a3ff3a3038
it was used on-disk, so that on-disk formats remain the same. Remove ufs_daddr_t and ufs_lbn_t for the time being.
732 lines
20 KiB
C
732 lines
20 KiB
C
/* $NetBSD: lfs_bio.c,v 1.56 2003/01/24 21:55:26 fvdl Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Konrad E. Schroder <perseant@hhhh.org>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)lfs_bio.c 8.10 (Berkeley) 6/10/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: lfs_bio.c,v 1.56 2003/01/24 21:55:26 fvdl Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <sys/malloc.h>
|
|
#include <ufs/lfs/lfs.h>
|
|
#include <ufs/lfs/lfs_extern.h>
|
|
|
|
/* Macros to clear/set/test flags. */
|
|
# define SET(t, f) (t) |= (f)
|
|
# define CLR(t, f) (t) &= ~(f)
|
|
# define ISSET(t, f) ((t) & (f))
|
|
|
|
/*
|
|
* LFS block write function.
|
|
*
|
|
* XXX
|
|
* No write cost accounting is done.
|
|
* This is almost certainly wrong for synchronous operations and NFS.
|
|
*/
|
|
int locked_queue_count = 0; /* XXX Count of locked-down buffers. */
|
|
long locked_queue_bytes = 0L; /* XXX Total size of locked buffers. */
|
|
int lfs_writing = 0; /* Set if already kicked off a writer
|
|
because of buffer space */
|
|
extern int lfs_dostats;
|
|
|
|
/*
|
|
* reserved number/bytes of locked buffers
|
|
*/
|
|
int locked_queue_rcount = 0;
|
|
long locked_queue_rbytes = 0L;
|
|
|
|
int lfs_fits_buf(struct lfs *, int, int);
|
|
int lfs_reservebuf(struct lfs *, struct vnode *vp, struct vnode *vp2,
|
|
int, int);
|
|
int lfs_reserveavail(struct lfs *, struct vnode *vp, struct vnode *vp2, int);
|
|
|
|
int
|
|
lfs_fits_buf(struct lfs *fs, int n, int bytes)
|
|
{
|
|
int count_fit =
|
|
(locked_queue_count + locked_queue_rcount + n < LFS_WAIT_BUFS);
|
|
int bytes_fit =
|
|
(locked_queue_bytes + locked_queue_rbytes + bytes < LFS_WAIT_BYTES);
|
|
|
|
#ifdef DEBUG_LFS
|
|
if (!count_fit) {
|
|
printf("lfs_fits_buf: no fit count: %d + %d + %d >= %d\n",
|
|
locked_queue_count, locked_queue_rcount,
|
|
n, LFS_WAIT_BUFS);
|
|
}
|
|
if (!bytes_fit) {
|
|
printf("lfs_fits_buf: no fit bytes: %ld + %ld + %d >= %d\n",
|
|
locked_queue_bytes, locked_queue_rbytes,
|
|
bytes, LFS_WAIT_BYTES);
|
|
}
|
|
#endif /* DEBUG_LFS */
|
|
|
|
return (count_fit && bytes_fit);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
lfs_reservebuf(struct lfs *fs, struct vnode *vp, struct vnode *vp2,
|
|
int n, int bytes)
|
|
{
|
|
KASSERT(locked_queue_rcount >= 0);
|
|
KASSERT(locked_queue_rbytes >= 0);
|
|
|
|
while (n > 0 && !lfs_fits_buf(fs, n, bytes)) {
|
|
int error;
|
|
|
|
++fs->lfs_writer;
|
|
lfs_flush(fs, 0);
|
|
if (--fs->lfs_writer == 0)
|
|
wakeup(&fs->lfs_dirops);
|
|
|
|
error = tsleep(&locked_queue_count, PCATCH | PUSER,
|
|
"lfsresbuf", hz * LFS_BUFWAIT);
|
|
if (error && error != EWOULDBLOCK)
|
|
return error;
|
|
}
|
|
|
|
locked_queue_rcount += n;
|
|
locked_queue_rbytes += bytes;
|
|
|
|
KASSERT(locked_queue_rcount >= 0);
|
|
KASSERT(locked_queue_rbytes >= 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to reserve some blocks, prior to performing a sensitive operation that
|
|
* requires the vnode lock to be honored. If there is not enough space, give
|
|
* up the vnode lock temporarily and wait for the space to become available.
