NetBSD/sys/dev/acpi/acpi_ec.c
jdolecek 8a7046f1fe only install space handler and enable interrupt for EC if ACPI
claims the device is actually present, it's not enough when there
is entry for it in the ACPI tables

fixes interrupt storm triggered on Dell PowerEdge R220 by enabling
GPE interrupt on a non-enabled EC (for which _REG call later
fails), reported and fix tested by Dima Veselov:
http://mail-index.netbsd.org/netbsd-users/2020/03/02/msg024166.html

XXX pullup netbsd-9
2020-06-15 15:29:46 +00:00

893 lines
22 KiB
C

/* $NetBSD: acpi_ec.c,v 1.84 2020/06/15 15:29:46 jdolecek Exp $ */
/*-
* Copyright (c) 2007 Joerg Sonnenberger <joerg@NetBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The ACPI Embedded Controller (EC) driver serves two different purposes:
* - read and write access from ASL, e.g. to read battery state
* - notification of ASL of System Control Interrupts.
*
* Access to the EC is serialised by sc_access_mtx and optionally the
* ACPI global mutex. Both locks are held until the request is fulfilled.
* All access to the softc has to hold sc_mtx to serialise against the GPE
* handler and the callout. sc_mtx is also used for wakeup conditions.
*
* SCIs are processed in a kernel thread. Handling gets a bit complicated
* by the lock order (sc_mtx must be acquired after sc_access_mtx and the
* ACPI global mutex).
*
* Read and write requests spin around for a short time as many requests
* can be handled instantly by the EC. During normal processing interrupt
* mode is used exclusively. At boot and resume time interrupts are not
* working and the handlers just busy loop.
*
* A callout is scheduled to compensate for missing interrupts on some
* hardware. If the EC doesn't process a request for 5s, it is most likely
* in a wedged state. No method to reset the EC is currently known.
*
* Special care has to be taken to not poll the EC in a busy loop without
* delay. This can prevent processing of Power Button events. At least some
* Lenovo Thinkpads seem to be implement the Power Button Override in the EC
* and the only option to recover on those models is to cut off all power.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_ec.c,v 1.84 2020/06/15 15:29:46 jdolecek Exp $");
#include <sys/param.h>
#include <sys/callout.h>
#include <sys/condvar.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/mutex.h>
#include <sys/systm.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_ecvar.h>
#define _COMPONENT ACPI_EC_COMPONENT
ACPI_MODULE_NAME ("acpi_ec")
/* Maximum time to wait for global ACPI lock in ms */
#define EC_LOCK_TIMEOUT 5
/* Maximum time to poll for completion of a command in ms */
#define EC_POLL_TIMEOUT 5
/* Maximum time to give a single EC command in s */
#define EC_CMD_TIMEOUT 10
/* From ACPI 3.0b, chapter 12.3 */
#define EC_COMMAND_READ 0x80
#define EC_COMMAND_WRITE 0x81
#define EC_COMMAND_BURST_EN 0x82
#define EC_COMMAND_BURST_DIS 0x83
#define EC_COMMAND_QUERY 0x84
/* From ACPI 3.0b, chapter 12.2.1 */
#define EC_STATUS_OBF 0x01
#define EC_STATUS_IBF 0x02
#define EC_STATUS_CMD 0x08
#define EC_STATUS_BURST 0x10
#define EC_STATUS_SCI 0x20
#define EC_STATUS_SMI 0x40
static const char * const ec_hid[] = {
"PNP0C09",
NULL,
};
enum ec_state_t {
EC_STATE_QUERY,
EC_STATE_QUERY_VAL,
EC_STATE_READ,
EC_STATE_READ_ADDR,
EC_STATE_READ_VAL,
EC_STATE_WRITE,
EC_STATE_WRITE_ADDR,
EC_STATE_WRITE_VAL,
EC_STATE_FREE
};
struct acpiec_softc {
ACPI_HANDLE sc_ech;
