9fc453562f
The poorly named uvm.h is generally supposed to be for uvm-internal users only. - Narrow it to files that actually need it -- mostly files that need to query whether curlwp is the pagedaemon, which should maybe be exposed by an external header. - Use uvm_extern.h where feasible and uvm_*.h for things not exposed by it. We should split up uvm_extern.h but this will serve for now to reduce the uvm.h dependencies. - Use uvm_stat.h and #ifdef UVMHIST uvm.h for files that use UVMHIST(ubchist), since ubchist is declared in uvm.h but the reference evaporates if UVMHIST is not defined, so we reduce header file dependencies. - Make uvm_device.h and uvm_swap.h independently includable while here. ok chs@
2068 lines
56 KiB
C
2068 lines
56 KiB
C
/* $NetBSD: if_gfe.c,v 1.57 2020/09/05 16:30:11 riastradh Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Allegro Networks, Inc., and Wasabi Systems, Inc.
|
|
* 4. The name of Allegro Networks, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
* 5. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
|
|
* WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* if_gfe.c -- GT ethernet MAC driver
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.57 2020/09/05 16:30:11 riastradh Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/device.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
#include <net/bpf.h>
|
|
#include <sys/rndsource.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/marvell/gtreg.h>
|
|
#include <dev/marvell/gtvar.h>
|
|
#include <dev/marvell/gtethreg.h>
|
|
#include <dev/marvell/if_gfevar.h>
|
|
#include <dev/marvell/marvellreg.h>
|
|
#include <dev/marvell/marvellvar.h>
|
|
|
|
#include <prop/proplib.h>
|
|
|
|
#include "locators.h"
|
|
|
|
|
|
#define GE_READ(sc, reg) \
|
|
bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
|
|
#define GE_WRITE(sc, reg, v) \
|
|
bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
|
|
|
|
#define GE_DEBUG
|
|
#if 0
|
|
#define GE_NOHASH
|
|
#define GE_NORX
|
|
#endif
|
|
|
|
#ifdef GE_DEBUG
|
|
#define GE_DPRINTF(sc, a) \
|
|
do { \
|
|
if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
|
|
printf a; \
|
|
} while (0 /* CONSTCOND */)
|
|
#define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
|
|
#define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
|
|
#else
|
|
#define GE_DPRINTF(sc, a) do { } while (0)
|
|
#define GE_FUNC_ENTER(sc, func) do { } while (0)
|
|
#define GE_FUNC_EXIT(sc, str) do { } while (0)
|
|
#endif
|
|
enum gfe_whack_op {
|
|
GE_WHACK_START, GE_WHACK_RESTART,
|
|
GE_WHACK_CHANGE, GE_WHACK_STOP
|
|
};
|
|
|
|
enum gfe_hash_op {
|
|
GE_HASH_ADD, GE_HASH_REMOVE,
|
|
};
|
|
|
|
#if 1
|
|
#define htogt32(a) htobe32(a)
|
|
#define gt32toh(a) be32toh(a)
|
|
#else
|
|
#define htogt32(a) htole32(a)
|
|
#define gt32toh(a) le32toh(a)
|
|
#endif
|
|
|
|
#define GE_RXDSYNC(sc, rxq, n, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
|
|
(n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
|
|
(ops))
|
|
#define GE_RXDPRESYNC(sc, rxq, n) \
|
|
GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
|
|
#define GE_RXDPOSTSYNC(sc, rxq, n) \
|
|
GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
|
|
|
|
#define GE_TXDSYNC(sc, txq, n, ops) \
|
|
bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
|
|
(n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
|
|
(ops))
|
|
#define GE_TXDPRESYNC(sc, txq, n) \
|
|
GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
|
|
#define GE_TXDPOSTSYNC(sc, txq, n) \
|
|
GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
|
|
|
|
#define STATIC
|
|
|
|
|
|
STATIC int gfec_match(device_t, cfdata_t, void *);
|
|
STATIC void gfec_attach(device_t, device_t, void *);
|
|
|
|
STATIC int gfec_print(void *, const char *);
|
|
STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
|
|
|
|
STATIC int gfec_enet_phy(device_t, int);
|
|
STATIC int gfec_mii_read(device_t, int, int, uint16_t *);
|
|
STATIC int gfec_mii_write(device_t, int, int, uint16_t);
|
|
STATIC void gfec_mii_statchg(struct ifnet *);
|
|
|
|
STATIC int gfe_match(device_t, cfdata_t, void *);
|
|
STATIC void gfe_attach(device_t, device_t, void *);
|
|
|
|
STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
|
|
size_t, int);
|
|
STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
|
|
|
|
STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
|
|
STATIC void gfe_ifstart(struct ifnet *);
|
|
STATIC void gfe_ifwatchdog(struct ifnet *);
|
|
|
|
STATIC void gfe_tick(void *arg);
|
|
|
|
STATIC void gfe_tx_restart(void *);
|
|
STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
|
|
STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
|
|
STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
|
|
STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
|
|
STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
|
|
STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
|
|
|
|
STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
|
|
STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
|
|
STATIC int gfe_rx_prime(struct gfe_softc *);
|
|
STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
|
|
STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
|
|
STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
|
|
STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
|
|
|
|
STATIC int gfe_intr(void *);
|
|
|
|
STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
|
|
|
|
STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
|
|
STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
|
|
enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
|
|
STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
|
|
u_long);
|
|
STATIC int gfe_hash_fill(struct gfe_softc *);
|
|
STATIC int gfe_hash_alloc(struct gfe_softc *);
|
|
|
|
|
|
CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
|
|
gfec_match, gfec_attach, NULL, NULL);
|
|
CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
|
|
gfe_match, gfe_attach, NULL, NULL);
|
|
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
gfec_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct marvell_attach_args *mva = aux;
|
|
|
|
if (strcmp(mva->mva_name, cf->cf_name) != 0)
|
|
return 0;
|
|
if (mva->mva_offset == MVA_OFFSET_DEFAULT)
|
|
return 0;
|
|
|
|
mva->mva_size = ETHC_SIZE;
|
|
return 1;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
gfec_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct gfec_softc *sc = device_private(self);
|
|
struct marvell_attach_args *mva = aux, gfea;
|
|
static int gfe_irqs[] = { 32, 33, 34 };
|
|
int i;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal(": Ethernet Controller\n");
|
|
|
|
sc->sc_dev = self;
|
|
sc->sc_iot = mva->mva_iot;
|
|
if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
|
|
mva->mva_size, &sc->sc_ioh)) {
|
|