|
|
*
|
|
* Called with vp locked. (Note nowever that if fsb < 0, vp is ignored.)
|
|
*
|
|
* XXX YAMT - it isn't safe to unlock vp here
|
|
* because the node might be modified while we sleep.
|
|
* (eg. cached states like i_offset might be stale,
|
|
* the vnode might be truncated, etc..)
|
|
* maybe we should have a way to restart the vnodeop (EVOPRESTART?)
|
|
* or rearrange vnodeop interface to leave vnode locking to file system
|
|
* specific code so that each file systems can have their own vnode locking and
|
|
* vnode re-using strategies.
|
|
*/
|
|
int
|
|
lfs_reserveavail(struct lfs *fs, struct vnode *vp, struct vnode *vp2, int fsb)
|
|
{
|
|
CLEANERINFO *cip;
|
|
struct buf *bp;
|
|
int error, slept;
|
|
|
|
slept = 0;
|
|
while (fsb > 0 && !lfs_fits(fs, fsb + fs->lfs_ravail)) {
|
|
#if 0
|
|
/*
|
|
* XXX ideally, we should unlock vnodes here
|
|
* because we might sleep very long time.
|
|
*/
|
|
VOP_UNLOCK(vp, 0);
|
|
if (vp2 != NULL) {
|
|
VOP_UNLOCK(vp2, 0);
|
|
}
|
|
#else
|
|
/*
|
|
* XXX since we'll sleep for cleaner with vnode lock holding,
|
|
* deadlock will occur if cleaner tries to lock the vnode.
|
|
* (eg. lfs_markv -> lfs_fastvget -> getnewvnode -> vclean)
|
|
*/
|
|
#endif
|
|
|
|
if (!slept) {
|
|
#ifdef DEBUG
|
|
printf("lfs_reserve: waiting for %ld (bfree = %d,"
|
|
" est_bfree = %d)\n",
|
|
fsb + fs->lfs_ravail, fs->lfs_bfree,
|
|
LFS_EST_BFREE(fs));
|
|
#endif
|
|
}
|
|
++slept;
|
|
|
|
/* Wake up the cleaner */
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
|
|
error = tsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_reserve",
|
|
0);
|
|
#if 0
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* XXX use lockstatus */
|
|
vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); /* XXX use lockstatus */
|
|
#endif
|
|
if (error)
|
|
return error;
|
|
}
|
|
#ifdef DEBUG
|
|
if (slept)
|
|
printf("lfs_reserve: woke up\n");
|
|
#endif
|
|
fs->lfs_ravail += fsb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
int lfs_rescount;
|
|
int lfs_rescountdirop;
|
|
#endif
|
|
|
|
int
|
|
lfs_reserve(struct lfs *fs, struct vnode *vp, struct vnode *vp2, int fsb)
|
|
{
|
|
int error;
|
|
int cantwait;
|
|
|
|
KASSERT(fsb < 0 || VOP_ISLOCKED(vp));
|
|
KASSERT(vp2 == NULL || fsb < 0 || VOP_ISLOCKED(vp2));
|
|
KASSERT(vp2 == NULL || !(VTOI(vp2)->i_flag & IN_ADIROP));
|
|
KASSERT(vp2 == NULL || vp2 != fs->lfs_unlockvp);
|
|
|
|
cantwait = (VTOI(vp)->i_flag & IN_ADIROP) || fs->lfs_unlockvp == vp;
|
|
#ifdef DIAGNOSTIC
|
|
if (cantwait) {
|
|
if (fsb > 0)
|
|
lfs_rescountdirop++;
|
|
else if (fsb < 0)
|
|
lfs_rescountdirop--;
|
|
if (lfs_rescountdirop < 0)
|
|
panic("lfs_rescountdirop");
|
|
}
|
|
else {
|
|
if (fsb > 0)
|
|
lfs_rescount++;
|
|
else if (fsb < 0)
|
|
lfs_rescount--;
|
|
if (lfs_rescount < 0)
|
|
panic("lfs_rescount");
|
|
}
|
|
#endif
|
|
if (cantwait)
|
|
return 0;
|
|
|
|
/*
|
|
* XXX
|
|
* vref vnodes here so that cleaner doesn't try to reuse them.
