EINVAL);
|
|
sz = sizeof(struct sysctlnode);
|
|
break;
|
|
case CTLTYPE_INT:
|
|
/*
|
|
* since an int is an int, if the size is not given or
|
|
* is wrong, we can "int-uit" it.
|
|
*/
|
|
if (sz != 0 && sz != sizeof(int))
|
|
return (EINVAL);
|
|
sz = sizeof(int);
|
|
break;
|
|
case CTLTYPE_STRING:
|
|
/*
|
|
* strings are a little more tricky
|
|
*/
|
|
if (sz == 0) {
|
|
if (l == NULL) {
|
|
if (nnode.sysctl_func == NULL) {
|
|
if (nnode.sysctl_data == NULL)
|
|
return (EINVAL);
|
|
else
|
|
sz = strlen(nnode.sysctl_data) +
|
|
1;
|
|
}
|
|
}
|
|
else if (nnode.sysctl_data == NULL &&
|
|
flags & SYSCTL_OWNDATA) {
|
|
return (EINVAL);
|
|
}
|
|
else {
|
|
char v[PAGE_SIZE], *e;
|
|
size_t s;
|
|
|
|
/*
|
|
* we want a rough idea of what the
|
|
* size is now
|
|
*/
|
|
e = nnode.sysctl_data;
|
|
do {
|
|
error = copystr(e, &v[0], sizeof(v),
|
|
&s);
|
|
if (error) {
|
|
if (error != ENAMETOOLONG)
|
|
return (error);
|
|
e += PAGE_SIZE;
|
|
if ((e - 32 * PAGE_SIZE) >
|
|
(char*)nnode.sysctl_data)
|
|
return (ERANGE);
|
|
}
|
|
} while (error != 0);
|
|
sz = s + (e - (char*)nnode.sysctl_data);
|
|
}
|
|
}
|
|
break;
|
|
case CTLTYPE_QUAD:
|
|
if (sz != 0 && sz != sizeof(u_quad_t))
|
|
return (EINVAL);
|
|
sz = sizeof(u_quad_t);
|
|
break;
|
|
case CTLTYPE_STRUCT:
|
|
if (sz == 0) {
|
|
if (l != NULL || nnode.sysctl_func == NULL)
|
|
return (EINVAL);
|
|
if (flags & SYSCTL_OWNDATA)
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* at this point, if sz is zero, we *must* have a
|
|
* function to go with it and we can't own it.
|
|
*/
|
|
|
|
/*
|
|
* l ptr own
|
|
* 0 0 0 -> EINVAL (if no func)
|
|
* 0 0 1 -> own
|
|
* 0 1 0 -> kptr
|
|
* 0 1 1 -> kptr
|
|
* 1 0 0 -> EINVAL
|
|
* 1 0 1 -> own
|
|
* 1 1 0 -> kptr, no own (fault on lookup)
|
|
* 1 1 1 -> uptr, own
|
|
*/
|
|
if (type != CTLTYPE_NODE) {
|
|
if (sz != 0) {
|
|
if (flags & SYSCTL_OWNDATA) {
|
|
own = malloc(sz, M_SYSCTLDATA,
|
|
M_WAITOK|M_CANFAIL);
|
|
if (nnode.sysctl_data == NULL)
|
|
memset(own, 0, sz);
|
|
else {
|
|
error = sysctl_copyin(l,
|
|
nnode.sysctl_data, own, sz);
|
|
if (error != 0) {
|
|
FREE(own, M_SYSCTLDATA);
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
else if ((nnode.sysctl_data != NULL) &&
|
|
!(flags & SYSCTL_IMMEDIATE)) {
|
|
#if NKSYMS > 0
|
|
if (name[namelen - 1] == CTL_CREATESYM) {
|
|
char symname[128]; /* XXX enough? */
|
|
u_long symaddr;
|
|
size_t symlen;
|
|
|
|
error = sysctl_copyinstr(l,
|
|
nnode.sysctl_data, symname,
|
|
sizeof(symname), &symlen);
|
|
if (error)
|
|
return (error);
|
|
error = ksyms_getval_from_kernel(NULL,
|
|
symname, &symaddr, KSYMS_EXTERN);
|
|
if (error)
|
|
return (error); /* EINVAL? */
|
|
nnode.sysctl_data = (void*)symaddr;
|
|
}
|
|
#endif /* NKSYMS > 0 */
|
|
/*
|
|
* Ideally, we'd like to verify here
|
|
* that this address is acceptable,
|
|
* but...
|
|
*
|
|
* - it might be valid now, only to
|
|
* become invalid later
|
|
*
|
|
* - it might be invalid only for the
|
|
* moment and valid later
|
|
*
|
|
* - or something else.
|
|
*
|
|
* Since we can't get a good answer,
|
|
* we'll just accept the address as
|
|
* given, and fault on individual
|
|
* lookups.
|
|
*/
|
|
}
|
|
}
|
|
else if (nnode.sysctl_func == NULL)
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* a process can't assign a function to a node, and the kernel
|
|
* can't create a node that has no function or data.
|
|
* (XXX somewhat redundant check)
|
|
*/
|
|
if (l != NULL || nnode.sysctl_func == NULL) {
|
|
if (type != CTLTYPE_NODE &&
|
|
nnode.sysctl_data == NULL &&
|
|
!(flags & SYSCTL_IMMEDIATE) &&
|
|
own == NULL)
|
|
return (EINVAL);
|
|
}
|
|
|
|
#ifdef SYSCTL_DISALLOW_KWRITE
|
|
/*
|
|
* a process can't create a writable node unless it refers to
|
|
* new data.
