NetBSD/sys/netinet/ip_output.c
ozaki-r 6fb8880601 Make the routing table and rtcaches MP-safe
See the following descriptions for details.

Proposed on tech-kern and tech-net


Overview
--------

We protect the routing table with a rwock and protect
rtcaches with another rwlock. Each rtentry is protected
from being freed or updated via reference counting and psref.

Global rwlocks
--------------

There are two rwlocks; one for the routing table (rt_lock) and
the other for rtcaches (rtcache_lock). rtcache_lock covers
all existing rtcaches; there may have room for optimizations
(future work).

The locking order is rtcache_lock first and rt_lock is next.

rtentry references
------------------

References to an rtentry is managed with reference counting
and psref. Either of the two mechanisms is used depending on
where a rtentry is obtained. Reference counting is used when
we obtain a rtentry from the routing table directly via
rtalloc1 and rtrequest{,1} while psref is used when we obtain
a rtentry from a rtcache via rtcache_* APIs. In both cases,
a caller can sleep/block with holding an obtained rtentry.

The reasons why we use two different mechanisms are (i) only
using reference counting hurts the performance due to atomic
instructions (rtcache case) (ii) ease of implementation;
applying psref to APIs such rtaloc1 and rtrequest{,1} requires
additional works (adding a local variable and an argument).

We will finally migrate to use only psref but we can do it
when we have a lockless routing table alternative.

Reference counting for rtentry
------------------------------

rt_refcnt now doesn't count permanent references such as for
rt_timers and rtcaches, instead it is used only for temporal
references when obtaining a rtentry via rtalloc1 and rtrequest{,1}.
We can do so because destroying a rtentry always involves
removing references of rt_timers and rtcaches to the rtentry
and we don't need to track such references. This also makes
it easy to wait for readers to release references on deleting
or updating a rtentry, i.e., we can simply wait until the
reference counter is 0 or 1. (If there are permanent references
the counter can be arbitrary.)

rt_ref increments a reference counter of a rtentry and rt_unref
decrements it. rt_ref is called inside APIs (rtalloc1 and
rtrequest{,1} so users don't need to care about it while
users must call rt_unref to an obtained rtentry after using it.

rtfree is removed and we use rt_unref and rt_free instead.
rt_unref now just decrements the counter of a given rtentry
and rt_free just tries to destroy a given rtentry.

See the next section for destructions of rtentries by rt_free.

Destructions of rtentries
-------------------------

We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE);
the original implementation can destroy in any rtfree where it's
the last reference. If we use reference counting or psref, it's
easy to understand if the place that a rtentry is destroyed is
fixed.

rt_free waits for references to a given rtentry to be released
before actually destroying the rtentry. rt_free uses a condition
variable (cv_wait) (and psref_target_destroy for psref) to wait.

Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint
that we cannot use cv_wait. In that case, we have to defer the
destruction to a workqueue.

rtentry#rt_cv, rtentry#rt_psref and global variables
(see rt_free_global) are added to conduct the procedure.

Updates of rtentries
--------------------

One difficulty to use refcnt/psref instead of rwlock for rtentry
is updates of rtentries. We need an additional mechanism to
prevent readers from seeing inconsistency of a rtentry being
updated.

We introduce RTF_UPDATING flag to rtentries that are updating.
While the flag is set to a rtentry, users cannot acquire the
rtentry. By doing so, we avoid users to see inconsistent
rtentries.

There are two options when a user tries to acquire a rtentry
with the RTF_UPDATING flag; if a user runs in softint context
the user fails to acquire a rtentry (NULL is returned).
Otherwise a user waits until the update completes by waiting
on cv.

The procedure of a updater is simpler to destruction of
a rtentry. Wait on cv (and psref) and after all readers left,
proceed with the update.

Global variables (see rt_update_global) are added to conduct
the procedure.

Currently we apply the mechanism to only RTM_CHANGE in
rtsock.c. We would have to apply other codes. See
"Known issues" section.

psref for rtentry
-----------------

When we obtain a rtentry from a rtcache via rtcache_* APIs,
psref is used to reference to the rtentry.

rtcache_ref acquires a reference to a rtentry with psref
and rtcache_unref releases the reference after using it.
rtcache_ref is called inside rtcache_* APIs and users don't
need to take care of it while users must call rtcache_unref
to release the reference.

struct psref and int bound that is needed for psref is
embedded into struct route. By doing so we don't need to
add local variables and additional argument to APIs.

However this adds another constraint to psref other than
reference counting one's; holding a reference of an rtentry
via a rtcache is allowed by just one caller at the same time.
So we must not acquire a rtentry via a rtcache twice and
avoid a recursive use of a rtcache. And also a rtcache must
be arranged to be used by a LWP/softint at the same time
somehow. For IP forwarding case, we have per-CPU rtcaches
used in softint so the constraint is guaranteed. For a h
rtcache of a PCB case, the constraint is guaranteed by the
solock of each PCB. Any other cases (pf, ipf, stf and ipsec)
are currently guaranteed by only the existence of the global
locks (softnet_lock and/or KERNEL_LOCK). If we've found the
cases that we cannot guarantee the constraint, we would need
to introduce other rtcache APIs that use simple reference
counting.

psref of rtcache is created with IPL_SOFTNET and so rtcache
shouldn't used at an IPL higher than IPL_SOFTNET.

Note that rtcache_free is used to invalidate a given rtcache.
We don't need another care by my change; just keep them as
they are.

Performance impact
------------------

When NET_MPSAFE is disabled the performance drop is 3% while
when it's enabled the drop is increased to 11%. The difference
comes from that currently we don't take any global locks and
don't use psref if NET_MPSAFE is disabled.

We can optimize the performance of the case of NET_MPSAFE
on by reducing lookups of rtcache that uses psref;
currently we do two lookups but we should be able to trim
one of two. This is a future work.