|
|
* (see XXX comment in lfs_reserveavail)
|
|
*/
|
|
lfs_vref(vp);
|
|
if (vp2 != NULL) {
|
|
lfs_vref(vp2);
|
|
}
|
|
|
|
error = lfs_reserveavail(fs, vp, vp2, fsb);
|
|
if (error)
|
|
goto done;
|
|
|
|
/*
|
|
* XXX just a guess. should be more precise.
|
|
*/
|
|
error = lfs_reservebuf(fs, vp, vp2,
|
|
fragstoblks(fs, fsb), fsbtob(fs, fsb));
|
|
if (error)
|
|
lfs_reserveavail(fs, vp, vp2, -fsb);
|
|
|
|
done:
|
|
lfs_vunref(vp);
|
|
if (vp2 != NULL) {
|
|
lfs_vunref(vp2);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
lfs_bwrite(void *v)
|
|
{
|
|
struct vop_bwrite_args /* {
|
|
struct buf *a_bp;
|
|
} */ *ap = v;
|
|
struct buf *bp = ap->a_bp;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (VTOI(bp->b_vp)->i_lfs->lfs_ronly == 0 && (bp->b_flags & B_ASYNC)) {
|
|
panic("bawrite LFS buffer");
|
|
}
|
|
#endif /* DIAGNOSTIC */
|
|
return lfs_bwrite_ext(bp,0);
|
|
}
|
|
|
|
/*
|
|
* Determine if there is enough room currently available to write fsb
|
|
* blocks. We need enough blocks for the new blocks, the current
|
|
* inode blocks (including potentially the ifile inode), a summary block,
|
|
* and the segment usage table, plus an ifile block.
|
|
*/
|
|
int
|
|
lfs_fits(struct lfs *fs, int fsb)
|
|
{
|
|
int needed;
|
|
|
|
needed = fsb + btofsb(fs, fs->lfs_sumsize) +
|
|
((howmany(fs->lfs_uinodes + 1, INOPB(fs)) + fs->lfs_segtabsz +
|
|
1) << (fs->lfs_blktodb - fs->lfs_fsbtodb));
|
|
|
|
if (needed >= fs->lfs_avail) {
|
|
#ifdef DEBUG
|
|
printf("lfs_fits: no fit: fsb = %d, uinodes = %d, "
|
|
"needed = %d, avail = %d\n",
|
|
fsb, fs->lfs_uinodes, needed, fs->lfs_avail);
|
|
#endif
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
lfs_availwait(struct lfs *fs, int fsb)
|
|
{
|
|
int error;
|
|
CLEANERINFO *cip;
|
|
struct buf *cbp;
|
|
|
|
while (!lfs_fits(fs, fsb)) {
|
|
/*
|
|
* Out of space, need cleaner to run.
|
|
* Update the cleaner info, then wake it up.
|
|
* Note the cleanerinfo block is on the ifile
|
|
* so it CANT_WAIT.
|
|
*/
|
|
LFS_CLEANERINFO(cip, fs, cbp);
|
|
LFS_SYNC_CLEANERINFO(cip, fs, cbp, 0);
|
|
|
|
printf("lfs_availwait: out of available space, "
|
|
"waiting on cleaner\n");
|
|
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
#ifdef DIAGNOSTIC
|
|
if (fs->lfs_seglock && fs->lfs_lockpid == curproc->p_pid)
|
|
panic("lfs_availwait: deadlock");
|
|
#endif
|
|
error = tsleep(&fs->lfs_avail, PCATCH | PUSER, "cleaner", 0);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
lfs_bwrite_ext(struct buf *bp, int flags)
|
|
{
|
|
struct lfs *fs;
|
|
struct inode *ip;
|
|
int fsb, s;
|
|
|
|
KASSERT(bp->b_flags & B_BUSY);
|
|
KASSERT(flags & BW_CLEAN || !(bp->b_flags & B_CALL));
|
|
|
|
/*
|
|
* Don't write *any* blocks if we're mounted read-only.