ACPI_HANDLE sc_gpeh;
uint8_t sc_gpebit;
bus_space_tag_t sc_data_st;
bus_space_handle_t sc_data_sh;
bus_space_tag_t sc_csr_st;
bus_space_handle_t sc_csr_sh;
bool sc_need_global_lock;
uint32_t sc_global_lock;
kmutex_t sc_mtx, sc_access_mtx;
kcondvar_t sc_cv, sc_cv_sci;
enum ec_state_t sc_state;
bool sc_got_sci;
callout_t sc_pseudo_intr;
uint8_t sc_cur_addr, sc_cur_val;
};
static int acpiecdt_match(device_t, cfdata_t, void *);
static void acpiecdt_attach(device_t, device_t, void *);
static int acpiec_match(device_t, cfdata_t, void *);
static void acpiec_attach(device_t, device_t, void *);
static void acpiec_common_attach(device_t, device_t, ACPI_HANDLE,
bus_space_tag_t, bus_addr_t, bus_space_tag_t, bus_addr_t,
ACPI_HANDLE, uint8_t);
static bool acpiec_suspend(device_t, const pmf_qual_t *);
static bool acpiec_resume(device_t, const pmf_qual_t *);
static bool acpiec_shutdown(device_t, int);
static bool acpiec_parse_gpe_package(device_t, ACPI_HANDLE,
ACPI_HANDLE *, uint8_t *);
static void acpiec_callout(void *);
static void acpiec_gpe_query(void *);
static uint32_t acpiec_gpe_handler(ACPI_HANDLE, uint32_t, void *);
static ACPI_STATUS acpiec_space_setup(ACPI_HANDLE, uint32_t, void *, void **);
static ACPI_STATUS acpiec_space_handler(uint32_t, ACPI_PHYSICAL_ADDRESS,
uint32_t, ACPI_INTEGER *, void *, void *);
static void acpiec_gpe_state_machine(device_t);
CFATTACH_DECL_NEW(acpiec, sizeof(struct acpiec_softc),
acpiec_match, acpiec_attach, NULL, NULL);
CFATTACH_DECL_NEW(acpiecdt, sizeof(struct acpiec_softc),
acpiecdt_match, acpiecdt_attach, NULL, NULL);
static device_t ec_singleton = NULL;
static bool acpiec_cold = false;
static bool
acpiecdt_find(device_t parent, ACPI_HANDLE *ec_handle,
bus_addr_t *cmd_reg, bus_addr_t *data_reg, uint8_t *gpebit)
{
ACPI_TABLE_ECDT *ecdt;
ACPI_STATUS rv;
rv = AcpiGetTable(ACPI_SIG_ECDT, 1, (ACPI_TABLE_HEADER **)&ecdt);
if (ACPI_FAILURE(rv))
return false;
if (ecdt->Control.BitWidth != 8 || ecdt->Data.BitWidth != 8) {
aprint_error_dev(parent,
"ECDT register width invalid (%u/%u)\n",
ecdt->Control.BitWidth, ecdt->Data.BitWidth);
return false;
}
rv = AcpiGetHandle(ACPI_ROOT_OBJECT, ecdt->Id, ec_handle);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(parent,
"failed to look up EC object %s: %s\n",
ecdt->Id, AcpiFormatException(rv));
return false;
}
*cmd_reg = ecdt->Control.Address;
*data_reg = ecdt->Data.Address;
*gpebit = ecdt->Gpe;
return true;
}
static int
acpiecdt_match(device_t parent, cfdata_t match, void *aux)
{
ACPI_HANDLE ec_handle;
bus_addr_t cmd_reg, data_reg;
uint8_t gpebit;
if (acpiecdt_find(parent, &ec_handle, &cmd_reg, &data_reg, &gpebit))
return 1;
else
return 0;
}
static void
acpiecdt_attach(device_t parent, device_t self, void *aux)
{
struct acpibus_attach_args *aa = aux;
ACPI_HANDLE ec_handle;
bus_addr_t cmd_reg, data_reg;
uint8_t gpebit;
if (!acpiecdt_find(parent, &ec_handle, &cmd_reg, &data_reg, &gpebit))
panic("ECDT disappeared");
aprint_naive("\n");
aprint_normal(": ACPI Embedded Controller via ECDT\n");
acpiec_common_attach(parent, self, ec_handle, aa->aa_iot, cmd_reg,
aa->aa_iot, data_reg, NULL, gpebit);
}
static int
acpiec_match(device_t parent, cfdata_t match, void *aux)
{
struct acpi_attach_args *aa = aux;
if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
return 0;
return acpi_match_hid(aa->aa_node->ad_devinfo, ec_hid);
}
static void
acpiec_attach(device_t parent, device_t self, void *aux)
{
