326 lines
8.4 KiB
C
326 lines
8.4 KiB
C
/* Low level Alpha interface, for GDB when running native.
|
|
Copyright 1993, 1995 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include <sys/ptrace.h>
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/pcb.h>
|
|
#include <string.h>
|
|
|
|
static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
|
|
|
|
/* Size of elements in jmpbuf */
|
|
|
|
#define JB_ELEMENT_SIZE 8
|
|
|
|
/* The definition for JB_PC in machine/reg.h is wrong.
|
|
And we can't get at the correct definition in setjmp.h as it is
|
|
not always available (eg. if _POSIX_SOURCE is defined which is the
|
|
default). As the defintion is unlikely to change (see comment
|
|
in <setjmp.h>, define the correct value here. */
|
|
|
|
#undef JB_PC
|
|
#define JB_PC 2
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
|
This routine returns true on success. */
|
|
|
|
int
|
|
get_longjmp_target (pc)
|
|
CORE_ADDR *pc;
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
jb_addr = read_register(A0_REGNUM);
|
|
|
|
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
|
|
sizeof(CORE_ADDR)))
|
|
return 0;
|
|
|
|
*pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
|
|
return 1;
|
|
}
|
|
|
|
/* Extract the register values out of the core file and store
|
|
them where `read_register' will find them.
|
|
|
|
CORE_REG_SECT points to the register values themselves, read into memory.
|
|
CORE_REG_SIZE is the size of that area.
|
|
WHICH says which set of registers we are handling (0 = int, 2 = float
|
|
on machines where they are discontiguous).
|
|
REG_ADDR is the offset from u.u_ar0 to the register values relative to
|
|
core_reg_sect. This is used with old-fashioned core files to
|
|
locate the registers in a large upage-plus-stack ".reg" section.
|
|
Original upage address X is at location core_reg_sect+x+reg_addr.
|
|
*/
|
|
|
|
#define oi(name) \
|
|
offsetof(struct md_coredump, md_tf.tf_regs[__CONCAT(FRAME_,name)])
|
|
#define of(num) \
|
|
offsetof(struct md_coredump, md_fpstate.fpr_regs[num])
|
|
|
|
void
|
|
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
|
char *core_reg_sect;
|
|
unsigned core_reg_size;
|
|
int which;
|
|
unsigned reg_addr;
|
|
{
|
|
register int regno;
|
|
register int addr;
|
|
int bad_reg = -1;
|
|
int regoff[NUM_REGS] = {
|
|
oi(V0), oi(T0), oi(T1), oi(T2), oi(T3), oi(T4), oi(T5), oi(T6),
|
|
oi(T7), oi(S0), oi(S1), oi(S2), oi(S3), oi(S4), oi(S5), oi(S6),
|
|
oi(A0), oi(A1), oi(A2), oi(A3), oi(A4), oi(A5), oi(T8), oi(T9),
|
|
oi(T10), oi(T11), oi(RA), oi(T12), oi(AT), oi(GP), oi(SP), -1,
|
|
of(0), of(1), of(2), of(3), of(4), of(5), of(6), of(7),
|
|
of(8), of(9), of(10), of(11), of(12), of(13), of(14), of(15),
|
|
of(16), of(17), of(18), of(19), of(20), of(21), of(22), of(23),
|
|
of(24), of(25), of(26), of(27), of(28), of(29), of(30), of(31),
|
|
oi(PC), -1,
|
|
};
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++)
|
|
{
|
|
if (CANNOT_FETCH_REGISTER (regno))
|
|
{
|
|
supply_register (regno, zerobuf);
|
|
continue;
|
|
}
|
|
addr = regoff[regno];
|
|
if (addr < 0 || addr >= core_reg_size)
|
|
{
|
|
if (bad_reg < 0)
|
|
bad_reg = regno;
|
|
}
|
|
else
|
|
{
|
|
supply_register (regno, core_reg_sect + addr);
|
|
}
|
|
}
|
|
if (bad_reg >= 0)
|
|
{
|
|
error ("Register %s not found in core file.", reg_names[bad_reg]);
|
|
}
|
|
}
|
|
|
|
register_t
|
|
rrf_to_register(regno, reg, fpreg)
|
|
int regno;
|
|
struct reg *reg;
|
|
struct fpreg *fpreg;
|
|
{
|
|
|
|
if (regno < 0)
|
|
abort();
|
|
else if (regno < FP0_REGNUM)
|
|
return (reg->r_regs[regno]);
|
|
else if (regno == PC_REGNUM)
|
|
return (reg->r_regs[R_ZERO]);
|
|
else if (regno >= FP0_REGNUM)
|
|
return (fpreg->fpr_regs[regno - FP0_REGNUM]);
|
|
else
|
|
abort();
|
|
}
|
|
|
|
void
|
|
fetch_inferior_registers (regno)
|
|
int regno;
|
|
{
|
|
struct reg reg;
|
|
struct fpreg fpreg;
|
|
register_t regval;
|
|
char *rp;
|
|
|
|
ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
|
|
ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
