NetBSD/sys/dev/ic/rtw.c

4332 lines
108 KiB
C

/* $NetBSD: rtw.c,v 1.135 2020/01/29 15:06:12 thorpej Exp $ */
/*-
* Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights
* reserved.
*
* Programmed for NetBSD by David Young.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David
* Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
* Device driver for the Realtek RTL8180 802.11 MAC/BBP.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.135 2020/01/29 15:06:12 thorpej Exp $");
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/sockio.h>
#include <machine/endian.h>
#include <sys/bus.h>
#include <sys/intr.h> /* splnet */
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net/bpf.h>
#include <dev/ic/rtwreg.h>
#include <dev/ic/rtwvar.h>
#include <dev/ic/rtwphyio.h>
#include <dev/ic/rtwphy.h>
#include <dev/ic/smc93cx6var.h>
static int rtw_rfprog_fallback = 0;
static int rtw_host_rfio = 0;
#ifdef RTW_DEBUG
int rtw_debug = 0;
static int rtw_rxbufs_limit = RTW_RXQLEN;
#endif /* RTW_DEBUG */
#define NEXT_ATTACH_STATE(sc, state) do { \
DPRINTF(sc, RTW_DEBUG_ATTACH, \
("%s: attach state %s\n", __func__, #state)); \
sc->sc_attach_state = state; \
} while (0)
int rtw_dwelltime = 200; /* milliseconds */
static struct ieee80211_cipher rtw_cipher_wep;
static void rtw_disable_interrupts(struct rtw_regs *);
static void rtw_enable_interrupts(struct rtw_softc *);
static int rtw_init(struct ifnet *);
static void rtw_softintr(void *);
static void rtw_start(struct ifnet *);
static void rtw_reset_oactive(struct rtw_softc *);
static struct mbuf *rtw_beacon_alloc(struct rtw_softc *,
struct ieee80211_node *);
static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *);
static void rtw_io_enable(struct rtw_softc *, uint8_t, int);
static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *,
const uint8_t[IEEE80211_ADDR_LEN]);
static void rtw_key_update_end(struct ieee80211com *);
static void rtw_key_update_begin(struct ieee80211com *);
static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int);
static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int);
static void rtw_led_attach(struct rtw_led_state *, void *);
static void rtw_led_detach(struct rtw_led_state *);
static void rtw_led_init(struct rtw_regs *);
static void rtw_led_slowblink(void *);
static void rtw_led_fastblink(void *);
static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int);
static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO);
static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO);
#ifdef RTW_DEBUG
static void rtw_dump_rings(struct rtw_softc *sc);
static void rtw_print_txdesc(struct rtw_softc *, const char *,
struct rtw_txsoft *, struct rtw_txdesc_blk *, int);
static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO);
static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO);
#endif /* RTW_DEBUG */
#ifdef RTW_DIAG
static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln);
#endif /* RTW_DIAG */
/*
* Setup sysctl(3) MIB, hw.rtw.*
*
* TBD condition CTLFLAG_PERMANENT on being a module or not
*/
SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup")
{
int rc;
const struct sysctlnode *cnode, *rnode;
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw",
"Realtek RTL818x 802.11 controls",
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#ifdef RTW_DEBUG
/* control debugging printfs */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable RTL818x debugging output"),