struct acpi_attach_args *aa = aux;
struct acpi_resources ec_res;
struct acpi_io *io0, *io1;
ACPI_HANDLE gpe_handle;
uint8_t gpebit;
ACPI_STATUS rv;
if (ec_singleton != NULL) {
aprint_naive(": using %s\n", device_xname(ec_singleton));
aprint_normal(": using %s\n", device_xname(ec_singleton));
goto fail0;
}
if (!acpi_device_present(aa->aa_node->ad_handle)) {
aprint_normal(": not present\n");
goto fail0;
}
if (!acpiec_parse_gpe_package(self, aa->aa_node->ad_handle,
&gpe_handle, &gpebit))
goto fail0;
rv = acpi_resource_parse(self, aa->aa_node->ad_handle, "_CRS",
&ec_res, &acpi_resource_parse_ops_default);
if (rv != AE_OK) {
aprint_error_dev(self, "resource parsing failed: %s\n",
AcpiFormatException(rv));
goto fail0;
}
if ((io0 = acpi_res_io(&ec_res, 0)) == NULL) {
aprint_error_dev(self, "no data register resource\n");
goto fail1;
}
if ((io1 = acpi_res_io(&ec_res, 1)) == NULL) {
aprint_error_dev(self, "no CSR register resource\n");
goto fail1;
}
acpiec_common_attach(parent, self, aa->aa_node->ad_handle,
aa->aa_iot, io1->ar_base, aa->aa_iot, io0->ar_base,
gpe_handle, gpebit);
acpi_resource_cleanup(&ec_res);
return;
fail1: acpi_resource_cleanup(&ec_res);
fail0: if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
static void
acpiec_common_attach(device_t parent, device_t self,
ACPI_HANDLE ec_handle, bus_space_tag_t cmdt, bus_addr_t cmd_reg,
bus_space_tag_t datat, bus_addr_t data_reg,
ACPI_HANDLE gpe_handle, uint8_t gpebit)
{
struct acpiec_softc *sc = device_private(self);
ACPI_STATUS rv;
ACPI_INTEGER val;
sc->sc_csr_st = cmdt;
sc->sc_data_st = datat;
sc->sc_ech = ec_handle;
sc->sc_gpeh = gpe_handle;
sc->sc_gpebit = gpebit;
sc->sc_state = EC_STATE_FREE;
mutex_init(&sc->sc_mtx, MUTEX_DRIVER, IPL_TTY);
mutex_init(&sc->sc_access_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_cv, "eccv");
cv_init(&sc->sc_cv_sci, "ecsci");
if (bus_space_map(sc->sc_data_st, data_reg, 1, 0,
&sc->sc_data_sh) != 0) {
aprint_error_dev(self, "unable to map data register\n");
return;
}
if (bus_space_map(sc->sc_csr_st, cmd_reg, 1, 0, &sc->sc_csr_sh) != 0) {
aprint_error_dev(self, "unable to map CSR register\n");
goto post_data_map;
}
rv = acpi_eval_integer(sc->sc_ech, "_GLK", &val);
if (rv == AE_OK) {
sc->sc_need_global_lock = val != 0;
} else if (rv != AE_NOT_FOUND) {
aprint_error_dev(self, "unable to evaluate _GLK: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
} else {
sc->sc_need_global_lock = false;
}
if (sc->sc_need_global_lock)
aprint_normal_dev(self, "using global ACPI lock\n");
callout_init(&sc->sc_pseudo_intr, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_pseudo_intr, acpiec_callout, self);
rv = AcpiInstallAddressSpaceHandler(sc->sc_ech, ACPI_ADR_SPACE_EC,
acpiec_space_handler, acpiec_space_setup, self);
if (rv != AE_OK) {
aprint_error_dev(self,
"unable to install address space handler: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
rv = AcpiInstallGpeHandler(sc->sc_gpeh, sc->sc_gpebit,
ACPI_GPE_EDGE_TRIGGERED, acpiec_gpe_handler, self);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to install GPE handler: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
rv = AcpiEnableGpe(sc->sc_gpeh, sc->sc_gpebit);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to enable GPE: %s\n",
AcpiFormatException(rv));
goto post_csr_map;
}
if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, acpiec_gpe_query,
self, NULL, "acpiec sci thread")) {