aprint_error_dev(self, "Cannot map registers\n");
|
|
return;
|
|
}
|
|
|
|
mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
|
|
|
|
for (i = 0; i < ETH_NUM; i++) {
|
|
gfea.mva_name = "gfe";
|
|
gfea.mva_model = mva->mva_model;
|
|
gfea.mva_iot = sc->sc_iot;
|
|
gfea.mva_ioh = sc->sc_ioh;
|
|
gfea.mva_unit = i;
|
|
gfea.mva_dmat = mva->mva_dmat;
|
|
gfea.mva_irq = gfe_irqs[i];
|
|
config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
|
|
gfec_print, gfec_search);
|
|
}
|
|
}
|
|
|
|
int
|
|
gfec_print(void *aux, const char *pnp)
|
|
{
|
|
struct marvell_attach_args *gfea = aux;
|
|
|
|
if (pnp)
|
|
aprint_normal("%s at %s port %d",
|
|
gfea->mva_name, pnp, gfea->mva_unit);
|
|
else {
|
|
if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
|
|
aprint_normal(" port %d", gfea->mva_unit);
|
|
if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
|
|
aprint_normal(" irq %d", gfea->mva_irq);
|
|
}
|
|
return UNCONF;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
|
|
{
|
|
struct marvell_attach_args *gfea = aux;
|
|
|
|
if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
|
|
cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
|
|
gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
|
|
|
|
return config_match(parent, cf, aux);
|
|
}
|
|
|
|
int
|
|
gfec_enet_phy(device_t dev, int unit)
|
|
{
|
|
struct gfec_softc *sc = device_private(dev);
|
|
uint32_t epar;
|
|
|
|
epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
|
|
return ETH_EPAR_PhyAD_GET(epar, unit);
|
|
}
|
|
|
|
int
|
|
gfec_mii_read(device_t dev, int phy, int reg, uint16_t *val)
|
|
{
|
|
struct gfec_softc *csc = device_private(device_parent(dev));
|
|
uint32_t data;
|
|
int count = 10000;
|
|
|
|
mutex_enter(&csc->sc_mtx);
|
|
|
|
do {
|
|
DELAY(10);
|
|
data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
|
|
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
|
|
|
|
if (count == 0) {
|
|
aprint_error_dev(dev,
|
|
"mii read for phy %d reg %d busied out\n", phy, reg);
|
|
mutex_exit(&csc->sc_mtx);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
|
|
ETH_ESMIR_READ(phy, reg));
|
|
|
|
count = 10000;
|
|
do {
|
|
DELAY(10);
|
|
data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
|
|
} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
|
|
|
|
mutex_exit(&csc->sc_mtx);
|
|
|
|
if (count == 0) {
|
|
aprint_error_dev(dev,
|
|
"mii read for phy %d reg %d timed out\n", phy, reg);
|
|
return ETIMEDOUT;
|
|
}
|
|
#if defined(GTMIIDEBUG)
|
|
aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
|
|
phy, reg, data, ETH_ESMIR_Value_GET(data));
|
|
#endif
|
|
*val = ETH_ESMIR_Value_GET(data);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gfec_mii_write(device_t dev, int phy, int reg, uint16_t value)
|
|
{
|
|
struct gfec_softc *csc = device_private(device_parent(dev));
|
|
uint32_t data;
|
|
int count = 10000;
|
|
|
|
mutex_enter(&csc->sc_mtx);
|
|
|
|
do {
|
|
DELAY(10);
|
|
data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
|
|
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
|
|
|
|
if (count == 0) {
|
|
aprint_error_dev(dev,
|
|
"mii write for phy %d reg %d busied out (busy)\n",
|
|
phy, reg);
|
|
mutex_exit(&csc->sc_mtx);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
|
|
ETH_ESMIR_WRITE(phy, reg, value));
|
|
|
|
count = 10000;
|
|
do {
|
|
DELAY(10);
|
|
data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
|
|
} while ((data & ETH_ESMIR_Busy) && count-- > 0);
|
|
|
|
mutex_exit(&csc->sc_mtx);
|
|
|
|
if (count == 0) {
|
|
aprint_error_dev(dev,
|
|
"mii write for phy %d reg %d timed out\n", phy, reg);
|
|
return ETIMEDOUT;
|
|
}
|
|
#if defined(GTMIIDEBUG)
|
|
aprint_normal_dev(dev, "mii_write(%d, %d, %#hx)\n", phy, reg, value);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gfec_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
/* struct gfe_softc *sc = ifp->if_softc; */
|
|
/* do nothing? */
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
gfe_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
gfe_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct marvell_attach_args *mva = aux;
|
|
struct gfe_softc * const sc = device_private(self);
|
|
struct ifnet * const ifp = &sc->sc_ec.ec_if;
|
|
struct mii_data * const mii = &sc->sc_mii;
|
|
uint32_t sdcr;
|
|
int phyaddr, error;
|
|
prop_data_t ea;
|
|
uint8_t enaddr[6];
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal(": Ethernet Controller\n");
|
|
|
|
if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
|
|
mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
|
|
aprint_error_dev(self, "failed to map registers\n");
|
|
return;
|
|
}
|
|
sc->sc_dev = self;
|
|
sc->sc_memt = mva->mva_iot;
|
|
sc->sc_dmat = mva->mva_dmat;
|
|
sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
|
|
((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
|
|
|
|
callout_init(&sc->sc_co, 0);
|
|
|
|
phyaddr = gfec_enet_phy(parent, sc->sc_macno);
|
|
|
|
ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
|
|
if (ea != NULL) {
|
|
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
|
|
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
|
|
memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
|
|
}
|
|
|
|
sc->sc_pcr = GE_READ(sc, ETH_EPCR);
|
|
sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
|
|
sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
|
|
|
|
aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
|
|
|
|
#if defined(DEBUG)
|
|
printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
|
|
#endif
|
|
|
|
sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
|
|
if (device_cfdata(self)->cf_flags & 1) {
|
|
aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
|
|
sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
|
|
} else {
|
|
aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
|
|
sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
|
|
}
|
|
if (device_cfdata(self)->cf_flags & 2)
|
|
sc->sc_flags |= GE_NOFREE;
|
|
/* Set Max Frame Length is 1536 */
|
|
sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
|
|
sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
|
|
sc->sc_max_frame_length = 1536;
|
|
|
|
if (sc->sc_pcr & ETH_EPCR_EN) {
|
|
int tries = 1000;
|
|
/*
|
|
* Abort transmitter and receiver and wait for them to quiese
|
|
*/
|
|
GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
|
|
do {
|
|
delay(100);
|
|
if (tries-- <= 0) {
|
|
aprint_error_dev(self, "Abort TX/RX failed\n");
|
|
break;
|
|
}
|
|
} while (GE_READ(sc, ETH_ESDCMR) &
|
|
(ETH_ESDCMR_AR | ETH_ESDCMR_AT));
|
|
}
|
|
|
|
sc->sc_pcr &=
|
|
~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
|
|
|
|
#if defined(DEBUG)
|
|
printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
|
|
#endif
|
|
|
|
/*
|
|
* Now turn off the GT. If it didn't quiese, too ***ing bad.