|
|
* In particular the cleaner can't write blocks either.
|
|
*/
|
|
if (VTOI(bp->b_vp)->i_lfs->lfs_ronly) {
|
|
bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
|
|
LFS_UNLOCK_BUF(bp);
|
|
if (bp->b_flags & B_CALL)
|
|
bp->b_flags &= ~B_BUSY;
|
|
else
|
|
brelse(bp);
|
|
return EROFS;
|
|
}
|
|
|
|
/*
|
|
* Set the delayed write flag and use reassignbuf to move the buffer
|
|
* from the clean list to the dirty one.
|
|
*
|
|
* Set the B_LOCKED flag and unlock the buffer, causing brelse to move
|
|
* the buffer onto the LOCKED free list. This is necessary, otherwise
|
|
* getnewbuf() would try to reclaim the buffers using bawrite, which
|
|
* isn't going to work.
|
|
*
|
|
* XXX we don't let meta-data writes run out of space because they can
|
|
* come from the segment writer. We need to make sure that there is
|
|
* enough space reserved so that there's room to write meta-data
|
|
* blocks.
|
|
*/
|
|
if (!(bp->b_flags & B_LOCKED)) {
|
|
fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
|
|
fsb = fragstofsb(fs, numfrags(fs, bp->b_bcount));
|
|
|
|
ip = VTOI(bp->b_vp);
|
|
if (flags & BW_CLEAN) {
|
|
LFS_SET_UINO(ip, IN_CLEANING);
|
|
} else {
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
if (bp->b_lblkno >= 0)
|
|
LFS_SET_UINO(ip, IN_UPDATE);
|
|
}
|
|
fs->lfs_avail -= fsb;
|
|
bp->b_flags |= B_DELWRI;
|
|
|
|
LFS_LOCK_BUF(bp);
|
|
bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
|
|
s = splbio();
|
|
reassignbuf(bp, bp->b_vp);
|
|
splx(s);
|
|
}
|
|
|
|
if (bp->b_flags & B_CALL)
|
|
bp->b_flags &= ~B_BUSY;
|
|
else
|
|
brelse(bp);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
lfs_flush_fs(struct lfs *fs, int flags)
|
|
{
|
|
if (fs->lfs_ronly == 0 && fs->lfs_dirops == 0)
|
|
{
|
|
/* disallow dirops during flush */
|
|
fs->lfs_writer++;
|
|
|
|
/*
|
|
* We set the queue to 0 here because we
|
|
* are about to write all the dirty
|
|
* buffers we have. If more come in
|
|
* while we're writing the segment, they
|
|
* may not get written, so we want the
|
|
* count to reflect these new writes
|
|
* after the segwrite completes.
|
|
*/
|
|
if (lfs_dostats)
|
|
++lfs_stats.flush_invoked;
|
|
lfs_segwrite(fs->lfs_ivnode->v_mount, flags);
|
|
|
|
/* XXX KS - allow dirops again */
|
|
if (--fs->lfs_writer == 0)
|
|
wakeup(&fs->lfs_dirops);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XXX
|
|
* This routine flushes buffers out of the B_LOCKED queue when LFS has too
|
|
* many locked down. Eventually the pageout daemon will simply call LFS
|
|
* when pages need to be reclaimed. Note, we have one static count of locked
|
|
* buffers, so we can't have more than a single file system. To make this
|
|
* work for multiple file systems, put the count into the mount structure.