aprint_error_dev(self, "unable to create query kthread\n");
goto post_csr_map;
}
ec_singleton = self;
if (!pmf_device_register1(self, acpiec_suspend, acpiec_resume,
acpiec_shutdown))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
post_csr_map:
(void)AcpiRemoveGpeHandler(sc->sc_gpeh, sc->sc_gpebit,
acpiec_gpe_handler);
(void)AcpiRemoveAddressSpaceHandler(sc->sc_ech,
ACPI_ADR_SPACE_EC, acpiec_space_handler);
bus_space_unmap(sc->sc_csr_st, sc->sc_csr_sh, 1);
post_data_map:
bus_space_unmap(sc->sc_data_st, sc->sc_data_sh, 1);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
static bool
acpiec_suspend(device_t dv, const pmf_qual_t *qual)
{
acpiec_cold = true;
return true;
}
static bool
acpiec_resume(device_t dv, const pmf_qual_t *qual)
{
acpiec_cold = false;
return true;
}
static bool
acpiec_shutdown(device_t dv, int how)
{
acpiec_cold = true;
return true;
}
static bool
acpiec_parse_gpe_package(device_t self, ACPI_HANDLE ec_handle,
ACPI_HANDLE *gpe_handle, uint8_t *gpebit)
{
ACPI_BUFFER buf;
ACPI_OBJECT *p, *c;
ACPI_STATUS rv;
rv = acpi_eval_struct(ec_handle, "_GPE", &buf);
if (rv != AE_OK) {
aprint_error_dev(self, "unable to evaluate _GPE: %s\n",
AcpiFormatException(rv));
return false;
}
p = buf.Pointer;
if (p->Type == ACPI_TYPE_INTEGER) {
*gpe_handle = NULL;
*gpebit = p->Integer.Value;
ACPI_FREE(p);
return true;
}
if (p->Type != ACPI_TYPE_PACKAGE) {
aprint_error_dev(self, "_GPE is neither integer nor package\n");
ACPI_FREE(p);
return false;
}
if (p->Package.Count != 2) {
aprint_error_dev(self,
"_GPE package does not contain 2 elements\n");
ACPI_FREE(p);
return false;
}
c = &p->Package.Elements[0];
rv = acpi_eval_reference_handle(c, gpe_handle);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(self, "failed to evaluate _GPE handle\n");
ACPI_FREE(p);
return false;
}
c = &p->Package.Elements[1];
if (c->Type != ACPI_TYPE_INTEGER) {
aprint_error_dev(self,
"_GPE package needs integer as 2nd field\n");
ACPI_FREE(p);
return false;
}
*gpebit = c->Integer.Value;
ACPI_FREE(p);
return true;
}
static uint8_t
acpiec_read_data(struct acpiec_softc *sc)
{
return bus_space_read_1(sc->sc_data_st, sc->sc_data_sh, 0);
}
static void
acpiec_write_data(struct acpiec_softc *sc, uint8_t val)
{
bus_space_write_1(sc->sc_data_st, sc->sc_data_sh, 0, val);
}
static uint8_t
acpiec_read_status(struct acpiec_softc *sc)
{
return bus_space_read_1(sc->sc_csr_st, sc->sc_csr_sh, 0);
}
static void
acpiec_write_command(struct acpiec_softc *sc, uint8_t cmd)
{
bus_space_write_1(sc->sc_csr_st, sc->sc_csr_sh, 0, cmd);
}
static ACPI_STATUS
acpiec_space_setup(ACPI_HANDLE region, uint32_t func, void *arg,
void **region_arg)
{
if (func == ACPI_REGION_DEACTIVATE)
*region_arg = NULL;
else
*region_arg = arg;
return AE_OK;
}
static void
acpiec_lock(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
ACPI_STATUS rv;
mutex_enter(&sc->sc_access_mtx);
if (sc->sc_need_global_lock) {
rv = AcpiAcquireGlobalLock(EC_LOCK_TIMEOUT,
&sc->sc_global_lock);
if (rv != AE_OK) {
aprint_error_dev(dv,
"failed to acquire global lock: %s\n",
AcpiFormatException(rv));
return;
}
}
}
static void
acpiec_unlock(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
ACPI_STATUS rv;
if (sc->sc_need_global_lock) {
rv = AcpiReleaseGlobalLock(sc->sc_global_lock);
if (rv != AE_OK) {
aprint_error_dev(dv,
"failed to release global lock: %s\n",
AcpiFormatException(rv));
}
}
mutex_exit(&sc->sc_access_mtx);
}
static ACPI_STATUS
acpiec_read(device_t dv, uint8_t addr, uint8_t *val)