|
|
*/
|
|
GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
sdcr = GE_READ(sc, ETH_ESDCR);
|
|
ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
|
|
sdcr |= ETH_ESDCR_RIFB;
|
|
GE_WRITE(sc, ETH_ESDCR, sdcr);
|
|
|
|
mii->mii_ifp = ifp;
|
|
mii->mii_readreg = gfec_mii_read;
|
|
mii->mii_writereg = gfec_mii_write;
|
|
mii->mii_statchg = gfec_mii_statchg;
|
|
|
|
sc->sc_ec.ec_mii = mii;
|
|
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
|
|
|
|
mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
|
|
MII_OFFSET_ANY, MIIF_NOISOLATE);
|
|
if (LIST_FIRST(&mii->mii_phys) == NULL) {
|
|
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
|
|
} else
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
|
|
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
#if 0
|
|
ifp->if_flags |= IFF_DEBUG;
|
|
#endif
|
|
ifp->if_ioctl = gfe_ifioctl;
|
|
ifp->if_start = gfe_ifstart;
|
|
ifp->if_watchdog = gfe_ifwatchdog;
|
|
|
|
if (sc->sc_flags & GE_NOFREE) {
|
|
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
|
|
if (!error)
|
|
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
|
|
if (!error)
|
|
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
|
|
if (!error)
|
|
error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
|
|
if (!error)
|
|
error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
|
|
if (!error)
|
|
error = gfe_hash_alloc(sc);
|
|
if (error)
|
|
aprint_error_dev(self,
|
|
"failed to allocate resources: %d\n", error);
|
|
}
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
|
|
RND_FLAG_DEFAULT);
|
|
marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
|
|
}
|
|
|
|
int
|
|
gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
|
|
size_t size, int flags)
|
|
{
|
|
int error = 0;
|
|
GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
|
|
|
|
KASSERT(gdm->gdm_kva == NULL);
|
|
gdm->gdm_size = size;
|
|
gdm->gdm_maxsegs = maxsegs;
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
|
|
gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
goto fail;
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
|
|
gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
|
|
if (error)
|
|
goto fail;
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
|
|
gdm->gdm_size, 0, BUS_DMA_ALLOCNOW |BUS_DMA_NOWAIT, &gdm->gdm_map);
|
|
if (error)
|
|
goto fail;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
|
|
gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/* invalidate from cache */
|
|
bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
|
|
BUS_DMASYNC_PREREAD);
|
|
fail:
|
|
if (error) {
|
|
gfe_dmamem_free(sc, gdm);
|
|
GE_DPRINTF(sc, (":err=%d", error));
|
|
}
|
|
GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
|
|
gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
|
|
gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
void
|
|
gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
|
|
{
|
|
GE_FUNC_ENTER(sc, "gfe_dmamem_free");
|
|
if (gdm->gdm_map)
|
|
bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
|
|
if (gdm->gdm_kva)
|
|
bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
|
|
if (gdm->gdm_nsegs > 0)
|
|
bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
|
|
gdm->gdm_map = NULL;
|
|
gdm->gdm_kva = NULL;
|
|
gdm->gdm_nsegs = 0;
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
int
|
|
gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct gfe_softc * const sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
int s, error = 0;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_ifioctl");
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCINITIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
error = gfe_whack(sc, GE_WHACK_START);
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (error == 0)
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
|
|
break;
|
|
/* XXX re-use ether_ioctl() */
|
|
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
|
|
case IFF_UP | IFF_RUNNING:/* active->active, update */
|
|
error = gfe_whack(sc, GE_WHACK_CHANGE);
|
|
break;
|
|
case IFF_RUNNING: /* not up, so we stop */
|
|
error = gfe_whack(sc, GE_WHACK_STOP);
|
|
break;
|
|
case IFF_UP: /* not running, so we start */
|
|
error = gfe_whack(sc, GE_WHACK_START);
|
|
break;
|
|
case 0: /* idle->idle: do nothing */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = gfe_whack(sc, GE_WHACK_CHANGE);
|
|
else
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
splx(s);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
void
|
|
gfe_ifstart(struct ifnet *ifp)
|
|
{
|
|
struct gfe_softc * const sc = ifp->if_softc;
|
|
struct mbuf *m;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_ifstart");
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
GE_FUNC_EXIT(sc, "$");
|
|
return;
|
|
}
|
|
|
|
for (;;) {
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL) {
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
GE_FUNC_EXIT(sc, "");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* No space in the pending queue? try later.
|
|
*/
|
|
if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
|
|
break;
|
|
|
|
/*
|
|
* Try to enqueue a mbuf to the device. If that fails, we
|
|
* can always try to map the next mbuf.
|
|
*/
|
|
IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
|
|
GE_DPRINTF(sc, (">"));
|
|
#ifndef GE_NOTX
|
|
(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Attempt to queue the mbuf for send failed.
|
|
*/
|
|
IF_PREPEND(&ifp->if_snd, m);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
GE_FUNC_EXIT(sc, "%%");
|
|
}
|
|
|
|
void
|
|
gfe_ifwatchdog(struct ifnet *ifp)
|
|
{
|
|
struct gfe_softc * const sc = ifp->if_softc;
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
|
|
aprint_error_dev(sc->sc_dev, "device timeout");
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
uint32_t curtxdnum;
|
|
|
|
curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
|
|
txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
|
|
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
|
|
GE_TXDPOSTSYNC(sc, txq, curtxdnum);
|
|
aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
|
|
txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
|
|
txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
|
|
GE_READ(sc, ETH_EICR));
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
|
|
GE_TXDPRESYNC(sc, txq, curtxdnum);
|
|
}
|
|
aprint_error("\n");
|
|
if_statinc(ifp, if_oerrors);
|
|
(void) gfe_whack(sc, GE_WHACK_RESTART);
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
int
|
|
gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
|
|
{
|
|
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
|
|
int error;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
|
|
GE_DPRINTF(sc, ("(%d)", rxprio));
|
|
|
|
error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
|
|
GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "!!");
|
|
return error;
|
|
}
|
|
|
|
error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
|
|
GE_RXBUF_MEMSIZE, 0);
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "!!!");
|
|
return error;
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
int
|
|
gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
|
|
{
|
|
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
|
|
volatile struct gt_eth_desc *rxd;
|
|
const bus_dma_segment_t *ds;
|
|
int idx;
|
|
bus_addr_t nxtaddr;
|
|
bus_size_t boff;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
|
|
GE_DPRINTF(sc, ("(%d)", rxprio));
|
|
|
|
if ((sc->sc_flags & GE_NOFREE) == 0) {
|
|
int error = gfe_rx_rxqalloc(sc, rxprio);
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "!");
|
|
return error;
|
|
}
|
|
} else {
|
|
KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
|
|
KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
|
|
}
|
|
|
|
memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
|
|
|
|
rxq->rxq_descs =
|
|
(volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
|
|
rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
|
|
rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
|
|
rxq->rxq_fi = 0;
|
|
rxq->rxq_active = GE_RXDESC_MAX;
|
|
boff = 0;
|
|
ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
|
|
nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
|
|
for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
|
|
idx++, rxd++, nxtaddr += sizeof(*rxd)) {
|
|
rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
|
|
rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
|
|
rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
|
|
/*
|
|
* update the nxtptr to point to the next txd.
|
|
*/
|
|
if (idx == GE_RXDESC_MAX - 1)
|
|
nxtaddr = rxq->rxq_desc_busaddr;
|
|
rxd->ed_nxtptr = htogt32(nxtaddr);
|
|
boff += GE_RXBUF_SIZE;
|
|
if (boff == ds->ds_len) {
|
|
ds++;
|
|
boff = 0;
|
|
}
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
|
|
rxq->rxq_desc_mem.gdm_map->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
|
|
rxq->rxq_buf_mem.gdm_map->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
rxq->rxq_intrbits = ETH_IR_RxBuffer | ETH_IR_RxError;
|
|
switch (rxprio) {
|
|
case GE_RXPRIO_HI:
|
|
rxq->rxq_intrbits |= ETH_IR_RxBuffer_3 | ETH_IR_RxError_3;
|
|
rxq->rxq_efrdp = ETH_EFRDP3;
|
|
rxq->rxq_ecrdp = ETH_ECRDP3;
|
|
break;
|
|
case GE_RXPRIO_MEDHI:
|
|
rxq->rxq_intrbits |= ETH_IR_RxBuffer_2 | ETH_IR_RxError_2;
|
|
rxq->rxq_efrdp = ETH_EFRDP2;
|
|
rxq->rxq_ecrdp = ETH_ECRDP2;
|
|
break;
|
|
case GE_RXPRIO_MEDLO:
|
|
rxq->rxq_intrbits |= ETH_IR_RxBuffer_1 | ETH_IR_RxError_1;
|
|
rxq->rxq_efrdp = ETH_EFRDP1;
|
|
rxq->rxq_ecrdp = ETH_ECRDP1;
|
|
break;
|
|
case GE_RXPRIO_LO:
|
|
rxq->rxq_intrbits |= ETH_IR_RxBuffer_0 | ETH_IR_RxError_0;
|
|
rxq->rxq_efrdp = ETH_EFRDP0;
|
|
rxq->rxq_ecrdp = ETH_ECRDP0;
|
|
break;
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
|
|
{
|
|
struct ifnet * const ifp = &sc->sc_ec.ec_if;
|
|
struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
|
|
struct mbuf *m = rxq->rxq_curpkt;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_rx_get");
|
|
GE_DPRINTF(sc, ("(%d)", rxprio));
|
|
|
|
while (rxq->rxq_active > 0) {
|
|
volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
|
|
struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
|
|
const struct ether_header *eh;
|
|
unsigned int cmdsts;
|
|
size_t buflen;
|
|
|
|
GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
|
|
cmdsts = gt32toh(rxd->ed_cmdsts);
|
|
GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
|
|
rxq->rxq_cmdsts = cmdsts;
|
|
/*
|
|
* Sometimes the GE "forgets" to reset the ownership bit.