Known issues
------------

There are two known issues to be solved; one is that
a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit).
We need to prevent new references during the update. Or
we may be able to remove the code (perhaps, need more
investigations).

The other is rtredirect that updates a rtentry. We need
to apply our update mechanism, however it's not easy because
rtredirect is called in softint and we cannot apply our
mechanism simply. One solution is to defer rtredirect to
a workqueue but it requires some code restructuring.
2016-12-12 03:55:57 +00:00

1901 lines
45 KiB
C

/* $NetBSD: ip_output.c,v 1.265 2016/12/12 03:55:57 ozaki-r Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.265 2016/12/12 03:55:57 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_mrouting.h"
#include "opt_net_mpsafe.h"
#include "opt_mpls.h"
#endif
#include "arp.h"
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kauth.h>
#ifdef IPSEC
#include <sys/domain.h>
#endif
#include <sys/systm.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/pfil.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_private.h>
#include <netinet/in_offload.h>
#include <netinet/portalgo.h>
#include <netinet/udp.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#ifdef MROUTING
#include <netinet/ip_mroute.h>
#endif
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif
#ifdef MPLS
#include <netmpls/mpls.h>
#include <netmpls/mpls_var.h>
#endif
static int ip_pcbopts(struct inpcb *, const struct sockopt *);
static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
static struct ifnet *ip_multicast_if(struct in_addr *, int *);
static void ip_mloopback(struct ifnet *, struct mbuf *,
const struct sockaddr_in *);
static int ip_ifaddrvalid(const struct in_ifaddr *);
extern pfil_head_t *inet_pfil_hook; /* XXX */
int ip_do_loopback_cksum = 0;
static int
ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
const struct rtentry *rt)
{
int error = 0;
#ifdef MPLS
union mpls_shim msh;
if (rt == NULL || rt_gettag(rt) == NULL ||
rt_gettag(rt)->sa_family != AF_MPLS ||
(m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
ifp->if_type != IFT_ETHER)
return 0;
msh.s_addr = MPLS_GETSADDR(rt);
if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
struct m_tag *mtag;
/*
* XXX tentative solution to tell ether_output
* it's MPLS. Need some more efficient solution.
*/
mtag = m_tag_get(PACKET_TAG_MPLS,
sizeof(int) /* dummy */,
M_NOWAIT);
if (mtag == NULL)
return ENOMEM;
m_tag_prepend(m, mtag);
}
#endif
return error;
}
/*
* Send an IP packet to a host.
*/
int
ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
const struct sockaddr * const dst, const struct rtentry *rt)
{
int error = 0;
if (rt != NULL) {
error = rt_check_reject_route(rt, ifp);
if (error != 0) {
m_freem(m);
return error;
}
}
error = ip_mark_mpls(ifp, m, rt);
if (error != 0) {
m_freem(m);
return error;
}
error = if_output_lock(ifp, ifp, m, dst, rt);
return error;
}
/*
* IP output. The packet in mbuf chain m contains a skeletal IP
* header (with len, off, ttl, proto, tos, src, dst).
* The mbuf chain containing the packet will be freed.
* The mbuf opt, if present, will not be freed.
*/
int
ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
struct ip_moptions *imo, struct socket *so)
{
struct rtentry *rt;
struct ip *ip;
struct ifnet *ifp, *mifp = NULL;
struct mbuf *m = m0;
int hlen = sizeof (struct ip);
int len, error = 0;
struct route iproute;
const struct sockaddr_in *dst;
struct in_ifaddr *ia = NULL;
int isbroadcast;
int sw_csum;
u_long mtu;
#ifdef IPSEC
struct secpolicy *sp = NULL;
#endif
bool natt_frag = false;
bool rtmtu_nolock;
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
* to the nexthop
*/
struct psref psref, psref_ia;
int bound;
bool bind_need_restore = false;
len = 0;
MCLAIM(m, &ip_tx_mowner);
KASSERT((m->m_flags & M_PKTHDR) != 0);
KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
(M_CSUM_TCPv4|M_CSUM_UDPv4));
if (opt) {
m = ip_insertoptions(m, opt, &len);
if (len >= sizeof(struct ip))
hlen = len;
}
ip = mtod(m, struct ip *);
/*
* Fill in IP header.
*/
if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
ip->ip_v = IPVERSION;
ip->ip_off = htons(0);
/* ip->ip_id filled in after we find out source ia */
ip->ip_hl = hlen >> 2;
IP_STATINC(IP_STAT_LOCALOUT);
} else {
hlen = ip->ip_hl << 2;
}
/*
* Route packet.
*/
if (ro == NULL) {
memset(&iproute, 0, sizeof(iproute));
ro = &iproute;
}
sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
dst = satocsin(rtcache_getdst(ro));
/*
* If there is a cached route, check that it is to the same
* destination and is still up. If not, free it and try again.
* The address family should also be checked in case of sharing
* the cache with IPv6.
*/
if (dst && (dst->sin_family != AF_INET ||
!in_hosteq(dst->sin_addr, ip->ip_dst)))
rtcache_free(ro);
if ((rt = rtcache_validate(ro)) == NULL &&
(rt = rtcache_update(ro, 1)) == NULL) {
dst = &u.dst4;
error = rtcache_setdst(ro, &u.dst);
if (error != 0)
goto bad;
}
bound = curlwp_bind();
bind_need_restore = true;
/*
* If routing to interface only, short circuit routing lookup.
*/
if (flags & IP_ROUTETOIF) {
struct ifaddr *ifa;
ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
if (ifa == NULL) {
IP_STATINC(IP_STAT_NOROUTE);
error = ENETUNREACH;
goto bad;
}
/* ia is already referenced by psref_ia */