|
|
*/
|
|
if (l != NULL && own == NULL && type != CTLTYPE_NODE &&
|
|
(flags & SYSCTL_READWRITE) != SYSCTL_READONLY &&
|
|
!(flags & SYSCTL_IMMEDIATE))
|
|
return (EPERM);
|
|
#endif /* SYSCTL_DISALLOW_KWRITE */
|
|
|
|
/*
|
|
* make sure there's somewhere to put the new stuff.
|
|
*/
|
|
if (pnode->sysctl_child == NULL) {
|
|
if (flags & SYSCTL_ANYNUMBER)
|
|
error = sysctl_alloc(pnode, 1);
|
|
else
|
|
error = sysctl_alloc(pnode, 0);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
node = pnode->sysctl_child;
|
|
|
|
/*
|
|
* no collisions, so pick a good dynamic number if we need to.
|
|
*/
|
|
if (nm == CTL_CREATE) {
|
|
nm = ++sysctl_root.sysctl_num;
|
|
for (ni = 0; ni < pnode->sysctl_clen; ni++) {
|
|
if (nm == node[ni].sysctl_num) {
|
|
nm++;
|
|
ni = -1;
|
|
}
|
|
else if (nm > node[ni].sysctl_num)
|
|
at = ni + 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* oops...ran out of space
|
|
*/
|
|
if (pnode->sysctl_clen == pnode->sysctl_csize) {
|
|
error = sysctl_realloc(pnode);
|
|
if (error)
|
|
return (error);
|
|
node = pnode->sysctl_child;
|
|
}
|
|
|
|
/*
|
|
* insert new node data
|
|
*/
|
|
if (at < pnode->sysctl_clen) {
|
|
int t;
|
|
|
|
/*
|
|
* move the nodes that should come after the new one
|
|
*/
|
|
memmove(&node[at + 1], &node[at],
|
|
(pnode->sysctl_clen - at) * sizeof(struct sysctlnode));
|
|
memset(&node[at], 0, sizeof(struct sysctlnode));
|
|
node[at].sysctl_parent = pnode;
|
|
/*
|
|
* and...reparent any children of any moved nodes
|
|
*/
|
|
for (ni = at; ni <= pnode->sysctl_clen; ni++)
|
|
if (SYSCTL_TYPE(node[ni].sysctl_flags) == CTLTYPE_NODE)
|
|
for (t = 0; t < node[ni].sysctl_clen; t++)
|
|
node[ni].sysctl_child[t].sysctl_parent =
|
|
&node[ni];
|
|
}
|
|
node = &node[at];
|
|
pnode->sysctl_clen++;
|
|
|
|
strlcpy(node->sysctl_name, nnode.sysctl_name,
|
|
sizeof(node->sysctl_name));
|
|
node->sysctl_num = nm;
|
|
node->sysctl_size = sz;
|
|
node->sysctl_flags = type|flags;
|
|
node->sysctl_csize = 0;
|
|
node->sysctl_clen = 0;
|
|
if (own) {
|
|
node->sysctl_data = own;
|
|
node->sysctl_flags |= SYSCTL_OWNDATA;
|
|
}
|
|
else if (flags & SYSCTL_ALIAS) {
|
|
node->sysctl_alias = anum;
|
|
}
|
|
else if (flags & SYSCTL_IMMEDIATE) {
|
|
switch (type) {
|
|
case CTLTYPE_INT:
|
|
node->sysctl_idata = nnode.sysctl_idata;
|
|
break;
|
|
case CTLTYPE_QUAD:
|
|
node->sysctl_qdata = nnode.sysctl_qdata;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
node->sysctl_data = nnode.sysctl_data;
|
|
node->sysctl_flags &= ~SYSCTL_OWNDATA;
|
|
}
|
|
node->sysctl_func = nnode.sysctl_func;
|
|
node->sysctl_child = NULL;
|
|
/* node->sysctl_parent should already be done */
|
|
|
|
/*
|
|
* update "version" on path to "root"
|
|
*/
|
|
for (; rnode->sysctl_parent != NULL; rnode = rnode->sysctl_parent)
|
|
;
|
|
pnode = node;
|
|
for (nm = rnode->sysctl_ver + 1; pnode != NULL;
|
|
pnode = pnode->sysctl_parent)
|
|
pnode->sysctl_ver = nm;
|
|
|
|
if (oldp != NULL)
|
|
error = sysctl_copyout(l, node, oldp,
|
|
MIN(*oldlenp, sizeof(struct sysctlnode)));
|
|
*oldlenp = sizeof(struct sysctlnode);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* A wrapper around sysctl_create() that prints the thing we're trying
|
|
* to add.
|
|
* ********************************************************************
|
|
*/
|
|
#ifdef SYSCTL_DEBUG_CREATE
|
|
int _sysctl_create(SYSCTLFN_RWPROTO);
|
|
int
|
|
_sysctl_create(SYSCTLFN_RWARGS)
|
|
{
|
|
const struct sysctlnode *node;
|
|
int k, rc, ni, nl = namelen + (name - oname);
|
|
|
|
node = newp;
|
|
|
|
printf("namelen %d (", nl);
|
|
for (ni = 0; ni < nl - 1; ni++)
|
|
printf(" %d", oname[ni]);
|
|
printf(" %d )\t[%s]\tflags %08x (%08x %d %zu)\n",
|
|
k = node->sysctl_num,
|
|
node->sysctl_name,
|
|
node->sysctl_flags,
|
|
SYSCTL_FLAGS(node->sysctl_flags),
|
|
SYSCTL_TYPE(node->sysctl_flags),
|
|
node->sysctl_size);
|
|
|
|
node = rnode;
|
|
rc = sysctl_create(SYSCTLFN_CALL(rnode));
|
|
|
|
printf("sysctl_create(");
|
|
for (ni = 0; ni < nl - 1; ni++)
|
|
printf(" %d", oname[ni]);
|
|
printf(" %d ) returned %d\n", k, rc);
|
|
|
|
return (rc);
|
|
}
|
|
#define sysctl_create _sysctl_create
|
|
#endif /* SYSCTL_DEBUG_CREATE */
|
|
|
|
/*
|
|
* sysctl_destroy -- Removes a node (as described by newp) from the
|
|
* given tree, returning (if successful) a copy of the dead node in
|
|
* oldp. Since we're removing stuff, there's not much to check.