|
|
* But if the length has been rewritten, the packet is ours
|
|
* so pretend the O bit is set.
|
|
*/
|
|
buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
|
|
if ((cmdsts & RX_CMD_O) && buflen == 0) {
|
|
GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this is not a single buffer packet with no errors
|
|
* or for some reason it's bigger than our frame size,
|
|
* ignore it and go to the next packet.
|
|
*/
|
|
if ((cmdsts & (RX_CMD_F | RX_CMD_L | RX_STS_ES)) !=
|
|
(RX_CMD_F | RX_CMD_L) ||
|
|
(buflen > sc->sc_max_frame_length)) {
|
|
GE_DPRINTF(sc, ("!"));
|
|
--rxq->rxq_active;
|
|
if_statinc(ifp, if_ipackets);
|
|
if_statinc(ifp, if_ierrors);
|
|
goto give_it_back;
|
|
}
|
|
|
|
/* CRC is included with the packet; trim it off. */
|
|
buflen -= ETHER_CRC_LEN;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
GE_DPRINTF(sc, ("?"));
|
|
break;
|
|
}
|
|
}
|
|
if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
GE_DPRINTF(sc, ("?"));
|
|
break;
|
|
}
|
|
}
|
|
m->m_data += 2;
|
|
m->m_len = 0;
|
|
m->m_pkthdr.len = 0;
|
|
m_set_rcvif(m, ifp);
|
|
rxq->rxq_cmdsts = cmdsts;
|
|
--rxq->rxq_active;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
|
|
rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
|
|
|
|
KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
|
|
memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
|
|
m->m_len = buflen;
|
|
m->m_pkthdr.len = buflen;
|
|
|
|
eh = (const struct ether_header *) m->m_data;
|
|
if ((ifp->if_flags & IFF_PROMISC) ||
|
|
(rxq->rxq_cmdsts & RX_STS_M) == 0 ||
|
|
(rxq->rxq_cmdsts & RX_STS_HE) ||
|
|
(eh->ether_dhost[0] & 1) != 0 ||
|
|
memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
|
|
ETHER_ADDR_LEN) == 0) {
|
|
if_percpuq_enqueue(ifp->if_percpuq, m);
|
|
m = NULL;
|
|
GE_DPRINTF(sc, (">"));
|
|
} else {
|
|
m->m_len = 0;
|
|
m->m_pkthdr.len = 0;
|
|
GE_DPRINTF(sc, ("+"));
|
|
}
|
|
rxq->rxq_cmdsts = 0;
|
|
|
|
give_it_back:
|
|
rxd->ed_lencnt &= ~0xffff; /* zero out length */
|
|
rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
|
|
#if 0
|
|
GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
|
|
rxq->rxq_fi,
|
|
((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
|
|
((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
|
|
#endif
|
|
GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
|
|
if (++rxq->rxq_fi == GE_RXDESC_MAX)
|
|
rxq->rxq_fi = 0;
|
|
rxq->rxq_active++;
|
|
}
|
|
rxq->rxq_curpkt = m;
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
uint32_t
|
|
gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
|
|
{
|
|
struct ifnet * const ifp = &sc->sc_ec.ec_if;
|
|
struct gfe_rxqueue *rxq;
|
|
uint32_t rxbits;
|
|
#define RXPRIO_DECODER 0xffffaa50
|
|
GE_FUNC_ENTER(sc, "gfe_rx_process");
|
|
|
|
rxbits = ETH_IR_RxBuffer_GET(cause);
|
|
while (rxbits) {
|
|
enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
|
|
GE_DPRINTF(sc, ("%1x", rxbits));
|
|
rxbits &= ~(1 << rxprio);
|
|
gfe_rx_get(sc, rxprio);
|
|
}
|
|
|
|
rxbits = ETH_IR_RxError_GET(cause);
|
|
while (rxbits) {
|
|
enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
|
|
uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
|
|
int idx;
|
|
rxbits &= ~(1 << rxprio);
|
|
rxq = &sc->sc_rxq[rxprio];
|
|
sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
|
|
intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
|
|
if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
|
|
sc->sc_tickflags |= GE_TICK_RX_RESTART;
|
|
callout_reset(&sc->sc_co, 1, gfe_tick, sc);
|
|
}
|
|
if_statinc(ifp, if_ierrors);
|
|
GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
|
|
device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
|
|
memset(masks, 0, sizeof(masks));
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
|
|
0, rxq->rxq_desc_mem.gdm_size,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
|
|
volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
|
|
|
|
if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
|
|
masks[idx/32] |= 1 << (idx & 31);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
|
|
0, rxq->rxq_desc_mem.gdm_size,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
#if defined(DEBUG)
|
|
printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
|
|
device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
|
|
rxq->rxq_cmdsts, masks[0], masks[1]);
|
|
#endif
|
|
}
|
|
if ((intrmask & ETH_IR_RxBits) == 0)
|
|
intrmask &= ~(ETH_IR_RxBuffer | ETH_IR_RxError);
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
return intrmask;
|
|
}
|
|
|
|
int
|
|
gfe_rx_prime(struct gfe_softc *sc)
|
|
{
|
|
struct gfe_rxqueue *rxq;
|
|
int error;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_rx_prime");
|
|
|
|
error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
|
|
if (error)
|
|
goto bail;
|
|
rxq = &sc->sc_rxq[GE_RXPRIO_HI];
|
|
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
|
|
GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
|
|
}
|
|
sc->sc_intrmask |= rxq->rxq_intrbits;
|
|
|
|
error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
|
|
if (error)
|
|
goto bail;
|
|
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
|
|
rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
|
|
GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
|
|
sc->sc_intrmask |= rxq->rxq_intrbits;
|
|
}
|
|
|
|
error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
|
|
if (error)
|
|
goto bail;
|
|
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
|
|
rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
|
|
GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
|
|
sc->sc_intrmask |= rxq->rxq_intrbits;
|
|
}
|
|
|
|
error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
|
|
if (error)
|
|
goto bail;
|
|
if ((sc->sc_flags & GE_RXACTIVE) == 0) {
|
|
rxq = &sc->sc_rxq[GE_RXPRIO_LO];
|
|
GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
|
|
sc->sc_intrmask |= rxq->rxq_intrbits;
|
|
}
|
|
|
|
bail:
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
void
|
|
gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
|
|
{
|
|
struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
|
|
GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
|
|
if (rxq == NULL) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return;
|
|
}
|
|
|
|
if (rxq->rxq_curpkt)
|
|
m_freem(rxq->rxq_curpkt);
|
|
if ((sc->sc_flags & GE_NOFREE) == 0) {
|
|
gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
|
|
gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
void
|
|
gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
|
|
{
|
|
GE_FUNC_ENTER(sc, "gfe_rx_stop");
|
|