|
|
*/
|
|
void
|
|
lfs_flush(struct lfs *fs, int flags)
|
|
{
|
|
struct mount *mp, *nmp;
|
|
|
|
if (lfs_dostats)
|
|
++lfs_stats.write_exceeded;
|
|
if (lfs_writing && flags == 0) {/* XXX flags */
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_flush: not flushing because another flush is active\n");
|
|
#endif
|
|
return;
|
|
}
|
|
lfs_writing = 1;
|
|
|
|
simple_lock(&mountlist_slock);
|
|
for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
|
|
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
|
|
nmp = mp->mnt_list.cqe_next;
|
|
continue;
|
|
}
|
|
if (strncmp(&mp->mnt_stat.f_fstypename[0], MOUNT_LFS, MFSNAMELEN) == 0)
|
|
lfs_flush_fs(((struct ufsmount *)mp->mnt_data)->ufsmount_u.lfs, flags);
|
|
simple_lock(&mountlist_slock);
|
|
nmp = mp->mnt_list.cqe_next;
|
|
vfs_unbusy(mp);
|
|
}
|
|
simple_unlock(&mountlist_slock);
|
|
|
|
LFS_DEBUG_COUNTLOCKED("flush");
|
|
|
|
lfs_writing = 0;
|
|
}
|
|
|
|
#define INOCOUNT(fs) howmany((fs)->lfs_uinodes, INOPB(fs))
|
|
#define INOBYTES(fs) ((fs)->lfs_uinodes * DINODE_SIZE)
|
|
|
|
int
|
|
lfs_check(struct vnode *vp, daddr_t blkno, int flags)
|
|
{
|
|
int error;
|
|
struct lfs *fs;
|
|
struct inode *ip;
|
|
extern int lfs_dirvcount;
|
|
|
|
error = 0;
|
|
ip = VTOI(vp);
|
|
|
|
/* If out of buffers, wait on writer */
|
|
/* XXX KS - if it's the Ifile, we're probably the cleaner! */
|
|
if (ip->i_number == LFS_IFILE_INUM)
|
|
return 0;
|
|
/* If we're being called from inside a dirop, don't sleep */
|
|
if (ip->i_flag & IN_ADIROP)
|
|
return 0;
|
|
|
|
fs = ip->i_lfs;
|
|
|
|
/*
|
|
* If we would flush below, but dirops are active, sleep.
|
|
* Note that a dirop cannot ever reach this code!
|
|
*/
|
|
while (fs->lfs_dirops > 0 &&
|
|
(locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
|
|
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
|
|
lfs_dirvcount > LFS_MAXDIROP || fs->lfs_diropwait > 0))
|
|
{
|
|
++fs->lfs_diropwait;
|
|
tsleep(&fs->lfs_writer, PRIBIO+1, "bufdirop", 0);
|
|
--fs->lfs_diropwait;
|
|
}
|
|
|
|
if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
|
|
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
|
|
lfs_dirvcount > LFS_MAXDIROP || fs->lfs_diropwait > 0)
|
|
{
|
|
++fs->lfs_writer;
|
|
lfs_flush(fs, flags);
|
|
if (--fs->lfs_writer == 0)
|
|
wakeup(&fs->lfs_dirops);
|
|
}
|
|
|
|
while (locked_queue_count + INOCOUNT(fs) > LFS_WAIT_BUFS
|
|
|| locked_queue_bytes + INOBYTES(fs) > LFS_WAIT_BYTES)
|
|
{
|
|
if (lfs_dostats)
|
|
++lfs_stats.wait_exceeded;
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_check: waiting: count=%d, bytes=%ld\n",
|
|
locked_queue_count, locked_queue_bytes);
|
|
#endif
|
|
error = tsleep(&locked_queue_count, PCATCH | PUSER,
|
|
"buffers", hz * LFS_BUFWAIT);
|
|
if (error != EWOULDBLOCK)
|
|
break;
|
|
/*
|
|
* lfs_flush might not flush all the buffers, if some of the
|
|
* inodes were locked or if most of them were Ifile blocks
|
|
* and we weren't asked to checkpoint. Try flushing again
|
|
* to keep us from blocking indefinitely.
|
|
*/
|
|
if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
|
|
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES)
|
|
{
|
|
++fs->lfs_writer;
|
|
lfs_flush(fs, flags | SEGM_CKP);
|
|
if (--fs->lfs_writer == 0)
|
|
wakeup(&fs->lfs_dirops);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new buffer header.