|
|
*/
|
|
int
|
|
sysctl_destroy(SYSCTLFN_RWARGS)
|
|
{
|
|
struct sysctlnode *node, *pnode, onode, nnode;
|
|
int ni, error;
|
|
|
|
error = 0;
|
|
|
|
if (namelen != 1 || name[namelen - 1] != CTL_DESTROY)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* processes can only destroy nodes at securelevel 0, must be
|
|
* root, and can't remove nodes from a parent that's not
|
|
* writeable
|
|
*/
|
|
if (l != NULL) {
|
|
#ifndef SYSCTL_DISALLOW_CREATE
|
|
if (securelevel > 0)
|
|
return (EPERM);
|
|
error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag);
|
|
if (error)
|
|
return (error);
|
|
if (!(rnode->sysctl_flags & SYSCTL_READWRITE))
|
|
#endif /* SYSCTL_DISALLOW_CREATE */
|
|
return (EPERM);
|
|
}
|
|
|
|
/*
|
|
* nothing can remove a node if:
|
|
* the node is permanent (checked later) or
|
|
* the tree itself is not writeable or
|
|
* the entire sysctl system is not writeable
|
|
*/
|
|
if (!(sysctl_rootof(rnode)->sysctl_flags & SYSCTL_READWRITE) ||
|
|
!(sysctl_root.sysctl_flags & SYSCTL_READWRITE))
|
|
return (EPERM);
|
|
|
|
if (newp == NULL || newlen != sizeof(struct sysctlnode))
|
|
return (EINVAL);
|
|
error = sysctl_copyin(l, newp, &nnode, sizeof(struct sysctlnode));
|
|
if (error)
|
|
return (error);
|
|
memset(&onode, 0, sizeof(struct sysctlnode));
|
|
|
|
node = rnode->sysctl_child;
|
|
for (ni = 0; ni < rnode->sysctl_clen; ni++) {
|
|
if (nnode.sysctl_num == node[ni].sysctl_num) {
|
|
/*
|
|
* if name specified, must match
|
|
*/
|
|
if (nnode.sysctl_name[0] != '\0' &&
|
|
strcmp(nnode.sysctl_name, node[ni].sysctl_name))
|
|
continue;
|
|
/*
|
|
* if version specified, must match
|
|
*/
|
|
if (nnode.sysctl_ver != 0 &&
|
|
nnode.sysctl_ver != node[ni].sysctl_ver)
|
|
continue;
|
|
/*
|
|
* this must be the one
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
if (ni == rnode->sysctl_clen)
|
|
return (ENOENT);
|
|
node = &node[ni];
|
|
pnode = node->sysctl_parent;
|
|
|
|
/*
|
|
* if the kernel says permanent, it is, so there. nyah.
|
|
*/
|
|
if (SYSCTL_FLAGS(node->sysctl_flags) & SYSCTL_PERMANENT)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* can't delete non-empty nodes
|
|
*/
|
|
if (SYSCTL_TYPE(node->sysctl_flags) == CTLTYPE_NODE &&
|
|
node->sysctl_clen != 0)
|
|
return (ENOTEMPTY);
|
|
|
|
/*
|
|
* if the node "owns" data, release it now
|
|
*/
|
|
if (node->sysctl_flags & SYSCTL_OWNDATA) {
|
|
if (node->sysctl_data != NULL)
|
|
FREE(node->sysctl_data, M_SYSCTLDATA);
|
|
node->sysctl_data = NULL;
|
|
}
|
|
|
|
/*
|
|
* if the node to be removed is not the last one on the list,
|
|
* move the remaining nodes up, and reparent any grandchildren
|
|
*/
|
|
onode = *node;
|
|
if (ni < pnode->sysctl_clen - 1) {
|
|
int t;
|
|
|
|
memmove(&pnode->sysctl_child[ni], &pnode->sysctl_child[ni + 1],
|
|
(pnode->sysctl_clen - ni - 1) *
|
|
sizeof(struct sysctlnode));
|
|
for (; ni < pnode->sysctl_clen - 1; ni++)
|
|
if (SYSCTL_TYPE(pnode->sysctl_child[ni].sysctl_flags) ==
|
|
CTLTYPE_NODE)
|
|
for (t = 0; t < pnode->sysctl_child[ni].sysctl_clen;
|
|
t++)
|
|
pnode->sysctl_child[ni].sysctl_child[t].
|
|
sysctl_parent =
|
|
&pnode->sysctl_child[ni];
|
|
ni = pnode->sysctl_clen - 1;
|
|
node = &pnode->sysctl_child[ni];
|
|
}
|
|
|
|
/*
|
|
* reset the space we just vacated
|
|
*/
|
|
memset(node, 0, sizeof(struct sysctlnode));
|
|
node->sysctl_parent = pnode;
|
|
pnode->sysctl_clen--;
|
|
|
|
/*
|
|
* if this parent just lost its last child, nuke the creche
|
|
*/
|
|
if (pnode->sysctl_clen == 0) {
|
|
FREE(pnode->sysctl_child, M_SYSCTLNODE);
|
|
pnode->sysctl_csize = 0;
|
|
pnode->sysctl_child = NULL;
|
|
}
|
|
|
|
/*
|
|
* update "version" on path to "root"
|
|
*/
|
|
for (; rnode->sysctl_parent != NULL; rnode = rnode->sysctl_parent)
|
|
;
|
|
for (ni = rnode->sysctl_ver + 1; pnode != NULL;
|
|
pnode = pnode->sysctl_parent)
|
|
pnode->sysctl_ver = ni;
|
|
|
|
if (oldp != NULL)
|
|
error = sysctl_copyout(l, &onode, oldp,
|
|
MIN(*oldlenp, sizeof(struct sysctlnode)));
|
|
*oldlenp = sizeof(struct sysctlnode);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sysctl_lookup -- Handles copyin/copyout of new and old values.