sc->sc_flags &= ~GE_RXACTIVE;
|
|
sc->sc_idlemask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
|
|
sc->sc_intrmask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
|
|
do {
|
|
delay(10);
|
|
} while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
|
|
gfe_rx_cleanup(sc, GE_RXPRIO_HI);
|
|
gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
|
|
gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
|
|
gfe_rx_cleanup(sc, GE_RXPRIO_LO);
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
void
|
|
gfe_tick(void *arg)
|
|
{
|
|
struct gfe_softc * const sc = arg;
|
|
uint32_t intrmask;
|
|
unsigned int tickflags;
|
|
int s;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tick");
|
|
|
|
s = splnet();
|
|
|
|
tickflags = sc->sc_tickflags;
|
|
sc->sc_tickflags = 0;
|
|
intrmask = sc->sc_intrmask;
|
|
if (tickflags & GE_TICK_TX_IFSTART)
|
|
gfe_ifstart(&sc->sc_ec.ec_if);
|
|
if (tickflags & GE_TICK_RX_RESTART) {
|
|
intrmask |= sc->sc_idlemask;
|
|
if (sc->sc_idlemask & (ETH_IR_RxBuffer_3 | ETH_IR_RxError_3)) {
|
|
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
|
|
rxq->rxq_fi = 0;
|
|
GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
|
|
}
|
|
if (sc->sc_idlemask & (ETH_IR_RxBuffer_2 | ETH_IR_RxError_2)) {
|
|
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
|
|
rxq->rxq_fi = 0;
|
|
GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
|
|
}
|
|
if (sc->sc_idlemask & (ETH_IR_RxBuffer_1 | ETH_IR_RxError_1)) {
|
|
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
|
|
rxq->rxq_fi = 0;
|
|
GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
|
|
}
|
|
if (sc->sc_idlemask & (ETH_IR_RxBuffer_0 | ETH_IR_RxError_0)) {
|
|
struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
|
|
rxq->rxq_fi = 0;
|
|
GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
|
|
GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
|
|
}
|
|
sc->sc_idlemask = 0;
|
|
}
|
|
if (intrmask != sc->sc_intrmask) {
|
|
sc->sc_intrmask = intrmask;
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
}
|
|
gfe_intr(sc);
|
|
splx(s);
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
int
|
|
gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
|
|
{
|
|
const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
|
|
struct ifnet * const ifp = &sc->sc_ec.ec_if;
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
|
|
volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
|
|
uint32_t intrmask = sc->sc_intrmask;
|
|
size_t buflen;
|
|
struct mbuf *m;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
|
|
|
|
/*
|
|
* Anything in the pending queue to enqueue? if not, punt. Likewise
|
|
* if the txq is not yet created.
|
|
* otherwise grab its dmamap.
|
|
*/
|
|
if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
|
|
GE_FUNC_EXIT(sc, "-");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Have we [over]consumed our limit of descriptors?
|
|
* Do we have enough free descriptors?
|
|
*/
|
|
if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
|
|
volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
|
|
uint32_t cmdsts;
|
|
size_t pktlen;
|
|
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
|
|
cmdsts = gt32toh(txd2->ed_cmdsts);
|
|
if (cmdsts & TX_CMD_O) {
|
|
int nextin;
|
|
/*
|
|
* Sometime the Discovery forgets to update the
|
|
* last descriptor. See if we own the descriptor
|
|
* after it (since we know we've turned that to
|
|
* the discovery and if we owned it, the Discovery
|
|
* gave it back). If we do, we know the Discovery
|
|
* gave back this one but forgot to mark it as ours.
|
|
*/
|
|
nextin = txq->txq_fi + 1;
|
|
if (nextin == GE_TXDESC_MAX)
|
|
nextin = 0;
|
|
GE_TXDPOSTSYNC(sc, txq, nextin);
|
|
if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
|
|
GE_TXDPRESYNC(sc, txq, nextin);
|
|
GE_FUNC_EXIT(sc, "@");
|
|
return 0;
|
|
}
|
|
#ifdef DEBUG
|
|
printf("%s: txenqueue: transmitter resynced at %d\n",
|
|
device_xname(sc->sc_dev), txq->txq_fi);
|
|
#endif
|
|
}
|
|
if (++txq->txq_fi == GE_TXDESC_MAX)
|
|
txq->txq_fi = 0;
|
|
txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
|
|
pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
|
|
txq->txq_inptr += roundup(pktlen, dcache_line_size);
|
|
txq->txq_nactive--;
|
|
|
|
/* statistics */
|
|
if_statinc(ifp, if_opackets);
|
|
if (cmdsts & TX_STS_ES)
|
|
if_statinc(ifp, if_oerrors);
|
|
GE_DPRINTF(sc, ("%%"));
|
|
}
|
|
|
|
buflen = roundup(m->m_pkthdr.len, dcache_line_size);
|
|
|
|
/*
|
|
* If this packet would wrap around the end of the buffer, reset back
|
|
* to the beginning.
|
|
*/
|
|
if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
|
|
txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
|
|
txq->txq_outptr = 0;
|
|
}
|
|
|
|
/*
|
|
* Make sure the output packet doesn't run over the beginning of
|
|
* what we've already given the GT.
|
|
*/
|
|
if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
|
|
txq->txq_outptr + buflen > txq->txq_inptr) {
|
|
intrmask |= txq->txq_intrbits &
|
|
(ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow);
|
|
if (sc->sc_intrmask != intrmask) {
|
|
sc->sc_intrmask = intrmask;
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
}
|
|
GE_FUNC_EXIT(sc, "#");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The end-of-list descriptor we put on last time is the starting point
|
|
* for this packet. The GT is supposed to terminate list processing on
|
|
* a NULL nxtptr but that currently is broken so a CPU-owned descriptor
|
|
* must terminate the list.
|
|
*/
|
|
intrmask = sc->sc_intrmask;
|
|
|
|
m_copydata(m, 0, m->m_pkthdr.len,
|
|
(char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
|
|
bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
|
|
txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
|
|
txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
|
|
txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_lo);
|
|
|
|
/*
|
|
* Request a buffer interrupt every 2/3 of the way thru the transmit
|
|
* buffer.
|
|
*/
|
|
txq->txq_ei_gapcount += buflen;
|
|
if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
|
|
txd->ed_cmdsts = htogt32(TX_CMD_FIRST |TX_CMD_LAST |TX_CMD_EI);
|
|
txq->txq_ei_gapcount = 0;
|
|
} else {
|
|
txd->ed_cmdsts = htogt32(TX_CMD_FIRST | TX_CMD_LAST);
|
|
}
|
|
#if 0
|
|
GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
|
|
((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
|
|
((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
|
|
#endif
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_lo);
|
|
|
|
txq->txq_outptr += buflen;
|
|
/*
|
|
* Tell the SDMA engine to "Fetch!"