rtw_sysctl_verify_debug, 0, &rtw_debug, 0,
CTL_CREATE, CTL_EOL)) != 0)
goto err;
/* Limit rx buffers, for simulating resource exhaustion. */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"rxbufs_limit",
SYSCTL_DESCR("Set rx buffers limit"),
rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0,
CTL_CREATE, CTL_EOL)) != 0)
goto err;
#endif /* RTW_DEBUG */
/* set fallback RF programming method */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"rfprog_fallback",
SYSCTL_DESCR("Set fallback RF programming method"),
rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0,
CTL_CREATE, CTL_EOL)) != 0)
goto err;
/* force host to control RF I/O bus */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"),
rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0,
CTL_CREATE, CTL_EOL)) != 0)
goto err;
return;
err:
printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
static int
rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int*)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (t < lower || t > upper)
return (EINVAL);
*(int*)rnode->sysctl_data = t;
return (0);
}
static int
rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS)
{
return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0,
__SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK));
}
static int
rtw_sysctl_verify_rfio(SYSCTLFN_ARGS)
{
return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1);
}
#ifdef RTW_DEBUG
static int
rtw_sysctl_verify_debug(SYSCTLFN_ARGS)
{
return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
0, RTW_DEBUG_MAX);
}
static int
rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS)
{
return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
0, RTW_RXQLEN);
}
static void
rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where)
{
#define PRINTREG32(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
("%s: reg[ " #reg " / %03x ] = %08x\n", \
dvname, reg, RTW_READ(regs, reg)))
#define PRINTREG16(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
("%s: reg[ " #reg " / %03x ] = %04x\n", \
dvname, reg, RTW_READ16(regs, reg)))
#define PRINTREG8(sc, reg) \
RTW_DPRINTF(RTW_DEBUG_REGDUMP, \
("%s: reg[ " #reg " / %03x ] = %02x\n", \
dvname, reg, RTW_READ8(regs, reg)))
RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where));
PRINTREG32(regs, RTW_IDR0);
PRINTREG32(regs, RTW_IDR1);
PRINTREG32(regs, RTW_MAR0);
PRINTREG32(regs, RTW_MAR1);
PRINTREG32(regs, RTW_TSFTRL);
PRINTREG32(regs, RTW_TSFTRH);
PRINTREG32(regs, RTW_TLPDA);
PRINTREG32(regs, RTW_TNPDA);
PRINTREG32(regs, RTW_THPDA);
PRINTREG32(regs, RTW_TCR);
PRINTREG32(regs, RTW_RCR);
PRINTREG32(regs, RTW_TINT);
PRINTREG32(regs, RTW_TBDA);
PRINTREG32(regs, RTW_ANAPARM);
PRINTREG32(regs, RTW_BB);
PRINTREG32(regs, RTW_PHYCFG);
PRINTREG32(regs, RTW_WAKEUP0L);
PRINTREG32(regs, RTW_WAKEUP0H);
PRINTREG32(regs, RTW_WAKEUP1L);
PRINTREG32(regs, RTW_WAKEUP1H);
PRINTREG32(regs, RTW_WAKEUP2LL);
PRINTREG32(regs, RTW_WAKEUP2LH);
PRINTREG32(regs, RTW_WAKEUP2HL);
PRINTREG32(regs, RTW_WAKEUP2HH);
PRINTREG32(regs, RTW_WAKEUP3LL);
PRINTREG32(regs, RTW_WAKEUP3LH);
PRINTREG32(regs, RTW_WAKEUP3HL);
PRINTREG32(regs, RTW_WAKEUP3HH);
PRINTREG32(regs, RTW_WAKEUP4LL);
PRINTREG32(regs, RTW_WAKEUP4LH);
PRINTREG32(regs, RTW_WAKEUP4HL);
PRINTREG32(regs, RTW_WAKEUP4HH);
PRINTREG32(regs, RTW_DK0);
PRINTREG32(regs, RTW_DK1);
PRINTREG32(regs, RTW_DK2);