ia = ifatoia(ifa);
ifp = ia->ia_ifp;
mtu = ifp->if_mtu;
ip->ip_ttl = 1;
isbroadcast = in_broadcast(dst->sin_addr, ifp);
} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
ip->ip_dst.s_addr == INADDR_BROADCAST) &&
imo != NULL && imo->imo_multicast_if_index != 0) {
ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
if (ifp == NULL) {
IP_STATINC(IP_STAT_NOROUTE);
error = ENETUNREACH;
goto bad;
}
mtu = ifp->if_mtu;
ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
if (ia == NULL) {
error = EADDRNOTAVAIL;
goto bad;
}
isbroadcast = 0;
} else {
if (rt == NULL)
rt = rtcache_init(ro);
if (rt == NULL) {
IP_STATINC(IP_STAT_NOROUTE);
error = EHOSTUNREACH;
goto bad;
}
if (ifa_is_destroying(rt->rt_ifa)) {
rtcache_unref(rt, ro);
IP_STATINC(IP_STAT_NOROUTE);
error = EHOSTUNREACH;
goto bad;
}
ifa_acquire(rt->rt_ifa, &psref_ia);
ia = ifatoia(rt->rt_ifa);
ifp = rt->rt_ifp;
if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
mtu = ifp->if_mtu;
rt->rt_use++;
if (rt->rt_flags & RTF_GATEWAY)
dst = satosin(rt->rt_gateway);
if (rt->rt_flags & RTF_HOST)
isbroadcast = rt->rt_flags & RTF_BROADCAST;
else
isbroadcast = in_broadcast(dst->sin_addr, ifp);
}
rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
if (IN_MULTICAST(ip->ip_dst.s_addr) ||
(ip->ip_dst.s_addr == INADDR_BROADCAST)) {
bool inmgroup;
m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
M_BCAST : M_MCAST;
/*
* See if the caller provided any multicast options
*/
if (imo != NULL)
ip->ip_ttl = imo->imo_multicast_ttl;
else
ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
/*
* if we don't know the outgoing ifp yet, we can't generate
* output
*/
if (!ifp) {
IP_STATINC(IP_STAT_NOROUTE);
error = ENETUNREACH;
goto bad;
}
/*
* If the packet is multicast or broadcast, confirm that
* the outgoing interface can transmit it.
*/
if (((m->m_flags & M_MCAST) &&
(ifp->if_flags & IFF_MULTICAST) == 0) ||
((m->m_flags & M_BCAST) &&
(ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
IP_STATINC(IP_STAT_NOROUTE);
error = ENETUNREACH;
goto bad;
}
/*
* If source address not specified yet, use an address
* of outgoing interface.
*/
if (in_nullhost(ip->ip_src)) {
struct in_ifaddr *xia;
struct ifaddr *xifa;
struct psref _psref;
xia = in_get_ia_from_ifp_psref(ifp, &_psref);
if (!xia) {
error = EADDRNOTAVAIL;
goto bad;
}
xifa = &xia->ia_ifa;
if (xifa->ifa_getifa != NULL) {
ia4_release(xia, &_psref);
/* FIXME NOMPSAFE */
xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
if (xia == NULL) {
error = EADDRNOTAVAIL;
goto bad;
}
ia4_acquire(xia, &_psref);
}
ip->ip_src = xia->ia_addr.sin_addr;
ia4_release(xia, &_psref);
}
inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
/*
* If we belong to the destination multicast group
* on the outgoing interface, and the caller did not
* forbid loopback, loop back a copy.
*/
ip_mloopback(ifp, m, &u.dst4);
}
#ifdef MROUTING
else {
/*
* If we are acting as a multicast router, perform
* multicast forwarding as if the packet had just
* arrived on the interface to which we are about
* to send. The multicast forwarding function
* recursively calls this function, using the
* IP_FORWARDING flag to prevent infinite recursion.
*
* Multicasts that are looped back by ip_mloopback(),
* above, will be forwarded by the ip_input() routine,
* if necessary.
*/
extern struct socket *ip_mrouter;
if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
if (ip_mforward(m, ifp) != 0) {
m_freem(m);
goto done;
}
}
}
#endif
/*
* Multicasts with a time-to-live of zero may be looped-
* back, above, but must not be transmitted on a network.
* Also, multicasts addressed to the loopback interface
* are not sent -- the above call to ip_mloopback() will
* loop back a copy if this host actually belongs to the
* destination group on the loopback interface.
*/
if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
m_freem(m);
goto done;
}
goto sendit;
}
/*
* If source address not specified yet, use address
* of outgoing interface.
*/
if (in_nullhost(ip->ip_src)) {
struct ifaddr *xifa;
xifa = &ia->ia_ifa;
if (xifa->ifa_getifa != NULL) {
ia4_release(ia, &psref_ia);
/* FIXME NOMPSAFE */
ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
if (ia == NULL) {
error = EADDRNOTAVAIL;
goto bad;
}
ia4_acquire(ia, &psref_ia);
}
ip->ip_src = ia->ia_addr.sin_addr;
}
/*
* packets with Class-D address as source are not valid per
* RFC 1112
*/
if (IN_MULTICAST(ip->ip_src.s_addr)) {
IP_STATINC(IP_STAT_ODROPPED);
error = EADDRNOTAVAIL;
goto bad;
}
/*
* Look for broadcast address and and verify user is allowed to
* send such a packet.
*/
if (isbroadcast) {
if ((ifp->if_flags & IFF_BROADCAST) == 0) {
error = EADDRNOTAVAIL;
goto bad;
}
if ((flags & IP_ALLOWBROADCAST) == 0) {
error = EACCES;
goto bad;
}
/* don't allow broadcast messages to be fragmented */
if (ntohs(ip->ip_len) > ifp->if_mtu) {
error = EMSGSIZE;
goto bad;
}
m->m_flags |= M_BCAST;
} else
m->m_flags &= ~M_BCAST;
sendit:
if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
ip->ip_id = 0;
} else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
ip->ip_id = ip_newid(ia);
} else {
/*
* TSO capable interfaces (typically?) increment
* ip_id for each segment.
* "allocate" enough ids here to increase the chance
* for them to be unique.
*
* note that the following calculation is not
* needed to be precise. wasting some ip_id is fine.