|
|
*/
|
|
#ifdef MALLOCLOG
|
|
# define DOMALLOC(S, T, F) _malloc((S), (T), (F), file, line)
|
|
struct buf *
|
|
lfs_newbuf_malloclog(struct lfs *fs, struct vnode *vp, daddr_t daddr, size_t size, char *file, int line)
|
|
#else
|
|
# define DOMALLOC(S, T, F) malloc((S), (T), (F))
|
|
struct buf *
|
|
lfs_newbuf(struct lfs *fs, struct vnode *vp, daddr_t daddr, size_t size)
|
|
#endif
|
|
{
|
|
struct buf *bp;
|
|
size_t nbytes;
|
|
int s;
|
|
|
|
nbytes = roundup(size, fsbtob(fs, 1));
|
|
|
|
bp = DOMALLOC(sizeof(struct buf), M_SEGMENT, M_WAITOK);
|
|
bzero(bp, sizeof(struct buf));
|
|
if (nbytes) {
|
|
bp->b_data = DOMALLOC(nbytes, M_SEGMENT, M_WAITOK);
|
|
bzero(bp->b_data, nbytes);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (vp == NULL)
|
|
panic("vp is NULL in lfs_newbuf");
|
|
if (bp == NULL)
|
|
panic("bp is NULL after malloc in lfs_newbuf");
|
|
#endif
|
|
s = splbio();
|
|
bgetvp(vp, bp);
|
|
splx(s);
|
|
|
|
bp->b_saveaddr = (caddr_t)fs;
|
|
bp->b_bufsize = size;
|
|
bp->b_bcount = size;
|
|
bp->b_lblkno = daddr;
|
|
bp->b_blkno = daddr;
|
|
bp->b_error = 0;
|
|
bp->b_resid = 0;
|
|
bp->b_iodone = lfs_callback;
|
|
bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
|
|
|
|
return (bp);
|
|
}
|
|
|
|
#ifdef MALLOCLOG
|
|
# define DOFREE(A, T) _free((A), (T), file, line)
|
|
void
|
|
lfs_freebuf_malloclog(struct buf *bp, char *file, int line)
|
|
#else
|
|
# define DOFREE(A, T) free((A), (T))
|
|
void
|
|
lfs_freebuf(struct buf *bp)
|
|
#endif
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
if (bp->b_vp)
|
|
brelvp(bp);
|
|
splx(s);
|
|
if (!(bp->b_flags & B_INVAL)) { /* B_INVAL indicates a "fake" buffer */
|
|
DOFREE(bp->b_data, M_SEGMENT);
|
|
bp->b_data = NULL;
|
|
}
|
|
DOFREE(bp, M_SEGMENT);
|
|
}
|
|
|
|
/*
|
|
* Definitions for the buffer free lists.
|
|
*/
|
|
#define BQUEUES 4 /* number of free buffer queues */
|
|
|
|
#define BQ_LOCKED 0 /* super-blocks &c */
|
|
#define BQ_LRU 1 /* lru, useful buffers */
|
|
#define BQ_AGE 2 /* rubbish */
|
|
#define BQ_EMPTY 3 /* buffer headers with no memory */
|
|
|
|
extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
|
|
|
|
/*
|
|
* Return a count of buffers on the "locked" queue.
|
|
* Don't count malloced buffers, since they don't detract from the total.
|
|
*/
|
|
void
|
|
lfs_countlocked(int *count, long *bytes, char *msg)
|
|
{
|
|
struct buf *bp;
|
|
int n = 0;
|
|
long int size = 0L;
|
|
|
|
for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
|
|
bp = bp->b_freelist.tqe_next) {
|
|
if (bp->b_flags & B_CALL) /* Malloced buffer */
|
|
continue;
|
|
n++;
|
|
size += bp->b_bufsize;
|
|
#ifdef DEBUG_LOCKED_LIST
|
|
if (n > nbuf)
|
|
panic("lfs_countlocked: this can't happen: more"
|
|
" buffers locked than exist");
|
|
#endif
|
|
}
|
|
#ifdef DEBUG_LOCKED_LIST
|
|
/* Theoretically this function never really does anything */
|
|
if (n != *count)
|
|
printf("lfs_countlocked: %s: adjusted buf count from %d to %d\n",
|
|
msg, *count, n);
|
|
if (size != *bytes)
|
|
printf("lfs_countlocked: %s: adjusted byte count from %ld to %ld\n",
|
|
msg, *bytes, size);
|
|
#endif
|
|
*count = n;
|
|
*bytes = size;
|
|
return;
|
|
}
|