|
|
* Partial reads are globally allowed. Only root can write to things
|
|
* unless the node says otherwise.
|
|
*/
|
|
int
|
|
sysctl_lookup(SYSCTLFN_RWARGS)
|
|
{
|
|
int error, rw;
|
|
size_t sz, len;
|
|
void *d;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* you can't "look up" a node. you can "query" it, but you
|
|
* can't "look it up".
|
|
*/
|
|
if (SYSCTL_TYPE(rnode->sysctl_flags) == CTLTYPE_NODE || namelen != 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* some nodes are private, so only root can look into them.
|
|
*/
|
|
if (l != NULL && (rnode->sysctl_flags & SYSCTL_PRIVATE) &&
|
|
(error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* if a node wants to be writable according to different rules
|
|
* other than "only root can write to stuff unless a flag is
|
|
* set", then it needs its own function which should have been
|
|
* called and not us.
|
|
*/
|
|
if (l != NULL && newp != NULL &&
|
|
!(rnode->sysctl_flags & SYSCTL_ANYWRITE) &&
|
|
(error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag)) != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* is this node supposedly writable?
|
|
*/
|
|
rw = 0;
|
|
switch (rnode->sysctl_flags & SYSCTL_READWRITE) {
|
|
case SYSCTL_READONLY1:
|
|
rw = (securelevel < 1) ? 1 : 0;
|
|
break;
|
|
case SYSCTL_READONLY2:
|
|
rw = (securelevel < 2) ? 1 : 0;
|
|
break;
|
|
case SYSCTL_READWRITE:
|
|
rw = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* it appears not to be writable at this time, so if someone
|
|
* tried to write to it, we must tell them to go away
|
|
*/
|
|
if (!rw && newp != NULL)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* step one, copy out the stuff we have presently
|
|
*/
|
|
if (rnode->sysctl_flags & SYSCTL_IMMEDIATE) {
|
|
switch (SYSCTL_TYPE(rnode->sysctl_flags)) {
|
|
case CTLTYPE_INT:
|
|
d = &rnode->sysctl_idata;
|
|
break;
|
|
case CTLTYPE_QUAD:
|
|
d = &rnode->sysctl_qdata;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
else
|
|
d = rnode->sysctl_data;
|
|
if (SYSCTL_TYPE(rnode->sysctl_flags) == CTLTYPE_STRING)
|
|
sz = strlen(d) + 1; /* XXX@@@ possible fault here */
|
|
else
|
|
sz = rnode->sysctl_size;
|
|
if (oldp != NULL)
|
|
error = sysctl_copyout(l, d, oldp, MIN(sz, *oldlenp));
|
|
if (error)
|
|
return (error);
|
|
*oldlenp = sz;
|
|
|
|
/*
|
|
* are we done?
|
|
*/
|
|
if (newp == NULL || newlen == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* hmm...not done. must now "copy in" new value. re-adjust
|
|
* sz to maximum value (strings are "weird").
|
|
*/
|
|
sz = rnode->sysctl_size;
|
|
switch (SYSCTL_TYPE(rnode->sysctl_flags)) {
|
|
case CTLTYPE_INT:
|
|
case CTLTYPE_QUAD:
|
|
case CTLTYPE_STRUCT:
|
|
/*
|
|
* these data must be *exactly* the same size coming
|
|
* in.
|
|
*/
|
|
if (newlen != sz)
|
|
return (EINVAL);
|
|
error = sysctl_copyin(l, newp, d, sz);
|
|
break;
|
|
case CTLTYPE_STRING: {
|
|
/*
|
|
* strings, on the other hand, can be shorter, and we
|
|
* let userland be sloppy about the trailing nul.
|
|
*/
|
|
char *newbuf;
|
|
|
|
/*
|
|
* too much new string?
|
|
*/
|
|
if (newlen > sz)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* temporary copy of new inbound string
|
|
*/
|
|
len = MIN(sz, newlen);
|
|
newbuf = malloc(len, M_SYSCTLDATA, M_WAITOK|M_CANFAIL);
|
|
if (newbuf == NULL)
|
|
return (ENOMEM);
|
|
error = sysctl_copyin(l, newp, newbuf, len);
|
|
if (error) {
|
|
FREE(newbuf, M_SYSCTLDATA);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* did they null terminate it, or do we have space
|
|
* left to do it ourselves?
|
|
*/
|
|
if (newbuf[len - 1] != '\0' && len == sz) {
|
|
FREE(newbuf, M_SYSCTLDATA);
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* looks good, so pop it into place and zero the rest.
|
|
*/
|
|
if (len > 0)
|
|
memcpy(rnode->sysctl_data, newbuf, len);
|
|
if (sz != len)
|
|
memset((char*)rnode->sysctl_data + len, 0, sz - len);
|
|
FREE(newbuf, M_SYSCTLDATA);
|
|
break;
|
|
}
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* sysctl_mmap -- Dispatches sysctl mmap requests to those nodes that
|
|
* purport to handle it. This interface isn't fully fleshed out yet,
|
|
* unfortunately.
|
|
*/
|
|
static int
|
|
sysctl_mmap(SYSCTLFN_RWARGS)
|
|
{
|
|
struct sysctlnode nnode, *node;
|
|
int error;
|
|
|
|
/*
|
|
* let's just pretend that didn't happen, m'kay?
|
|
*/
|
|
if (l == NULL)
|
|
return (EPERM);
|
|
|
|
/*
|
|
* is this a sysctlnode description of an mmap request?