|
|
*/
|
|
GE_WRITE(sc, ETH_ESDCMR,
|
|
txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH | ETH_ESDCMR_TXDL));
|
|
|
|
GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
|
|
|
|
/*
|
|
* Update the last out appropriately.
|
|
*/
|
|
txq->txq_nactive++;
|
|
if (++txq->txq_lo == GE_TXDESC_MAX)
|
|
txq->txq_lo = 0;
|
|
|
|
/*
|
|
* Move mbuf from the pending queue to the snd queue.
|
|
*/
|
|
IF_DEQUEUE(&txq->txq_pendq, m);
|
|
bpf_mtap(ifp, m, BPF_D_OUT);
|
|
m_freem(m);
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Since we have put an item into the packet queue, we now want
|
|
* an interrupt when the transmit queue finishes processing the
|
|
* list. But only update the mask if needs changing.
|
|
*/
|
|
intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow);
|
|
if (sc->sc_intrmask != intrmask) {
|
|
sc->sc_intrmask = intrmask;
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
}
|
|
if (ifp->if_timer == 0)
|
|
ifp->if_timer = 5;
|
|
GE_FUNC_EXIT(sc, "*");
|
|
return 1;
|
|
}
|
|
|
|
uint32_t
|
|
gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
|
|
{
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
|
|
struct ifnet * const ifp = &sc->sc_ec.ec_if;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tx_done");
|
|
|
|
if (txq == NULL) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return intrmask;
|
|
}
|
|
|
|
while (txq->txq_nactive > 0) {
|
|
const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
|
|
volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
|
|
uint32_t cmdsts;
|
|
size_t pktlen;
|
|
|
|
GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
|
|
if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
|
|
int nextin;
|
|
|
|
if (txq->txq_nactive == 1) {
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return intrmask;
|
|
}
|
|
/*
|
|
* Sometimes the Discovery forgets to update the
|
|
* ownership bit in the descriptor. See if we own the
|
|
* descriptor after it (since we know we've turned
|
|
* that to the Discovery and if we own it now then the
|
|
* Discovery gave it back). If we do, we know the
|
|
* Discovery gave back this one but forgot to mark it
|
|
* as ours.
|
|
*/
|
|
nextin = txq->txq_fi + 1;
|
|
if (nextin == GE_TXDESC_MAX)
|
|
nextin = 0;
|
|
GE_TXDPOSTSYNC(sc, txq, nextin);
|
|
if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
|
|
GE_TXDPRESYNC(sc, txq, txq->txq_fi);
|
|
GE_TXDPRESYNC(sc, txq, nextin);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return intrmask;
|
|
}
|
|
#ifdef DEBUG
|
|
printf("%s: txdone: transmitter resynced at %d\n",
|
|
device_xname(sc->sc_dev), txq->txq_fi);
|
|
#endif
|
|
}
|
|
#if 0
|
|
GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
|
|
txq->txq_lo,
|
|
((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
|
|
((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
|
|
#endif
|
|
GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
|
|
if (++txq->txq_fi == GE_TXDESC_MAX)
|
|
txq->txq_fi = 0;
|
|
txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
|
|
pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
|
|
bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
|
|
txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
|
|
txq->txq_inptr += roundup(pktlen, dcache_line_size);
|
|
|
|
/* statistics */
|
|
if_statinc(ifp, if_opackets);
|
|
if (cmdsts & TX_STS_ES)
|
|
if_statinc(ifp, if_oerrors);
|
|
|
|
/* txd->ed_bufptr = 0; */
|
|
|
|
ifp->if_timer = 5;
|
|
--txq->txq_nactive;
|
|
}
|
|
if (txq->txq_nactive != 0)
|
|
panic("%s: transmit fifo%d empty but active count (%d) > 0!",
|
|
device_xname(sc->sc_dev), txprio, txq->txq_nactive);
|
|
ifp->if_timer = 0;
|
|
intrmask &=
|
|
~(txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow));
|
|
intrmask &=
|
|
~(txq->txq_intrbits & (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return intrmask;
|
|
}
|
|
|
|
int
|
|
gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
|
|
{
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
|
|
int error;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
|
|
|
|
error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
|
|
GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
|
|
if (error) {
|
|
gfe_dmamem_free(sc, &txq->txq_desc_mem);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
|
|
{
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
|
|
volatile struct gt_eth_desc *txd;
|
|
unsigned int i;
|
|
bus_addr_t addr;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tx_start");
|
|
|
|
sc->sc_intrmask &=
|
|
~(ETH_IR_TxEndHigh |
|
|
ETH_IR_TxBufferHigh |
|
|
ETH_IR_TxEndLow |
|
|
ETH_IR_TxBufferLow);
|
|
|
|
if (sc->sc_flags & GE_NOFREE) {
|
|
KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
|
|
KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
|
|
} else {
|
|
int error = gfe_tx_txqalloc(sc, txprio);
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "!");
|
|
return error;
|
|
}
|
|
}
|
|
|
|
txq->txq_descs =
|
|
(volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
|
|
txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
|
|
txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
|
|
|
|
txq->txq_pendq.ifq_maxlen = 10;
|
|
txq->txq_ei_gapcount = 0;
|
|
txq->txq_nactive = 0;
|
|
txq->txq_fi = 0;
|
|
txq->txq_lo = 0;
|
|
txq->txq_inptr = GE_TXBUF_SIZE;
|
|
txq->txq_outptr = 0;
|
|
for (i = 0, txd = txq->txq_descs,
|
|
addr = txq->txq_desc_busaddr + sizeof(*txd);
|
|
i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
|
|
/*
|
|
* update the nxtptr to point to the next txd.
|
|
*/
|
|
txd->ed_cmdsts = 0;
|
|
txd->ed_nxtptr = htogt32(addr);
|
|
}
|
|
txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
|
|
htogt32(txq->txq_desc_busaddr);
|
|
bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
|
|
GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
switch (txprio) {
|
|
case GE_TXPRIO_HI:
|
|
txq->txq_intrbits = ETH_IR_TxEndHigh | ETH_IR_TxBufferHigh;
|
|
txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
|
|
txq->txq_epsrbits = ETH_EPSR_TxHigh;
|
|
txq->txq_ectdp = ETH_ECTDP1;
|
|
GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
|
|
break;
|
|
|
|
case GE_TXPRIO_LO:
|
|
txq->txq_intrbits = ETH_IR_TxEndLow | ETH_IR_TxBufferLow;
|
|
txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
|
|
txq->txq_epsrbits = ETH_EPSR_TxLow;
|
|
txq->txq_ectdp = ETH_ECTDP0;
|
|
GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
|
|
break;
|
|
|
|
case GE_TXPRIO_NONE:
|
|
break;
|
|
}
|
|
#if 0
|
|
GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
|
|
GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
|
|
GE_DPRINTF(sc, (")"));
|
|
#endif
|
|
|
|
/*
|
|
* If we are restarting, there may be packets in the pending queue
|
|
* waiting to be enqueued. Try enqueuing packets from both priority
|
|
* queues until the pending queue is empty or there no room for them
|
|
* on the device.