|
|
|
|
if (regno < 0) {
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
if (CANNOT_FETCH_REGISTER (regno))
|
|
rp = zerobuf;
|
|
else {
|
|
regval = rrf_to_register(regno, ®, &fpreg);
|
|
rp = (char *)®val;
|
|
}
|
|
supply_register(regno, rp);
|
|
}
|
|
} else {
|
|
if (CANNOT_FETCH_REGISTER (regno))
|
|
rp = zerobuf;
|
|
else {
|
|
regval = rrf_to_register(regno, ®, &fpreg);
|
|
rp = (char *)®val;
|
|
}
|
|
|
|
supply_register(regno, rp);
|
|
}
|
|
}
|
|
|
|
void
|
|
register_into_rrf(val, regno, reg, fpreg)
|
|
register_t val;
|
|
int regno;
|
|
struct reg *reg;
|
|
struct fpreg *fpreg;
|
|
{
|
|
|
|
if (regno < 0)
|
|
abort();
|
|
else if (regno < FP0_REGNUM)
|
|
reg->r_regs[regno] = val;
|
|
else if (regno == PC_REGNUM)
|
|
reg->r_regs[R_ZERO] = val;
|
|
else if (regno >= FP0_REGNUM)
|
|
fpreg->fpr_regs[regno - FP0_REGNUM] = val;
|
|
else
|
|
abort();
|
|
}
|
|
|
|
void
|
|
store_inferior_registers (regno)
|
|
int regno;
|
|
{
|
|
struct reg reg;
|
|
struct fpreg fpreg;
|
|
register_t regval;
|
|
|
|
if (regno < 0) {
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
if (CANNOT_STORE_REGISTER (regno))
|
|
continue;
|
|
|
|
if (REGISTER_RAW_SIZE (regno) != sizeof regval)
|
|
abort();
|
|
memcpy(®val, ®isters[REGISTER_BYTE (regno)],
|
|
REGISTER_RAW_SIZE (regno));
|
|
register_into_rrf(regval, regno, ®, &fpreg);
|
|
}
|
|
} else {
|
|
ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
|
|
ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
|
|
|
|
memcpy(®val, ®isters[REGISTER_BYTE (regno)],
|
|
REGISTER_RAW_SIZE (regno));
|
|
register_into_rrf(regval, regno, ®, &fpreg);
|
|
}
|
|
|
|
ptrace(PT_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0);
|
|
ptrace(PT_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
|
|
}
|
|
|
|
void
|
|
child_resume (pid, step, signal)
|
|
int pid;
|
|
int step;
|
|
enum target_signal signal;
|
|
{
|
|
|
|
errno = 0;
|
|
|
|
if (pid == -1)
|
|
/* Resume all threads. */
|
|
/* I think this only gets used in the non-threaded case, where "resume
|
|
all threads" and "resume inferior_pid" are the same. */
|
|
pid = inferior_pid;
|
|
|
|
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
|
it was. (If GDB wanted it to start some other way, we have already
|
|
written a new PC value to the child.)
|
|
|
|
If this system does not support PT_STEP, a higher level function will
|
|
have called single_step() to transmute the step request into a
|
|
continue request (by setting breakpoints on all possible successor
|
|
instructions), so we don't have to worry about that here. */
|
|
|
|
if (step)
|
|
abort();
|
|
else
|
|
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
|
|
target_signal_to_host (signal));
|
|
|
|
if (errno)
|
|
perror_with_name ("ptrace");
|
|
}
|
|
|
|
#ifdef KERNEL_DEBUG
|
|
|
|
#define kread(addr, p, l) \
|
|
(target_read_memory((CORE_ADDR)(addr), (char *)(p), (l)))
|
|
fetch_kcore_registers (proc, pcb)
|
|
struct proc *proc;
|
|
struct pcb *pcb;
|
|
{
|
|
struct md_coredump fake_cpustate;
|
|
struct trapframe *tf;
|
|
|
|
if (kread(&proc->p_md.md_tf, &tf, sizeof(tf)))
|
|
error("cannot read proc at %#x", &proc->p_md.md_tf);
|
|
|
|
if (kread(tf, &fake_cpustate.md_tf, sizeof(fake_cpustate.md_tf)))
|
|
error("cannot read trap frame at %#x", tf);
|
|
|
|
fake_cpustate.md_fpstate = pcb->pcb_fp;
|
|
fetch_core_registers ((char *) &fake_cpustate, sizeof(fake_cpustate), 0, 0);
|
|
}
|
|
|
|
void
|
|
clear_regs()
|
|
{
|
|
int regno;
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++)
|
|
supply_register(regno, zerobuf);
|
|
}
|
|
|
|
#endif
|
|
|
|
static struct core_fns alphanbsd_core_fns =
|
|
{
|
|
bfd_target_ecoff_flavour,
|
|
fetch_core_registers,
|
|
NULL
|
|
};
|
|
|
|
static struct core_fns alphanbsd_elf_core_fns =
|
|
{
|
|
bfd_target_elf_flavour,
|
|
fetch_core_registers,
|
|
NULL
|
|
};
|
|
|
|
void
|
|
_initialize_core_alphanbsd ()
|
|
{
|
|
add_core_fns (&alphanbsd_core_fns);
|
|
add_core_fns (&alphanbsd_elf_core_fns);
|
|
}
|