|
|
*/
|
|
if (newp == NULL || newlen != sizeof(struct sysctlnode))
|
|
return (EINVAL);
|
|
error = sysctl_copyin(l, newp, &nnode, sizeof(struct sysctlnode));
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* does the node they asked for exist?
|
|
*/
|
|
if (namelen != 1)
|
|
return (EOPNOTSUPP);
|
|
node = rnode;
|
|
error = sysctl_locate(l, &nnode.sysctl_num, 1, &node, NULL);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* does this node that we have found purport to handle mmap?
|
|
*/
|
|
if (node->sysctl_func == NULL ||
|
|
!(node->sysctl_flags & SYSCTL_MMAP))
|
|
return (EOPNOTSUPP);
|
|
|
|
/*
|
|
* well...okay, they asked for it.
|
|
*/
|
|
return ((*node->sysctl_func)(SYSCTLFN_CALL(node)));
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 3: Create and destroy from inside the kernel
|
|
* ********************************************************************
|
|
* sysctl_createv() and sysctl_destroyv() are simpler-to-use
|
|
* interfaces for the kernel to fling new entries into the mib and rip
|
|
* them out later. In the case of sysctl_createv(), the returned copy
|
|
* of the node (see sysctl_create()) will be translated back into a
|
|
* pointer to the actual node.
|
|
*
|
|
* Note that sysctl_createv() will return 0 if the create request
|
|
* matches an existing node (ala mkdir -p), and that sysctl_destroyv()
|
|
* will return 0 if the node to be destroyed already does not exist
|
|
* (aka rm -f) or if it is a parent of other nodes.
|
|
*
|
|
* This allows two (or more) different subsystems to assert sub-tree
|
|
* existence before populating their own nodes, and to remove their
|
|
* own nodes without orphaning the others when they are done.
|
|
* ********************************************************************
|
|
*/
|
|
int
|
|
sysctl_createv(int flags, int type,
|
|
const char *namep, struct sysctlnode **rnode,
|
|
sysctlfn func, u_quad_t qv, void *newp, size_t newlen,
|
|
...)
|
|
{
|
|
va_list ap;
|
|
int error, ni, namelen, name[CTL_MAXNAME];
|
|
struct sysctlnode *pnode, nnode, onode;
|
|
size_t sz;
|
|
|
|
/*
|
|
* what is it?
|
|
*/
|
|
flags = SYSCTL_TYPE(type)|SYSCTL_FLAGS(flags);
|
|
|
|
/*
|
|
* where do we put it?
|
|
*/
|
|
va_start(ap, newlen);
|
|
namelen = 0;
|
|
ni = -1;
|
|
do {
|
|
if (++ni == CTL_MAXNAME)
|
|
return (ENAMETOOLONG);
|
|
name[ni] = va_arg(ap, int);
|
|
/*
|
|
* sorry, this is not supported from here
|
|
*/
|
|
if (name[ni] == CTL_CREATESYM)
|
|
return (EINVAL);
|
|
} while (name[ni] != CTL_EOL && name[ni] != CTL_CREATE);
|
|
namelen = ni + (name[ni] == CTL_CREATE ? 1 : 0);
|
|
va_end(ap);
|
|
|
|
/*
|
|
* what's it called
|
|
*/
|
|
if (strlcpy(nnode.sysctl_name, namep, sizeof(nnode.sysctl_name)) >
|
|
sizeof(nnode.sysctl_name))
|
|
return (ENAMETOOLONG);
|
|
|
|
/*
|
|
* cons up the description of the new node
|
|
*/
|
|
nnode.sysctl_num = name[namelen - 1];
|
|
name[namelen - 1] = CTL_CREATE;
|
|
nnode.sysctl_size = newlen;
|
|
nnode.sysctl_flags = flags;
|
|
if (type == CTLTYPE_NODE) {
|
|
nnode.sysctl_csize = 0;
|
|
nnode.sysctl_clen = 0;
|
|
nnode.sysctl_child = NULL;
|
|
if (flags & SYSCTL_ALIAS)
|
|
nnode.sysctl_alias = qv;
|
|
}
|
|
else if (flags & SYSCTL_IMMEDIATE) {
|
|
switch (type) {
|
|
case CTLTYPE_INT:
|
|
nnode.sysctl_idata = qv;
|
|
break;
|
|
case CTLTYPE_QUAD:
|
|
nnode.sysctl_qdata = qv;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
else {
|
|
nnode.sysctl_data = newp;
|
|
}
|
|
nnode.sysctl_func = func;
|
|
nnode.sysctl_parent = NULL;
|
|
nnode.sysctl_ver = 0;
|
|
|
|
/*
|
|
* initialize lock state -- we need locks if the main tree has
|
|
* been marked as complete, but since we could be called from
|
|
* either there, or from a device driver (say, at device
|
|
* insertion), or from an lkm (at lkm load time, say), we
|
|
* don't really want to "wait"...
|
|
*/
|
|
error = sysctl_lock(NULL, NULL, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* locate the prospective parent of the new node, and if we
|
|
* find it, add the new node.
|
|
*/
|
|
sz = sizeof(onode);
|
|
pnode = (rnode != NULL) ? *rnode : NULL;
|
|
error = sysctl_locate(NULL, &name[0], namelen - 1, &pnode, &ni);
|
|
if (error == 0)
|
|
error = sysctl_create(&name[ni], namelen - ni, &onode, &sz,
|
|
&nnode, sizeof(nnode), &name[0], NULL,
|
|
pnode);
|
|
|
|
/*
|
|
* unfortunately the node we wanted to create is already
|
|
* there. if the node that's already there is a reasonable
|
|
* facsimile of the node we wanted to create, just pretend
|
|
* (for the caller's benefit) that we managed to create the
|
|
* node they wanted.