*/
unsigned int segsz = m->m_pkthdr.segsz;
unsigned int datasz = ntohs(ip->ip_len) - hlen;
unsigned int num = howmany(datasz, segsz);
ip->ip_id = ip_newid_range(ia, num);
}
}
if (ia != NULL) {
ia4_release(ia, &psref_ia);
ia = NULL;
}
/*
* If we're doing Path MTU Discovery, we need to set DF unless
* the route's MTU is locked.
*/
if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
ip->ip_off |= htons(IP_DF);
}
#ifdef IPSEC
if (ipsec_used) {
bool ipsec_done = false;
/* Perform IPsec processing, if any. */
error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
&ipsec_done);
if (error || ipsec_done)
goto done;
}
#endif
/*
* Run through list of hooks for output packets.
*/
error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
if (error)
goto done;
if (m == NULL)
goto done;
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
m->m_pkthdr.csum_data |= hlen << 16;
/*
* search for the source address structure to
* maintain output statistics.
*/
KASSERT(ia == NULL);
ia = in_get_ia_psref(ip->ip_src, &psref_ia);
/* Ensure we only send from a valid address. */
if ((ia != NULL || (flags & IP_FORWARDING) == 0) &&
(error = ip_ifaddrvalid(ia)) != 0)
{
arplog(LOG_ERR,
"refusing to send from invalid address %s (pid %d)\n",
in_fmtaddr(ip->ip_src), curproc->p_pid);
IP_STATINC(IP_STAT_ODROPPED);
if (error == 1)
/*
* Address exists, but is tentative or detached.
* We can't send from it because it's invalid,
* so we drop the packet.
*/
error = 0;
else
error = EADDRNOTAVAIL;
goto bad;
}
/* Maybe skip checksums on loopback interfaces. */
if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
}
sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
/*
* If small enough for mtu of path, or if using TCP segmentation
* offload, can just send directly.
*/
if (ntohs(ip->ip_len) <= mtu ||
(m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
const struct sockaddr *sa;
#if IFA_STATS
if (ia)
ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
#endif
/*
* Always initialize the sum to 0! Some HW assisted
* checksumming requires this.
*/
ip->ip_sum = 0;
if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
/*
* Perform any checksums that the hardware can't do
* for us.
*
* XXX Does any hardware require the {th,uh}_sum
* XXX fields to be 0?
*/
if (sw_csum & M_CSUM_IPv4) {
KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
ip->ip_sum = in_cksum(m, hlen);
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
}
if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
if (IN_NEED_CHECKSUM(ifp,
sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
in_delayed_cksum(m);
}
m->m_pkthdr.csum_flags &=
~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
}
sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
if (__predict_true(
(m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
(ifp->if_capenable & IFCAP_TSOv4) != 0)) {
error = ip_if_output(ifp, m, sa, rt);
} else {
error = ip_tso_output(ifp, m, sa, rt);
}
goto done;
}
/*
* We can't use HW checksumming if we're about to
* to fragment the packet.
*
* XXX Some hardware can do this.
*/
if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
if (IN_NEED_CHECKSUM(ifp,
m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
in_delayed_cksum(m);
}
m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
/*
* Too large for interface; fragment if possible.
* Must be able to put at least 8 bytes per fragment.
*/
if (ntohs(ip->ip_off) & IP_DF) {
if (flags & IP_RETURNMTU) {
struct inpcb *inp;
KASSERT(so && solocked(so));
inp = sotoinpcb(so);
inp->inp_errormtu = mtu;
}
error = EMSGSIZE;
IP_STATINC(IP_STAT_CANTFRAG);
goto bad;
}
error = ip_fragment(m, ifp, mtu);
if (error) {
m = NULL;
goto bad;
}
for (; m; m = m0) {
m0 = m->m_nextpkt;
m->m_nextpkt = 0;
if (error) {
m_freem(m);
continue;
}
#if IFA_STATS
if (ia)
ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
#endif
/*
* If we get there, the packet has not been handled by
* IPsec whereas it should have. Now that it has been
* fragmented, re-inject it in ip_output so that IPsec
* processing can occur.
*/
if (natt_frag) {
error = ip_output(m, opt, ro,
flags | IP_RAWOUTPUT | IP_NOIPNEWID,
imo, so);
} else {
KASSERT((m->m_pkthdr.csum_flags &
(M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
error = ip_if_output(ifp, m,
(m->m_flags & M_MCAST) ?
sintocsa(rdst) : sintocsa(dst), rt);
}
}
if (error == 0) {
IP_STATINC(IP_STAT_FRAGMENTED);
}
done:
ia4_release(ia, &psref_ia);
rtcache_unref(rt, ro);
if (ro == &iproute) {
rtcache_free(&iproute);
}
#ifdef IPSEC
if (sp) {
KEY_FREESP(&sp);
}
#endif
if (mifp != NULL) {
if_put(mifp, &psref);
}
if (bind_need_restore)
curlwp_bindx(bound);
return error;
bad:
m_freem(m);
goto done;
}
int
ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
{
struct ip *ip, *mhip;
struct mbuf *m0;
int len, hlen, off;
int mhlen, firstlen;
struct mbuf **mnext;
int sw_csum = m->m_pkthdr.csum_flags;
int fragments = 0;
int s;
int error = 0;
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
if (ifp != NULL)
sw_csum &= ~ifp->if_csum_flags_tx;
len = (mtu - hlen) &~ 7;
if (len < 8) {
m_freem(m);
return (EMSGSIZE);
}
firstlen = len;
mnext = &m->m_nextpkt;
/*
* Loop through length of segment after first fragment,
* make new header and copy data of each part and link onto chain.
*/
m0 = m;
mhlen = sizeof (struct ip);