PRINTREG32(regs, RTW_DK3);
PRINTREG32(regs, RTW_RETRYCTR);
PRINTREG32(regs, RTW_RDSAR);
PRINTREG32(regs, RTW_FER);
PRINTREG32(regs, RTW_FEMR);
PRINTREG32(regs, RTW_FPSR);
PRINTREG32(regs, RTW_FFER);
/* 16-bit registers */
PRINTREG16(regs, RTW_BRSR);
PRINTREG16(regs, RTW_IMR);
PRINTREG16(regs, RTW_ISR);
PRINTREG16(regs, RTW_BCNITV);
PRINTREG16(regs, RTW_ATIMWND);
PRINTREG16(regs, RTW_BINTRITV);
PRINTREG16(regs, RTW_ATIMTRITV);
PRINTREG16(regs, RTW_CRC16ERR);
PRINTREG16(regs, RTW_CRC0);
PRINTREG16(regs, RTW_CRC1);
PRINTREG16(regs, RTW_CRC2);
PRINTREG16(regs, RTW_CRC3);
PRINTREG16(regs, RTW_CRC4);
PRINTREG16(regs, RTW_CWR);
/* 8-bit registers */
PRINTREG8(regs, RTW_CR);
PRINTREG8(regs, RTW_9346CR);
PRINTREG8(regs, RTW_CONFIG0);
PRINTREG8(regs, RTW_CONFIG1);
PRINTREG8(regs, RTW_CONFIG2);
PRINTREG8(regs, RTW_MSR);
PRINTREG8(regs, RTW_CONFIG3);
PRINTREG8(regs, RTW_CONFIG4);
PRINTREG8(regs, RTW_TESTR);
PRINTREG8(regs, RTW_PSR);
PRINTREG8(regs, RTW_SCR);
PRINTREG8(regs, RTW_PHYDELAY);
PRINTREG8(regs, RTW_CRCOUNT);
PRINTREG8(regs, RTW_PHYADDR);
PRINTREG8(regs, RTW_PHYDATAW);
PRINTREG8(regs, RTW_PHYDATAR);
PRINTREG8(regs, RTW_CONFIG5);
PRINTREG8(regs, RTW_TPPOLL);
PRINTREG16(regs, RTW_BSSID16);
PRINTREG32(regs, RTW_BSSID32);
#undef PRINTREG32
#undef PRINTREG16
#undef PRINTREG8
}
#endif /* RTW_DEBUG */
void
rtw_continuous_tx_enable(struct rtw_softc *sc, int enable)
{
struct rtw_regs *regs = &sc->sc_regs;
uint32_t tcr;
tcr = RTW_READ(regs, RTW_TCR);
tcr &= ~RTW_TCR_LBK_MASK;
if (enable)
tcr |= RTW_TCR_LBK_CONT;
else
tcr |= RTW_TCR_LBK_NORMAL;
RTW_WRITE(regs, RTW_TCR, tcr);
RTW_SYNC(regs, RTW_TCR, RTW_TCR);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
rtw_txdac_enable(sc, !enable);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */
rtw_set_access(regs, RTW_ACCESS_NONE);
}
#ifdef RTW_DEBUG
static const char *
rtw_access_string(enum rtw_access access)
{
switch (access) {
case RTW_ACCESS_NONE:
return "none";
case RTW_ACCESS_CONFIG:
return "config";
case RTW_ACCESS_ANAPARM:
return "anaparm";
default:
return "unknown";
}
}
#endif /* RTW_DEBUG */
static void
rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess)
{
KASSERT(/* naccess >= RTW_ACCESS_NONE && */
naccess <= RTW_ACCESS_ANAPARM);
KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */
regs->r_access <= RTW_ACCESS_ANAPARM);
if (naccess == regs->r_access)
return;
switch (naccess) {
case RTW_ACCESS_NONE:
switch (regs->r_access) {
case RTW_ACCESS_ANAPARM:
rtw_anaparm_enable(regs, 0);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
rtw_config0123_enable(regs, 0);
/*FALLTHROUGH*/
case RTW_ACCESS_NONE:
break;
}
break;
case RTW_ACCESS_CONFIG:
switch (regs->r_access) {
case RTW_ACCESS_NONE:
rtw_config0123_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
break;
case RTW_ACCESS_ANAPARM:
rtw_anaparm_enable(regs, 0);
break;
}
break;
case RTW_ACCESS_ANAPARM:
switch (regs->r_access) {
case RTW_ACCESS_NONE:
rtw_config0123_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_CONFIG:
rtw_anaparm_enable(regs, 1);
/*FALLTHROUGH*/
case RTW_ACCESS_ANAPARM:
break;
}
break;
}
}
void
rtw_set_access(struct rtw_regs *regs, enum rtw_access access)
{
rtw_set_access1(regs, access);
RTW_DPRINTF(RTW_DEBUG_ACCESS,
("%s: access %s -> %s\n", __func__,
rtw_access_string(regs->r_access),
rtw_access_string(access)));
regs->r_access = access;
}
/*
* Enable registers, switch register banks.