|
|
*/
|
|
if (error == EEXIST) {
|
|
/* name is the same as requested... */
|
|
if (strcmp(nnode.sysctl_name, onode.sysctl_name) == 0 &&
|
|
/* they want the same function... */
|
|
nnode.sysctl_func == onode.sysctl_func &&
|
|
/* number is the same as requested, or... */
|
|
(nnode.sysctl_num == onode.sysctl_num ||
|
|
/* they didn't pick a number... */
|
|
nnode.sysctl_num == CTL_CREATE)) {
|
|
/*
|
|
* collision here from trying to create
|
|
* something that already existed; let's give
|
|
* our customers a hand and tell them they got
|
|
* what they wanted.
|
|
*/
|
|
#ifdef SYSCTL_DEBUG_CREATE
|
|
printf("cleared\n");
|
|
#endif /* SYSCTL_DEBUG_CREATE */
|
|
error = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if they want to know where the new node is, go find the
|
|
* address of the actual node, not the copy that
|
|
* sysctl_create() gave us.
|
|
*/
|
|
if (rnode != NULL && error == 0) {
|
|
/*
|
|
* sysctl_create() gave us back a copy of the node,
|
|
* but we need to know where it actually is...
|
|
*/
|
|
name[namelen - 1] = onode.sysctl_num;
|
|
pnode = *rnode;
|
|
error = sysctl_locate(NULL, &name[0], namelen, &pnode, &ni);
|
|
/*
|
|
* not expecting an error here, but...
|
|
*/
|
|
if (error == 0)
|
|
*rnode = pnode;
|
|
}
|
|
|
|
/*
|
|
* now it should be safe to release the lock state.
|
|
*/
|
|
sysctl_unlock(NULL);
|
|
|
|
if (error != 0) {
|
|
printf("sysctl_createv: sysctl_create(%s) returned %d\n",
|
|
nnode.sysctl_name, error);
|
|
#if 0
|
|
if (error != ENOENT)
|
|
sysctl_dump(&onode);
|
|
#endif
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sysctl_destroyv(struct sysctlnode *rnode, ...)
|
|
{
|
|
va_list ap;
|
|
int error, name[CTL_MAXNAME], namelen, ni;
|
|
struct sysctlnode *pnode, *node;
|
|
|
|
va_start(ap, rnode);
|
|
namelen = 0;
|
|
ni = 0;
|
|
do {
|
|
if (ni == CTL_MAXNAME)
|
|
return (ENAMETOOLONG);
|
|
name[ni] = va_arg(ap, int);
|
|
} while (name[ni++] != CTL_EOL);
|
|
namelen = ni - 1;
|
|
va_end(ap);
|
|
|
|
/*
|
|
* i can't imagine why we'd be destroying a node when the tree
|
|
* wasn't complete, but who knows?
|
|
*/
|
|
error = sysctl_lock(NULL, NULL, 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* where is it?
|
|
*/
|
|
node = rnode;
|
|
error = sysctl_locate(NULL, &name[0], namelen, &node, &ni);
|
|
if (error) {
|
|
/* they want it gone and it's not there, so... */
|
|
sysctl_unlock(NULL);
|
|
return (error == ENOENT ? 0 : error);
|
|
}
|
|
|
|
/*
|
|
* we found it, now let's nuke it
|
|
*/
|
|
name[namelen - 1] = CTL_DESTROY;
|
|
pnode = node->sysctl_parent;
|
|
error = sysctl_destroy(&name[namelen - 1], 1, NULL, NULL,
|
|
node, sizeof(*node), &name[0], NULL,
|
|
pnode);
|
|
if (error == ENOTEMPTY)
|
|
/*
|
|
* think of trying to delete "foo" when "foo.bar"
|
|
* (which someone else put there) is still in
|
|
* existence
|
|
*/
|
|
error = 0;
|
|
|
|
sysctl_unlock(NULL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* ********************************************************************
|
|
* the dump routine. i haven't yet decided how (if at all) i'll call
|
|
* this from userland when it's in the kernel.
|
|
* ********************************************************************
|
|
*/
|
|
static const char *
|
|
sf(int f)
|
|
{
|
|
static char s[256];
|
|
char *c;
|
|
|
|
s[0] = '\0';
|
|
c = "";
|
|
|
|
#define print_flag(_f, _s, _c, _q, _x) \
|
|
if (((_x) && (((_f) & (_x)) == (__CONCAT(SYSCTL_,_q)))) || \
|
|
(!(_x) && ((_f) & (__CONCAT(SYSCTL_,_q))))) { \
|
|
strlcat((_s), (_c), sizeof(_s)); \
|
|
strlcat((_s), __STRING(_q), sizeof(_s)); \
|
|
(_c) = ","; \
|
|
(_f) &= ~(__CONCAT(SYSCTL_,_q)|(_x)); \
|
|
}
|
|
print_flag(f, s, c, READONLY, SYSCTL_READWRITE);
|
|
print_flag(f, s, c, READONLY1, SYSCTL_READWRITE);
|
|
print_flag(f, s, c, READONLY2, SYSCTL_READWRITE);
|
|
print_flag(f, s, c, READWRITE, SYSCTL_READWRITE);
|
|
print_flag(f, s, c, ANYWRITE, 0);
|
|
print_flag(f, s, c, PRIVATE, 0);
|
|
print_flag(f, s, c, PERMANENT, 0);
|
|
print_flag(f, s, c, OWNDATA, 0);
|
|
print_flag(f, s, c, IMMEDIATE, 0);
|
|