for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m == 0) {
error = ENOBUFS;
IP_STATINC(IP_STAT_ODROPPED);
goto sendorfree;
}
MCLAIM(m, m0->m_owner);
*mnext = m;
mnext = &m->m_nextpkt;
m->m_data += max_linkhdr;
mhip = mtod(m, struct ip *);
*mhip = *ip;
/* we must inherit MCAST and BCAST flags */
m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
if (hlen > sizeof (struct ip)) {
mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
mhip->ip_hl = mhlen >> 2;
}
m->m_len = mhlen;
mhip->ip_off = ((off - hlen) >> 3) +
(ntohs(ip->ip_off) & ~IP_MF);
if (ip->ip_off & htons(IP_MF))
mhip->ip_off |= IP_MF;
if (off + len >= ntohs(ip->ip_len))
len = ntohs(ip->ip_len) - off;
else
mhip->ip_off |= IP_MF;
HTONS(mhip->ip_off);
mhip->ip_len = htons((u_int16_t)(len + mhlen));
m->m_next = m_copym(m0, off, len, M_DONTWAIT);
if (m->m_next == 0) {
error = ENOBUFS; /* ??? */
IP_STATINC(IP_STAT_ODROPPED);
goto sendorfree;
}
m->m_pkthdr.len = mhlen + len;
m_reset_rcvif(m);
mhip->ip_sum = 0;
KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
if (sw_csum & M_CSUM_IPv4) {
mhip->ip_sum = in_cksum(m, mhlen);
} else {
/*
* checksum is hw-offloaded or not necessary.
*/
m->m_pkthdr.csum_flags |=
m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
m->m_pkthdr.csum_data |= mhlen << 16;
KASSERT(!(ifp != NULL &&
IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
(m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
}
IP_STATINC(IP_STAT_OFRAGMENTS);
fragments++;
}
/*
* Update first fragment by trimming what's been copied out
* and updating header, then send each fragment (in order).
*/
m = m0;
m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
m->m_pkthdr.len = hlen + firstlen;
ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
ip->ip_off |= htons(IP_MF);
ip->ip_sum = 0;
if (sw_csum & M_CSUM_IPv4) {
ip->ip_sum = in_cksum(m, hlen);
m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
} else {
/*
* checksum is hw-offloaded or not necessary.
*/
KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
(m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
sizeof(struct ip));
}
sendorfree:
/*
* If there is no room for all the fragments, don't queue
* any of them.
*/
if (ifp != NULL) {
s = splnet();
if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
error == 0) {
error = ENOBUFS;
IP_STATINC(IP_STAT_ODROPPED);
IFQ_INC_DROPS(&ifp->if_snd);
}
splx(s);
}
if (error) {
for (m = m0; m; m = m0) {
m0 = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
}
}
return (error);
}
/*
* Process a delayed payload checksum calculation.
*/
void
in_delayed_cksum(struct mbuf *m)
{
struct ip *ip;
u_int16_t csum, offset;
ip = mtod(m, struct ip *);
offset = ip->ip_hl << 2;
csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
csum = 0xffff;
offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
if ((offset + sizeof(u_int16_t)) > m->m_len) {
/* This happen when ip options were inserted
printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
m->m_len, offset, ip->ip_p);
*/
m_copyback(m, offset, sizeof(csum), (void *) &csum);
} else
*(u_int16_t *)(mtod(m, char *) + offset) = csum;
}
/*
* Determine the maximum length of the options to be inserted;
* we would far rather allocate too much space rather than too little.
*/
u_int
ip_optlen(struct inpcb *inp)
{
struct mbuf *m = inp->inp_options;
if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
return (m->m_len - offsetof(struct ipoption, ipopt_dst));
}
return 0;
}
/*
* Insert IP options into preformed packet.
* Adjust IP destination as required for IP source routing,
* as indicated by a non-zero in_addr at the start of the options.
*/
static struct mbuf *
ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
{
struct ipoption *p = mtod(opt, struct ipoption *);
struct mbuf *n;
struct ip *ip = mtod(m, struct ip *);
unsigned optlen;
optlen = opt->m_len - sizeof(p->ipopt_dst);
if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
return (m); /* XXX should fail */
if (!in_nullhost(p->ipopt_dst))
ip->ip_dst = p->ipopt_dst;
if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
MGETHDR(n, M_DONTWAIT, MT_HEADER);
if (n == 0)
return (m);
MCLAIM(n, m->m_owner);
M_MOVE_PKTHDR(n, m);
m->m_len -= sizeof(struct ip);
m->m_data += sizeof(struct ip);
n->m_next = m;
m = n;
m->m_len = optlen + sizeof(struct ip);
m->m_data += max_linkhdr;
bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
} else {
m->m_data -= optlen;
m->m_len += optlen;
memmove(mtod(m, void *), ip, sizeof(struct ip));
}
m->m_pkthdr.len += optlen;
ip = mtod(m, struct ip *);
bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
*phlen = sizeof(struct ip) + optlen;
ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
return (m);
}
/*
* Copy options from ip to jp,
* omitting those not copied during fragmentation.
*/
int
ip_optcopy(struct ip *ip, struct ip *jp)
{
u_char *cp, *dp;
int opt, optlen, cnt;
cp = (u_char *)(ip + 1);
dp = (u_char *)(jp + 1);
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP) {
/* Preserve for IP mcast tunnel's LSRR alignment. */
*dp++ = IPOPT_NOP;
optlen = 1;
continue;
}
KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
optlen = cp[IPOPT_OLEN];
KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
/* Invalid lengths should have been caught by ip_dooptions. */
if (optlen > cnt)
optlen = cnt;
if (IPOPT_COPIED(opt)) {