{
struct acpiec_softc *sc = device_private(dv);
int i, timeo = 1000 * EC_CMD_TIMEOUT;
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
sc->sc_cur_addr = addr;
sc->sc_state = EC_STATE_READ;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
if (cold || acpiec_cold) {
while (sc->sc_state != EC_STATE_FREE && timeo-- > 0) {
delay(1000);
acpiec_gpe_state_machine(dv);
}
if (sc->sc_state != EC_STATE_FREE) {
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
aprint_error_dev(dv, "command timed out, state %d\n",
sc->sc_state);
return AE_ERROR;
}
} else if (cv_timedwait(&sc->sc_cv, &sc->sc_mtx, EC_CMD_TIMEOUT * hz)) {
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
aprint_error_dev(dv,
"command takes over %d sec...\n", EC_CMD_TIMEOUT);
return AE_ERROR;
}
done:
*val = sc->sc_cur_val;
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
return AE_OK;
}
static ACPI_STATUS
acpiec_write(device_t dv, uint8_t addr, uint8_t val)
{
struct acpiec_softc *sc = device_private(dv);
int i, timeo = 1000 * EC_CMD_TIMEOUT;
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
sc->sc_cur_addr = addr;
sc->sc_cur_val = val;
sc->sc_state = EC_STATE_WRITE;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
if (cold || acpiec_cold) {
while (sc->sc_state != EC_STATE_FREE && timeo-- > 0) {
delay(1000);
acpiec_gpe_state_machine(dv);
}
if (sc->sc_state != EC_STATE_FREE) {
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
aprint_error_dev(dv, "command timed out, state %d\n",
sc->sc_state);
return AE_ERROR;
}
} else if (cv_timedwait(&sc->sc_cv, &sc->sc_mtx, EC_CMD_TIMEOUT * hz)) {
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
aprint_error_dev(dv,
"command takes over %d sec...\n", EC_CMD_TIMEOUT);
return AE_ERROR;
}
done:
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
return AE_OK;
}
static ACPI_STATUS
acpiec_space_handler(uint32_t func, ACPI_PHYSICAL_ADDRESS paddr,
uint32_t width, ACPI_INTEGER *value, void *arg, void *region_arg)
{
device_t dv;
ACPI_STATUS rv;
uint8_t addr, *buf;
unsigned int i;
if (paddr > 0xff || width % 8 != 0 ||
value == NULL || arg == NULL || paddr + width / 8 > 0x100)
return AE_BAD_PARAMETER;
addr = paddr;
dv = arg;
buf = (uint8_t *)value;
rv = AE_OK;
switch (func) {
case ACPI_READ:
for (i = 0; i < width; i += 8, ++addr, ++buf) {
rv = acpiec_read(dv, addr, buf);
if (rv != AE_OK)
break;
}
break;
case ACPI_WRITE:
for (i = 0; i < width; i += 8, ++addr, ++buf) {
rv = acpiec_write(dv, addr, *buf);
if (rv != AE_OK)
break;
}
break;
default:
aprint_error("%s: invalid Address Space function called: %x\n",
device_xname(dv), (unsigned int)func);
return AE_BAD_PARAMETER;
}
return rv;
}
static void
acpiec_gpe_query(void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
uint8_t reg;
char qxx[5];
ACPI_STATUS rv;
int i;
loop:
mutex_enter(&sc->sc_mtx);
if (sc->sc_got_sci == false)
cv_wait(&sc->sc_cv_sci, &sc->sc_mtx);
mutex_exit(&sc->sc_mtx);
acpiec_lock(dv);
mutex_enter(&sc->sc_mtx);
/* The Query command can always be issued, so be defensive here. */
sc->sc_got_sci = false;
sc->sc_state = EC_STATE_QUERY;
for (i = 0; i < EC_POLL_TIMEOUT; ++i) {
acpiec_gpe_state_machine(dv);
if (sc->sc_state == EC_STATE_FREE)
goto done;
delay(1);
}
cv_wait(&sc->sc_cv, &sc->sc_mtx);
done:
reg = sc->sc_cur_val;
mutex_exit(&sc->sc_mtx);
acpiec_unlock(dv);
if (reg == 0)
goto loop; /* Spurious query result */
/*
* Evaluate _Qxx to respond to the controller.