|
|
*/
|
|
while (gfe_tx_enqueue(sc, txprio))
|
|
continue;
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
|
|
{
|
|
struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
|
|
if (txq == NULL) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return;
|
|
}
|
|
|
|
if (!flush) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return;
|
|
}
|
|
|
|
if ((sc->sc_flags & GE_NOFREE) == 0) {
|
|
gfe_dmamem_free(sc, &txq->txq_desc_mem);
|
|
gfe_dmamem_free(sc, &txq->txq_buf_mem);
|
|
}
|
|
GE_FUNC_EXIT(sc, "-F");
|
|
}
|
|
|
|
void
|
|
gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
|
|
{
|
|
GE_FUNC_ENTER(sc, "gfe_tx_stop");
|
|
|
|
GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH | ETH_ESDCMR_STDL);
|
|
|
|
sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
|
|
sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
|
|
sc->sc_intrmask &=
|
|
~(ETH_IR_TxEndHigh |
|
|
ETH_IR_TxBufferHigh |
|
|
ETH_IR_TxEndLow |
|
|
ETH_IR_TxBufferLow);
|
|
|
|
gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
|
|
gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
|
|
|
|
sc->sc_ec.ec_if.if_timer = 0;
|
|
GE_FUNC_EXIT(sc, "");
|
|
}
|
|
|
|
int
|
|
gfe_intr(void *arg)
|
|
{
|
|
struct gfe_softc * const sc = arg;
|
|
uint32_t cause;
|
|
uint32_t intrmask = sc->sc_intrmask;
|
|
int claim = 0;
|
|
int cnt;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_intr");
|
|
|
|
for (cnt = 0; cnt < 4; cnt++) {
|
|
if (sc->sc_intrmask != intrmask) {
|
|
sc->sc_intrmask = intrmask;
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
}
|
|
cause = GE_READ(sc, ETH_EICR);
|
|
cause &= sc->sc_intrmask;
|
|
GE_DPRINTF(sc, (".%#x", cause));
|
|
if (cause == 0)
|
|
break;
|
|
|
|
claim = 1;
|
|
|
|
GE_WRITE(sc, ETH_EICR, ~cause);
|
|
#ifndef GE_NORX
|
|
if (cause & (ETH_IR_RxBuffer | ETH_IR_RxError))
|
|
intrmask = gfe_rx_process(sc, cause, intrmask);
|
|
#endif
|
|
|
|
#ifndef GE_NOTX
|
|
if (cause & (ETH_IR_TxBufferHigh | ETH_IR_TxEndHigh))
|
|
intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
|
|
if (cause & (ETH_IR_TxBufferLow | ETH_IR_TxEndLow))
|
|
intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
|
|
#endif
|
|
if (cause & ETH_IR_MIIPhySTC) {
|
|
sc->sc_flags |= GE_PHYSTSCHG;
|
|
/* intrmask &= ~ETH_IR_MIIPhySTC; */
|
|
}
|
|
}
|
|
|
|
while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
|
|
continue;
|
|
while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
|
|
continue;
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
return claim;
|
|
}
|
|
|
|
int
|
|
gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
|
|
{
|
|
int error = 0;
|
|
GE_FUNC_ENTER(sc, "gfe_whack");
|
|
|
|
switch (op) {
|
|
case GE_WHACK_RESTART:
|
|
#ifndef GE_NOTX
|
|
gfe_tx_stop(sc, op);
|
|
#endif
|
|
/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
|
|
/* FALLTHROUGH */
|
|
case GE_WHACK_START:
|
|
#ifndef GE_NOHASH
|
|
if (error == 0 && sc->sc_hashtable == NULL) {
|
|
error = gfe_hash_alloc(sc);
|
|
if (error)
|
|
break;
|
|
}
|
|
if (op != GE_WHACK_RESTART)
|
|
gfe_hash_fill(sc);
|
|
#endif
|
|
#ifndef GE_NORX
|
|
if (op != GE_WHACK_RESTART) {
|
|
error = gfe_rx_prime(sc);
|
|
if (error)
|
|
break;
|
|
}
|
|
#endif
|
|
#ifndef GE_NOTX
|
|
error = gfe_tx_start(sc, GE_TXPRIO_HI);
|
|
if (error)
|
|
break;
|
|
#endif
|
|
sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
|
|
GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
|
|
GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
|
|
GE_WRITE(sc, ETH_EICR, 0);
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
#ifndef GE_NOHASH
|
|
GE_WRITE(sc, ETH_EHTPR,
|
|
sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
|
|
#endif
|
|
#ifndef GE_NORX
|
|
GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
|
|
sc->sc_flags |= GE_RXACTIVE;
|
|
#endif
|
|
/* FALLTHROUGH */
|
|
case GE_WHACK_CHANGE:
|
|
GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
|
|
GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
|
|
GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
|
|
GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
|
|
gfe_ifstart(&sc->sc_ec.ec_if);
|
|
GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
|
|
GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
case GE_WHACK_STOP:
|
|
break;
|
|
}
|
|
|
|
#ifdef GE_DEBUG
|
|
if (error)
|
|
GE_DPRINTF(sc, (" failed: %d\n", error));
|
|
#endif
|
|
GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
|
|
GE_WRITE(sc, ETH_EIMR, 0);
|
|
sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
|
|
#ifndef GE_NOTX
|
|
gfe_tx_stop(sc, GE_WHACK_STOP);
|
|
#endif
|
|
#ifndef GE_NORX
|
|
gfe_rx_stop(sc, GE_WHACK_STOP);
|
|
#endif
|
|
#ifndef GE_NOHASH
|
|
if ((sc->sc_flags & GE_NOFREE) == 0) {
|
|
gfe_dmamem_free(sc, &sc->sc_hash_mem);
|
|
sc->sc_hashtable = NULL;
|
|
}
|
|
#endif
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
int
|
|
gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
|
|
{
|
|
uint32_t w0, add0, add1;
|
|
uint32_t result;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_hash_compute");
|
|
add0 = ((uint32_t) eaddr[5] << 0) |
|
|
((uint32_t) eaddr[4] << 8) |
|
|
((uint32_t) eaddr[3] << 16);
|
|
|
|
add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
|
|
add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
|
|
add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
|
|
|
|
add1 = ((uint32_t) eaddr[2] << 0) |
|
|
((uint32_t) eaddr[1] << 8) |
|
|
((uint32_t) eaddr[0] << 16);
|
|
|
|
add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
|
|
add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
|
|
add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
|
|
|
|
GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
|
|
/*
|
|
* hashResult is the 15 bits Hash entry address.
|
|
* ethernetADD is a 48 bit number, which is derived from the Ethernet
|
|
* MAC address, by nibble swapping in every byte (i.e MAC address
|
|
* of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
|
|
*/
|
|
|
|
if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
|
|
/*
|
|
* hashResult[14:0] = hashFunc0(ethernetADD[47:0])
|
|
*
|
|
* hashFunc0 calculates the hashResult in the following manner:
|
|
* hashResult[ 8:0] = ethernetADD[14:8,1,0]
|
|
* XOR ethernetADD[23:15] XOR ethernetADD[32:24]
|
|
*/
|
|
result = (add0 & 3) | ((add0 >> 6) & ~3);
|
|
result ^= (add0 >> 15) ^ (add1 >> 0);
|
|
result &= 0x1ff;
|
|
/*
|
|
* hashResult[14:9] = ethernetADD[7:2]
|
|
*/
|
|
result |= (add0 & ~3) << 7; /* excess bits will be masked */
|
|
GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
|
|
} else {
|
|
#define TRIBITFLIP 073516240 /* yes its in octal */
|
|
/*
|
|
* hashResult[14:0] = hashFunc1(ethernetADD[47:0])
|
|
*
|
|
* hashFunc1 calculates the hashResult in the following manner:
|
|
* hashResult[08:00] = ethernetADD[06:14]
|
|
* XOR ethernetADD[15:23] XOR ethernetADD[24:32]
|
|
*/
|
|
w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
|
|
/*
|
|
* Now bitswap those 9 bits
|
|
*/
|
|
result = 0;
|
|
result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
|
|
result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
|
|
result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
|
|
|
|
/*
|
|
* hashResult[14:09] = ethernetADD[00:05]
|
|
*/
|
|
result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
|
|
result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
|
|
GE_DPRINTF(sc, ("1(%#x)", result));
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
|
|
}
|
|
|
|
int
|
|
gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
|
|
enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
|
|
{
|
|
uint64_t he;
|
|
uint64_t *maybe_he_p = NULL;
|
|
int limit;
|
|
int hash;
|
|
int maybe_hash = 0;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
|
|
|
|
hash = gfe_hash_compute(sc, eaddr);
|
|
|
|
if (sc->sc_hashtable == NULL) {
|
|
panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
|
|
__LINE__);
|
|
}
|
|
|
|
/*
|
|
* Assume we are going to insert so create the hash entry we
|
|
* are going to insert. We also use it to match entries we
|
|
* will be removing.