bcopy((void *)cp, (void *)dp, (unsigned)optlen);
dp += optlen;
}
}
for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
*dp++ = IPOPT_EOL;
return (optlen);
}
/*
* IP socket option processing.
*/
int
ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
struct ip *ip = &inp->inp_ip;
int inpflags = inp->inp_flags;
int optval = 0, error = 0;
if (sopt->sopt_level != IPPROTO_IP) {
if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
return 0;
return ENOPROTOOPT;
}
switch (op) {
case PRCO_SETOPT:
switch (sopt->sopt_name) {
case IP_OPTIONS:
#ifdef notyet
case IP_RETOPTS:
#endif
error = ip_pcbopts(inp, sopt);
break;
case IP_TOS:
case IP_TTL:
case IP_MINTTL:
case IP_PKTINFO:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
case IP_RECVPKTINFO:
case IP_RECVTTL:
error = sockopt_getint(sopt, &optval);
if (error)
break;
switch (sopt->sopt_name) {
case IP_TOS:
ip->ip_tos = optval;
break;
case IP_TTL:
ip->ip_ttl = optval;
break;
case IP_MINTTL:
if (optval > 0 && optval <= MAXTTL)
inp->inp_ip_minttl = optval;
else
error = EINVAL;
break;
#define OPTSET(bit) \
if (optval) \
inpflags |= bit; \
else \
inpflags &= ~bit;
case IP_PKTINFO:
OPTSET(INP_PKTINFO);
break;
case IP_RECVOPTS:
OPTSET(INP_RECVOPTS);
break;
case IP_RECVPKTINFO:
OPTSET(INP_RECVPKTINFO);
break;
case IP_RECVRETOPTS:
OPTSET(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
OPTSET(INP_RECVDSTADDR);
break;
case IP_RECVIF:
OPTSET(INP_RECVIF);
break;
case IP_RECVTTL:
OPTSET(INP_RECVTTL);
break;
}
break;
#undef OPTSET
case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
error = ip_setmoptions(&inp->inp_moptions, sopt);
break;
case IP_PORTRANGE:
error = sockopt_getint(sopt, &optval);
if (error)
break;
switch (optval) {
case IP_PORTRANGE_DEFAULT:
case IP_PORTRANGE_HIGH:
inpflags &= ~(INP_LOWPORT);
break;
case IP_PORTRANGE_LOW:
inpflags |= INP_LOWPORT;
break;
default:
error = EINVAL;
break;
}
break;
case IP_PORTALGO:
error = sockopt_getint(sopt, &optval);
if (error)
break;
error = portalgo_algo_index_select(
(struct inpcb_hdr *)inp, optval);
break;
#if defined(IPSEC)
case IP_IPSEC_POLICY:
if (ipsec_enabled) {
error = ipsec4_set_policy(inp, sopt->sopt_name,
sopt->sopt_data, sopt->sopt_size,
curlwp->l_cred);
break;
}
/*FALLTHROUGH*/
#endif /* IPSEC */
default:
error = ENOPROTOOPT;
break;
}
break;
case PRCO_GETOPT:
switch (sopt->sopt_name) {
case IP_OPTIONS:
case IP_RETOPTS: {
struct mbuf *mopts = inp->inp_options;
if (mopts) {
struct mbuf *m;
m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
if (m == NULL) {
error = ENOBUFS;
break;
}
error = sockopt_setmbuf(sopt, m);
}
break;
}
case IP_PKTINFO:
case IP_TOS:
case IP_TTL:
case IP_MINTTL:
case IP_RECVOPTS:
case IP_RECVRETOPTS:
case IP_RECVDSTADDR:
case IP_RECVIF:
case IP_RECVPKTINFO:
case IP_RECVTTL:
case IP_ERRORMTU:
switch (sopt->sopt_name) {
case IP_TOS:
optval = ip->ip_tos;
break;
case IP_TTL:
optval = ip->ip_ttl;
break;
case IP_MINTTL:
optval = inp->inp_ip_minttl;
break;
case IP_ERRORMTU:
optval = inp->inp_errormtu;
break;
#define OPTBIT(bit) (inpflags & bit ? 1 : 0)
case IP_PKTINFO:
optval = OPTBIT(INP_PKTINFO);
break;
case IP_RECVOPTS:
optval = OPTBIT(INP_RECVOPTS);
break;
case IP_RECVPKTINFO:
optval = OPTBIT(INP_RECVPKTINFO);
break;
case IP_RECVRETOPTS:
optval = OPTBIT(INP_RECVRETOPTS);
break;
case IP_RECVDSTADDR:
optval = OPTBIT(INP_RECVDSTADDR);
break;
case IP_RECVIF:
optval = OPTBIT(INP_RECVIF);
break;
case IP_RECVTTL:
optval = OPTBIT(INP_RECVTTL);
break;
}
error = sockopt_setint(sopt, optval);
break;
#if 0 /* defined(IPSEC) */
case IP_IPSEC_POLICY:
{
struct mbuf *m = NULL;
/* XXX this will return EINVAL as sopt is empty */
error = ipsec4_get_policy(inp, sopt->sopt_data,
sopt->sopt_size, &m);
if (error == 0)
error = sockopt_setmbuf(sopt, m);
break;
}
#endif /*IPSEC*/
case IP_MULTICAST_IF:
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
error = ip_getmoptions(inp->inp_moptions, sopt);
break;
case IP_PORTRANGE:
if (inpflags & INP_LOWPORT)
optval = IP_PORTRANGE_LOW;
else
optval = IP_PORTRANGE_DEFAULT;
error = sockopt_setint(sopt, optval);
break;
case IP_PORTALGO:
optval = inp->inp_portalgo;
error = sockopt_setint(sopt, optval);
break;
default:
error = ENOPROTOOPT;
break;
}
break;
}
if (!error) {
inp->inp_flags = inpflags;
}
return error;
}
/*
* Set up IP options in pcb for insertion in output packets.
* Store in mbuf with pointer in pcbopt, adding pseudo-option
* with destination address if source routed.
*/
static int
ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
{
struct mbuf *m;
const u_char *cp;
u_char *dp;
int cnt;
/* Turn off any old options. */
if (inp->inp_options) {
m_free(inp->inp_options);
}
inp->inp_options = NULL;
if ((cnt = sopt->sopt_size) == 0) {
/* Only turning off any previous options. */
return 0;
}
cp = sopt->sopt_data;
#ifndef __vax__
if (cnt % sizeof(int32_t))
return (EINVAL);
#endif
m = m_get(M_DONTWAIT, MT_SOOPTS);
if (m == NULL)
return (ENOBUFS);
dp = mtod(m, u_char *);
memset(dp, 0, sizeof(struct in_addr));
dp += sizeof(struct in_addr);
m->m_len = sizeof(struct in_addr);
/*
* IP option list according to RFC791. Each option is of the form
*
* [optval] [olen] [(olen - 2) data bytes]
*
* We validate the list and copy options to an mbuf for prepending
* to data packets. The IP first-hop destination address will be
* stored before actual options and is zero if unset.