print_flag(f, s, c, HEX, 0);
|
|
print_flag(f, s, c, ROOT, 0);
|
|
print_flag(f, s, c, ANYNUMBER, 0);
|
|
print_flag(f, s, c, HIDDEN, 0);
|
|
print_flag(f, s, c, ALIAS, 0);
|
|
#undef print_flag
|
|
|
|
if (f) {
|
|
char foo[9];
|
|
snprintf(foo, sizeof(foo), "%x", f);
|
|
strlcat(s, c, sizeof(s));
|
|
strlcat(s, foo, sizeof(s));
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
|
|
static const char *
|
|
st(int t)
|
|
{
|
|
|
|
switch (t) {
|
|
case CTLTYPE_NODE:
|
|
return "NODE";
|
|
case CTLTYPE_INT:
|
|
return "INT";
|
|
case CTLTYPE_STRING:
|
|
return "STRING";
|
|
case CTLTYPE_QUAD:
|
|
return "QUAD";
|
|
case CTLTYPE_STRUCT:
|
|
return "STRUCT";
|
|
}
|
|
|
|
return "???";
|
|
}
|
|
|
|
void
|
|
sysctl_dump(const struct sysctlnode *d)
|
|
{
|
|
static char nmib[64], smib[256];
|
|
static int indent;
|
|
struct sysctlnode *n;
|
|
char *np, *sp, tmp[20];
|
|
int i;
|
|
|
|
if (d == NULL)
|
|
return;
|
|
|
|
np = &nmib[strlen(nmib)];
|
|
sp = &smib[strlen(smib)];
|
|
|
|
if (!(d->sysctl_flags & SYSCTL_ROOT)) {
|
|
snprintf(tmp, sizeof(tmp), "%d", d->sysctl_num);
|
|
strcat(nmib, ".");
|
|
strcat(smib, ".");
|
|
strcat(nmib, tmp);
|
|
strcat(smib, d->sysctl_name);
|
|
printf("%s -> %s (%d)\n", &nmib[1], &smib[1],
|
|
SYSCTL_TYPE(d->sysctl_flags));
|
|
}
|
|
|
|
if (1) {
|
|
printf("%*s%p:\tsysctl_name [%s]\n", indent, "",
|
|
d, d->sysctl_name);
|
|
printf("%*s\t\tsysctl_num %d\n", indent, "",
|
|
d->sysctl_num);
|
|
printf("%*s\t\tsysctl_flags %x (flags=%x<%s> type=%d<%s> "
|
|
"size=%zu)\n",
|
|
indent, "", d->sysctl_flags,
|
|
SYSCTL_FLAGS(d->sysctl_flags),
|
|
sf(SYSCTL_FLAGS(d->sysctl_flags)),
|
|
SYSCTL_TYPE(d->sysctl_flags),
|
|
st(SYSCTL_TYPE(d->sysctl_flags)),
|
|
d->sysctl_size);
|
|
if (SYSCTL_TYPE(d->sysctl_flags) == CTLTYPE_NODE) {
|
|
printf("%*s\t\tsysctl_csize %d\n", indent, "",
|
|
d->sysctl_csize);
|
|
printf("%*s\t\tsysctl_clen %d\n", indent, "",
|
|
d->sysctl_clen);
|
|
printf("%*s\t\tsysctl_child %p\n", indent, "",
|
|
d->sysctl_child);
|
|
}
|
|
else
|
|
printf("%*s\t\tsysctl_data %p\n", indent, "",
|
|
d->sysctl_data);
|
|
printf("%*s\t\tsysctl_func %p\n", indent, "",
|
|
d->sysctl_func);
|
|
printf("%*s\t\tsysctl_parent %p\n", indent, "",
|
|
d->sysctl_parent);
|
|
printf("%*s\t\tsysctl_ver %d\n", indent, "",
|
|
d->sysctl_ver);
|
|
}
|
|
|
|
if (SYSCTL_TYPE(d->sysctl_flags) == CTLTYPE_NODE) {
|
|
indent += 8;
|
|
n = d->sysctl_child;
|
|
for (i = 0; i < d->sysctl_clen; i++) {
|
|
sysctl_dump(&n[i]);
|
|
}
|
|
indent -= 8;
|
|
}
|
|
|
|
np[0] = '\0';
|
|
sp[0] = '\0';
|
|
}
|
|
#endif /* 0 */
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Deletes an entire n-ary tree. Not recommended unless you know why
|
|
* you're doing it. Personally, I don't know why you'd even think
|
|
* about it.
|
|
* ********************************************************************
|
|
*/
|
|
void
|
|
sysctl_free(struct sysctlnode *rnode)
|
|
{
|
|
struct sysctlnode *node, *pnode;
|
|
|
|
if (rnode == NULL)
|
|
rnode = &sysctl_root;
|
|
pnode = rnode;
|
|
|
|
node = pnode->sysctl_child;
|
|
do {
|
|
while (node != NULL && pnode->sysctl_csize > 0) {
|
|
while (node <
|
|
&pnode->sysctl_child[pnode->sysctl_clen] &&
|
|
(SYSCTL_TYPE(node->sysctl_flags) !=
|
|
CTLTYPE_NODE ||
|
|
node->sysctl_csize == 0)) {
|
|
if (SYSCTL_FLAGS(node->sysctl_flags) &
|
|
SYSCTL_OWNDATA) {
|
|
if (node->sysctl_data != NULL) {
|
|
FREE(node->sysctl_data,
|
|
M_SYSCTLDATA);
|
|
node->sysctl_data = NULL;
|
|
}
|
|
}
|
|
node++;
|
|
}
|
|
if (node < &pnode->sysctl_child[pnode->sysctl_clen]) {
|
|
pnode = node;
|
|
node = node->sysctl_child;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
if (pnode->sysctl_child != NULL)
|
|
FREE(pnode->sysctl_child, M_SYSCTLNODE);
|
|
pnode->sysctl_clen = 0;
|
|
pnode->sysctl_csize = 0;
|
|
pnode->sysctl_child = NULL;
|
|
node = pnode;
|
|
pnode = node->sysctl_parent;
|
|
} while (pnode != NULL && pnode != rnode);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* old_sysctl -- A routine to bridge old-style internal calls to the
|
|
* new infrastructure.