|
|
*/
|
|
he = ((uint64_t) eaddr[5] << 43) |
|
|
((uint64_t) eaddr[4] << 35) |
|
|
((uint64_t) eaddr[3] << 27) |
|
|
((uint64_t) eaddr[2] << 19) |
|
|
((uint64_t) eaddr[1] << 11) |
|
|
((uint64_t) eaddr[0] << 3) |
|
|
HSH_PRIO_INS(prio) | HSH_V | HSH_R;
|
|
|
|
/*
|
|
* The GT will search upto 12 entries for a hit, so we must mimic that.
|
|
*/
|
|
hash &= sc->sc_hashmask / sizeof(he);
|
|
for (limit = HSH_LIMIT; limit > 0 ; --limit) {
|
|
/*
|
|
* Does the GT wrap at the end, stop at the, or overrun the
|
|
* end? Assume it wraps for now. Stash a copy of the
|
|
* current hash entry.
|
|
*/
|
|
uint64_t *he_p = &sc->sc_hashtable[hash];
|
|
uint64_t thishe = *he_p;
|
|
|
|
/*
|
|
* If the hash entry isn't valid, that break the chain. And
|
|
* this entry a good candidate for reuse.
|
|
*/
|
|
if ((thishe & HSH_V) == 0) {
|
|
maybe_he_p = he_p;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the hash entry has the same address we are looking for
|
|
* then ... if we are removing and the skip bit is set, its
|
|
* already been removed. if are adding and the skip bit is
|
|
* clear, then its already added. In either return EBUSY
|
|
* indicating the op has already been done. Otherwise flip
|
|
* the skip bit and return 0.
|
|
*/
|
|
if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
|
|
if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
|
|
((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
|
|
return EBUSY;
|
|
*he_p = thishe ^ HSH_S;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
|
|
hash * sizeof(he), sizeof(he),
|
|
BUS_DMASYNC_PREWRITE);
|
|
GE_FUNC_EXIT(sc, "^");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we haven't found a slot for the entry and this entry
|
|
* is currently being skipped, return this entry.
|
|
*/
|
|
if (maybe_he_p == NULL && (thishe & HSH_S)) {
|
|
maybe_he_p = he_p;
|
|
maybe_hash = hash;
|
|
}
|
|
|
|
hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
|
|
}
|
|
|
|
/*
|
|
* If we got here, then there was no entry to remove.
|
|
*/
|
|
if (op == GE_HASH_REMOVE) {
|
|
GE_FUNC_EXIT(sc, "?");
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* If we couldn't find a slot, return an error.
|
|
*/
|
|
if (maybe_he_p == NULL) {
|
|
GE_FUNC_EXIT(sc, "!");
|
|
return ENOSPC;
|
|
}
|
|
|
|
/* Update the entry.
|
|
*/
|
|
*maybe_he_p = he;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
|
|
maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
|
|
GE_FUNC_EXIT(sc, "+");
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
|
|
u_long cmd)
|
|
{
|
|
struct gfe_softc *sc = ec->ec_if.if_softc;
|
|
int error;
|
|
enum gfe_hash_op op;
|
|
enum gfe_rxprio prio;
|
|
|
|
GE_FUNC_ENTER(sc, "hash_multichg");
|
|
/*
|
|
* Is this a wildcard entry? If so and its being removed, recompute.
|
|
*/
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
|
|
if (cmd == SIOCDELMULTI) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return ENETRESET;
|
|
}
|
|
|
|
/*
|
|
* Switch in
|
|
*/
|
|
sc->sc_flags |= GE_ALLMULTI;
|
|
if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
|
|
sc->sc_pcr |= ETH_EPCR_PM;
|
|
GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
GE_FUNC_EXIT(sc, "");
|
|
return ENETRESET;
|
|
}
|
|
|
|
prio = GE_RXPRIO_MEDLO;
|
|
op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
|
|
|
|
if (sc->sc_hashtable == NULL) {
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
|
|
if (error == EBUSY) {
|
|
aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
|
|
cmd == SIOCDELMULTI ? "remove" : "add",
|
|
ether_sprintf(enm->enm_addrlo));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
if (error == ENOENT) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"multichg: failed to remove %s: not in table\n",
|
|
ether_sprintf(enm->enm_addrlo));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
if (error == ENOSPC) {
|
|
aprint_error_dev(sc->sc_dev, "multichg:"
|
|
" failed to add %s: no space; regenerating table\n",
|
|
ether_sprintf(enm->enm_addrlo));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return ENETRESET;
|
|
}
|
|
GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
|
|
device_xname(sc->sc_dev),
|
|
cmd == SIOCDELMULTI ? "remove" : "add",
|
|
ether_sprintf(enm->enm_addrlo)));
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
gfe_hash_fill(struct gfe_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ec;
|
|
struct ether_multistep step;
|
|
struct ether_multi *enm;
|
|
int error;
|
|
|
|
GE_FUNC_ENTER(sc, "gfe_hash_fill");
|
|
|
|
error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
|
|
CLLADDR(ec->ec_if.if_sadl));
|
|
if (error) {
|
|
GE_FUNC_EXIT(sc, "!");
|
|
return error;
|
|
}
|
|
|
|
sc->sc_flags &= ~GE_ALLMULTI;
|
|
if ((ec->ec_if.if_flags & IFF_PROMISC) == 0)
|
|
sc->sc_pcr &= ~ETH_EPCR_PM;
|
|
ETHER_LOCK(ec);
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
sc->sc_flags |= GE_ALLMULTI;
|
|
sc->sc_pcr |= ETH_EPCR_PM;
|
|
} else {
|
|
error = gfe_hash_entry_op(sc, GE_HASH_ADD,
|
|
GE_RXPRIO_MEDLO, enm->enm_addrlo);
|
|
if (error == ENOSPC)
|
|
break;
|
|
}
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
ETHER_UNLOCK(ec);
|
|
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
|
|
int
|
|
gfe_hash_alloc(struct gfe_softc *sc)
|
|
{
|
|
int error;
|
|
GE_FUNC_ENTER(sc, "gfe_hash_alloc");
|
|
sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
|
|
error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
|
|
BUS_DMA_NOCACHE);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"failed to allocate %d bytes for hash table: %d\n",
|
|
sc->sc_hashmask + 1, error);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return error;
|
|
}
|
|
sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
|
|
memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
|
|
0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
|
|
GE_FUNC_EXIT(sc, "");
|
|
return 0;
|
|
}
|