*/
while (cnt > 0) {
uint8_t optval, olen, offset;
optval = cp[IPOPT_OPTVAL];
if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
olen = 1;
} else {
if (cnt < IPOPT_OLEN + 1)
goto bad;
olen = cp[IPOPT_OLEN];
if (olen < IPOPT_OLEN + 1 || olen > cnt)
goto bad;
}
if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
/*
* user process specifies route as:
* ->A->B->C->D
* D must be our final destination (but we can't
* check that since we may not have connected yet).
* A is first hop destination, which doesn't appear in
* actual IP option, but is stored before the options.
*/
if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
goto bad;
offset = cp[IPOPT_OFFSET];
memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
sizeof(struct in_addr));
cp += sizeof(struct in_addr);
cnt -= sizeof(struct in_addr);
olen -= sizeof(struct in_addr);
if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
goto bad;
memcpy(dp, cp, olen);
dp[IPOPT_OPTVAL] = optval;
dp[IPOPT_OLEN] = olen;
dp[IPOPT_OFFSET] = offset;
break;
} else {
if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
goto bad;
memcpy(dp, cp, olen);
break;
}
dp += olen;
m->m_len += olen;
if (optval == IPOPT_EOL)
break;
cp += olen;
cnt -= olen;
}
inp->inp_options = m;
return 0;
bad:
(void)m_free(m);
return EINVAL;
}
/*
* following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
*/
static struct ifnet *
ip_multicast_if(struct in_addr *a, int *ifindexp)
{
int ifindex;
struct ifnet *ifp = NULL;
struct in_ifaddr *ia;
if (ifindexp)
*ifindexp = 0;
if (ntohl(a->s_addr) >> 24 == 0) {
ifindex = ntohl(a->s_addr) & 0xffffff;
ifp = if_byindex(ifindex);
if (!ifp)
return NULL;
if (ifindexp)
*ifindexp = ifindex;
} else {
LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
(ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
ifp = ia->ia_ifp;
break;
}
}
}
return ifp;
}
static int
ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
{
u_int tval;
u_char cval;
int error;
if (sopt == NULL)
return EINVAL;
switch (sopt->sopt_size) {
case sizeof(u_char):
error = sockopt_get(sopt, &cval, sizeof(u_char));
tval = cval;
break;
case sizeof(u_int):
error = sockopt_get(sopt, &tval, sizeof(u_int));
break;
default:
error = EINVAL;
}
if (error)
return error;
if (tval > maxval)
return EINVAL;
*val = tval;
return 0;
}
static int
ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
struct in_addr *ia, bool add)
{
int error;
struct ip_mreq mreq;
error = sockopt_get(sopt, &mreq, sizeof(mreq));
if (error)
return error;
if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
return EINVAL;
memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
if (in_nullhost(mreq.imr_interface)) {
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
struct route ro;
if (!add) {
*ifp = NULL;
return 0;
}
/*
* If no interface address was provided, use the interface of
* the route to the given multicast address.
*/
struct rtentry *rt;
memset(&ro, 0, sizeof(ro));
sockaddr_in_init(&u.dst4, ia, 0);
error = rtcache_setdst(&ro, &u.dst);
if (error != 0)
return error;
*ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
rtcache_unref(rt, &ro);
rtcache_free(&ro);
} else {
*ifp = ip_multicast_if(&mreq.imr_interface, NULL);
if (!add && *ifp == NULL)
return EADDRNOTAVAIL;
}
return 0;
}
/*
* Add a multicast group membership.
* Group must be a valid IP multicast address.
*/
static int
ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
{
struct ifnet *ifp = NULL; // XXX: gcc [ppc]
struct in_addr ia;
int i, error;
if (sopt->sopt_size == sizeof(struct ip_mreq))
error = ip_get_membership(sopt, &ifp, &ia, true);
else
#ifdef INET6
error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
#else
return EINVAL;
#endif
if (error)
return error;
/*
* See if we found an interface, and confirm that it
* supports multicast.
*/
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
return EADDRNOTAVAIL;
/*
* See if the membership already exists or if all the
* membership slots are full.
*/
for (i = 0; i < imo->imo_num_memberships; ++i) {
if (imo->imo_membership[i]->inm_ifp == ifp &&
in_hosteq(imo->imo_membership[i]->inm_addr, ia))
break;
}
if (i < imo->imo_num_memberships)
return EADDRINUSE;
if (i == IP_MAX_MEMBERSHIPS)
return ETOOMANYREFS;
/*
* Everything looks good; add a new record to the multicast
* address list for the given interface.
*/
if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
return ENOBUFS;
++imo->imo_num_memberships;
return 0;
}
/*
* Drop a multicast group membership.
* Group must be a valid IP multicast address.
*/
static int
ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
{
struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
struct ifnet *ifp = NULL; // XXX: gcc [ppc]
int i, error;
if (sopt->sopt_size == sizeof(struct ip_mreq))
error = ip_get_membership(sopt, &ifp, &ia, false);
else
#ifdef INET6
error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
#else
return EINVAL;
#endif
if (error)
return error;
/*
* Find the membership in the membership array.
*/
for (i = 0; i < imo->imo_num_memberships; ++i) {
if ((ifp == NULL ||
imo->imo_membership[i]->inm_ifp == ifp) &&
in_hosteq(imo->imo_membership[i]->inm_addr, ia))
break;
}
if (i == imo->imo_num_memberships)
return EADDRNOTAVAIL;
/*
* Give up the multicast address record to which the
* membership points.
*/
in_delmulti(imo->imo_membership[i]);