|
|
* ********************************************************************
|
|
*/
|
|
int
|
|
old_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
|
|
void *newp, size_t newlen, struct lwp *l)
|
|
{
|
|
int error;
|
|
size_t savelen = *oldlenp;
|
|
|
|
error = sysctl_lock(l, oldp, savelen);
|
|
if (error)
|
|
return (error);
|
|
error = sysctl_dispatch(name, namelen, oldp, oldlenp,
|
|
newp, newlen, name, l, NULL);
|
|
sysctl_unlock(l);
|
|
if (error == 0 && oldp != NULL && savelen < *oldlenp)
|
|
error = ENOMEM;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 4: Generic helper routines
|
|
* ********************************************************************
|
|
* "helper" routines that can do more finely grained access control,
|
|
* construct structures from disparate information, create the
|
|
* appearance of more nodes and sub-trees, etc. for example, if
|
|
* CTL_PROC wanted a helper function, it could respond to a CTL_QUERY
|
|
* with a dynamically created list of nodes that represented the
|
|
* currently running processes at that instant.
|
|
* ********************************************************************
|
|
*/
|
|
|
|
/*
|
|
* first, a few generic helpers that provide:
|
|
*
|
|
* sysctl_needfunc() a readonly interface that emits a warning
|
|
* sysctl_notavail() returns EOPNOTSUPP (generic error)
|
|
* sysctl_null() an empty return buffer with no error
|
|
*/
|
|
int
|
|
sysctl_needfunc(SYSCTLFN_ARGS)
|
|
{
|
|
int error;
|
|
|
|
printf("!!SYSCTL_NEEDFUNC!!\n");
|
|
|
|
if (newp != NULL || namelen != 0)
|
|
return (EOPNOTSUPP);
|
|
|
|
error = 0;
|
|
if (oldp != NULL)
|
|
error = sysctl_copyout(l, rnode->sysctl_data, oldp,
|
|
MIN(rnode->sysctl_size, *oldlenp));
|
|
*oldlenp = rnode->sysctl_size;
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sysctl_notavail(SYSCTLFN_ARGS)
|
|
{
|
|
|
|
if (namelen == 1 && name[0] == CTL_QUERY)
|
|
return (sysctl_query(SYSCTLFN_CALL(rnode)));
|
|
|
|
return (EOPNOTSUPP);
|
|
}
|
|
|
|
int
|
|
sysctl_null(SYSCTLFN_ARGS)
|
|
{
|
|
|
|
*oldlenp = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ********************************************************************
|
|
* Section 5: The machinery that makes it all go
|
|
* ********************************************************************
|
|
* Memory "manglement" routines. Not much to this, eh?
|
|
* ********************************************************************
|
|
*/
|
|
static int
|
|
sysctl_alloc(struct sysctlnode *p, int x)
|
|
{
|
|
int i;
|
|
struct sysctlnode *n;
|
|
|
|
assert(p->sysctl_child == NULL);
|
|
|
|
if (x == 1)
|
|
MALLOC(n, struct sysctlnode *,
|
|
sizeof(struct sysctlnode),
|
|
M_SYSCTLNODE, M_WAITOK|M_CANFAIL);
|
|
else
|
|
MALLOC(n, struct sysctlnode *,
|
|
SYSCTL_DEFSIZE * sizeof(struct sysctlnode),
|
|
M_SYSCTLNODE, M_WAITOK|M_CANFAIL);
|
|
if (n == NULL)
|
|
return (ENOMEM);
|
|
|
|
if (x == 1) {
|
|
memset(n, 0, sizeof(struct sysctlnode));
|
|
p->sysctl_csize = 1;
|
|
}
|
|
else {
|
|
memset(n, 0, SYSCTL_DEFSIZE * sizeof(struct sysctlnode));
|
|
p->sysctl_csize = SYSCTL_DEFSIZE;
|
|
}
|
|
p->sysctl_clen = 0;
|
|
|
|
for (i = 0; i < p->sysctl_csize; i++)
|
|
n[i].sysctl_parent = p;
|
|
|
|
p->sysctl_child = n;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_realloc(struct sysctlnode *p)
|
|
{
|
|
int i, j;
|
|
struct sysctlnode *n;
|
|
|
|
assert(p->sysctl_csize == p->sysctl_clen);
|
|
|
|
/*
|
|
* how many do we have...how many should we make?
|
|
*/
|
|
i = p->sysctl_clen;
|
|
n = malloc(2 * i * sizeof(struct sysctlnode), M_SYSCTLNODE,
|
|
M_WAITOK|M_CANFAIL);
|
|
if (n == NULL)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* move old children over...initialize new children
|
|
*/
|
|
memcpy(n, p->sysctl_child, i * sizeof(struct sysctlnode));
|
|
memset(&n[i], 0, i * sizeof(struct sysctlnode));
|
|
p->sysctl_csize = 2 * i;
|
|
p->sysctl_clen = i;
|
|
|
|
/*
|
|
* reattach moved (and new) children to parent; if a moved
|
|
* child node has children, reattach the parent pointers of
|
|
* grandchildren
|
|
*/
|
|
for (i = 0; i < p->sysctl_csize; i++) {
|
|
n[i].sysctl_parent = p;
|
|
if (n[i].sysctl_child != NULL) {
|
|
for (j = 0; j < n[i].sysctl_csize; j++)
|
|
n[i].sysctl_child[j].sysctl_parent = &n[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* get out with the old and in with the new
|
|
*/
|
|
FREE(p->sysctl_child, M_SYSCTLNODE);
|
|
p->sysctl_child = n;
|
|
|
|
return (0);
|
|
}
|