*/
snprintf(qxx, sizeof(qxx), "_Q%02X", (unsigned int)reg);
rv = AcpiEvaluateObject(sc->sc_ech, qxx, NULL, NULL);
if (rv != AE_OK && rv != AE_NOT_FOUND) {
aprint_error_dev(dv, "GPE query method %s failed: %s",
qxx, AcpiFormatException(rv));
}
goto loop;
}
static void
acpiec_gpe_state_machine(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
uint8_t reg;
reg = acpiec_read_status(sc);
if (reg & EC_STATUS_SCI)
sc->sc_got_sci = true;
switch (sc->sc_state) {
case EC_STATE_QUERY:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_QUERY);
sc->sc_state = EC_STATE_QUERY_VAL;
break;
case EC_STATE_QUERY_VAL:
if ((reg & EC_STATUS_OBF) == 0)
break; /* Nothing of interest here. */
sc->sc_cur_val = acpiec_read_data(sc);
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
break;
case EC_STATE_READ:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_READ);
sc->sc_state = EC_STATE_READ_ADDR;
break;
case EC_STATE_READ_ADDR:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_data(sc, sc->sc_cur_addr);
sc->sc_state = EC_STATE_READ_VAL;
break;
case EC_STATE_READ_VAL:
if ((reg & EC_STATUS_OBF) == 0)
break; /* Nothing of interest here. */
sc->sc_cur_val = acpiec_read_data(sc);
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
break;
case EC_STATE_WRITE:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_command(sc, EC_COMMAND_WRITE);
sc->sc_state = EC_STATE_WRITE_ADDR;
break;
case EC_STATE_WRITE_ADDR:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
acpiec_write_data(sc, sc->sc_cur_addr);
sc->sc_state = EC_STATE_WRITE_VAL;
break;
case EC_STATE_WRITE_VAL:
if ((reg & EC_STATUS_IBF) != 0)
break; /* Nothing of interest here. */
sc->sc_state = EC_STATE_FREE;
cv_signal(&sc->sc_cv);
acpiec_write_data(sc, sc->sc_cur_val);
break;
case EC_STATE_FREE:
if (sc->sc_got_sci)
cv_signal(&sc->sc_cv_sci);
break;
default:
panic("invalid state");
}
if (sc->sc_state != EC_STATE_FREE)
callout_schedule(&sc->sc_pseudo_intr, 1);
}
static void
acpiec_callout(void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
mutex_enter(&sc->sc_mtx);
acpiec_gpe_state_machine(dv);
mutex_exit(&sc->sc_mtx);
}
static uint32_t
acpiec_gpe_handler(ACPI_HANDLE hdl, uint32_t gpebit, void *arg)
{
device_t dv = arg;
struct acpiec_softc *sc = device_private(dv);
mutex_enter(&sc->sc_mtx);
acpiec_gpe_state_machine(dv);
mutex_exit(&sc->sc_mtx);
return ACPI_INTERRUPT_HANDLED | ACPI_REENABLE_GPE;
}
ACPI_STATUS
acpiec_bus_read(device_t dv, u_int addr, ACPI_INTEGER *val, int width)
{
return acpiec_space_handler(ACPI_READ, addr, width * 8, val, dv, NULL);
}
ACPI_STATUS
acpiec_bus_write(device_t dv, u_int addr, ACPI_INTEGER val, int width)
{
return acpiec_space_handler(ACPI_WRITE, addr, width * 8, &val, dv,
NULL);
}
ACPI_HANDLE
acpiec_get_handle(device_t dv)
{
struct acpiec_softc *sc = device_private(dv);
return sc->sc_ech;
}