/*
* Remove the gap in the membership array.
*/
for (++i; i < imo->imo_num_memberships; ++i)
imo->imo_membership[i-1] = imo->imo_membership[i];
--imo->imo_num_memberships;
return 0;
}
/*
* Set the IP multicast options in response to user setsockopt().
*/
int
ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
{
struct ip_moptions *imo = *pimo;
struct in_addr addr;
struct ifnet *ifp;
int ifindex, error = 0;
if (!imo) {
/*
* No multicast option buffer attached to the pcb;
* allocate one and initialize to default values.
*/
imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
if (imo == NULL)
return ENOBUFS;
imo->imo_multicast_if_index = 0;
imo->imo_multicast_addr.s_addr = INADDR_ANY;
imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
imo->imo_num_memberships = 0;
*pimo = imo;
}
switch (sopt->sopt_name) {
case IP_MULTICAST_IF:
/*
* Select the interface for outgoing multicast packets.
*/
error = sockopt_get(sopt, &addr, sizeof(addr));
if (error)
break;
/*
* INADDR_ANY is used to remove a previous selection.
* When no interface is selected, a default one is
* chosen every time a multicast packet is sent.
*/
if (in_nullhost(addr)) {
imo->imo_multicast_if_index = 0;
break;
}
/*
* The selected interface is identified by its local
* IP address. Find the interface and confirm that
* it supports multicasting.
*/
ifp = ip_multicast_if(&addr, &ifindex);
if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
error = EADDRNOTAVAIL;
break;
}
imo->imo_multicast_if_index = ifp->if_index;
if (ifindex)
imo->imo_multicast_addr = addr;
else
imo->imo_multicast_addr.s_addr = INADDR_ANY;
break;
case IP_MULTICAST_TTL:
/*
* Set the IP time-to-live for outgoing multicast packets.
*/
error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
break;
case IP_MULTICAST_LOOP:
/*
* Set the loopback flag for outgoing multicast packets.
* Must be zero or one.
*/
error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
break;
case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
error = ip_add_membership(imo, sopt);
break;
case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
error = ip_drop_membership(imo, sopt);
break;
default:
error = EOPNOTSUPP;
break;
}
/*
* If all options have default values, no need to keep the mbuf.
*/
if (imo->imo_multicast_if_index == 0 &&
imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
imo->imo_num_memberships == 0) {
kmem_free(imo, sizeof(*imo));
*pimo = NULL;
}
return error;
}
/*
* Return the IP multicast options in response to user getsockopt().
*/
int
ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
{
struct in_addr addr;
uint8_t optval;
int error = 0;
switch (sopt->sopt_name) {
case IP_MULTICAST_IF:
if (imo == NULL || imo->imo_multicast_if_index == 0)
addr = zeroin_addr;
else if (imo->imo_multicast_addr.s_addr) {
/* return the value user has set */
addr = imo->imo_multicast_addr;
} else {
struct ifnet *ifp;
struct in_ifaddr *ia = NULL;
int s = pserialize_read_enter();
ifp = if_byindex(imo->imo_multicast_if_index);
if (ifp != NULL) {
ia = in_get_ia_from_ifp(ifp);
}
addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
pserialize_read_exit(s);
}
error = sockopt_set(sopt, &addr, sizeof(addr));
break;
case IP_MULTICAST_TTL:
optval = imo ? imo->imo_multicast_ttl
: IP_DEFAULT_MULTICAST_TTL;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
case IP_MULTICAST_LOOP:
optval = imo ? imo->imo_multicast_loop
: IP_DEFAULT_MULTICAST_LOOP;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
default:
error = EOPNOTSUPP;
}
return error;
}
/*
* Discard the IP multicast options.
*/
void
ip_freemoptions(struct ip_moptions *imo)
{
int i;
if (imo != NULL) {
for (i = 0; i < imo->imo_num_memberships; ++i)
in_delmulti(imo->imo_membership[i]);
kmem_free(imo, sizeof(*imo));
}
}
/*
* Routine called from ip_output() to loop back a copy of an IP multicast
* packet to the input queue of a specified interface. Note that this
* calls the output routine of the loopback "driver", but with an interface
* pointer that might NOT be lo0ifp -- easier than replicating that code here.
*/
static void
ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
{
struct ip *ip;
struct mbuf *copym;
copym = m_copypacket(m, M_DONTWAIT);
if (copym != NULL &&
(copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
copym = m_pullup(copym, sizeof(struct ip));
if (copym == NULL)
return;
/*
* We don't bother to fragment if the IP length is greater
* than the interface's MTU. Can this possibly matter?
*/
ip = mtod(copym, struct ip *);
if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
in_delayed_cksum(copym);
copym->m_pkthdr.csum_flags &=
~(M_CSUM_TCPv4|M_CSUM_UDPv4);
}
ip->ip_sum = 0;
ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
#ifndef NET_MPSAFE
KERNEL_LOCK(1, NULL);
#endif
(void)looutput(ifp, copym, sintocsa(dst), NULL);
#ifndef NET_MPSAFE
KERNEL_UNLOCK_ONE(NULL);
#endif
}
/*
* Ensure sending address is valid.
* Returns 0 on success, -1 if an error should be sent back or 1
* if the packet could be dropped without error (protocol dependent).
*/
static int
ip_ifaddrvalid(const struct in_ifaddr *ia)
{
if (ia == NULL)
return -1;
if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
return 0;
if (ia->ia4_flags & IN_IFF_DUPLICATED)
return -1;
else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
return 1;
return 0;
}