*/
void
rtw_config0123_enable(struct rtw_regs *regs, int enable)
{
uint8_t ecr;
ecr = RTW_READ8(regs, RTW_9346CR);
ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK);
if (enable)
ecr |= RTW_9346CR_EEM_CONFIG;
else {
RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3));
ecr |= RTW_9346CR_EEM_NORMAL;
}
RTW_WRITE8(regs, RTW_9346CR, ecr);
RTW_SYNC(regs, RTW_9346CR, RTW_9346CR);
}
/* requires rtw_config0123_enable(, 1) */
void
rtw_anaparm_enable(struct rtw_regs *regs, int enable)
{
uint8_t cfg3;
cfg3 = RTW_READ8(regs, RTW_CONFIG3);
cfg3 |= RTW_CONFIG3_CLKRUNEN;
if (enable)
cfg3 |= RTW_CONFIG3_PARMEN;
else
cfg3 &= ~RTW_CONFIG3_PARMEN;
RTW_WRITE8(regs, RTW_CONFIG3, cfg3);
RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3);
}
/* requires rtw_anaparm_enable(, 1) */
void
rtw_txdac_enable(struct rtw_softc *sc, int enable)
{
uint32_t anaparm;
struct rtw_regs *regs = &sc->sc_regs;
anaparm = RTW_READ(regs, RTW_ANAPARM);
if (enable)
anaparm &= ~RTW_ANAPARM_TXDACOFF;
else
anaparm |= RTW_ANAPARM_TXDACOFF;
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static inline int
rtw_chip_reset1(struct rtw_regs *regs, device_t dev)
{
uint8_t cr;
int i;
RTW_WRITE8(regs, RTW_CR, RTW_CR_RST);
RTW_WBR(regs, RTW_CR, RTW_CR);
for (i = 0; i < 1000; i++) {
if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) {
RTW_DPRINTF(RTW_DEBUG_RESET,
("%s: reset in %dus\n", device_xname(dev), i));
return 0;
}
RTW_RBR(regs, RTW_CR, RTW_CR);
DELAY(10); /* 10us */
}
aprint_error_dev(dev, "reset failed\n");
return ETIMEDOUT;
}
static inline int
rtw_chip_reset(struct rtw_regs *regs, device_t dev)
{
uint32_t tcr;
/* from Linux driver */
tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 |
__SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK);
RTW_WRITE(regs, RTW_TCR, tcr);
RTW_WBW(regs, RTW_CR, RTW_TCR);
return rtw_chip_reset1(regs, dev);
}
static int
rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
{
struct ieee80211_key keycopy;
RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__));
keycopy = *k;
keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT;
return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen);
}
static int
rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
{
struct rtw_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__,
k->wk_keyix));
KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
if (k->wk_keylen != 0 &&
k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP)
sc->sc_flags &= ~RTW_F_DK_VALID;
return 1;
}
static int
rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct rtw_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix));
KASSERT(k->wk_keyix < IEEE80211_WEP_NKID);
sc->sc_flags &= ~RTW_F_DK_VALID;
return 1;
}
static void
rtw_key_update_begin(struct ieee80211com *ic)
{
#ifdef RTW_DEBUG
struct ifnet *ifp = ic->ic_ifp;
struct rtw_softc *sc = ifp->if_softc;
#endif
DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
}
static void
rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel)
{
uint8_t tppoll;
tppoll = RTW_READ8(regs, RTW_TPPOLL);
tppoll &= ~RTW_TPPOLL_SALL;
tppoll |= ringsel & RTW_TPPOLL_ALL;
RTW_WRITE8(regs, RTW_TPPOLL, tppoll);
RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL);
}
static void
rtw_key_update_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rtw_softc *sc = ifp->if_softc;
DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__));
if ((sc->sc_flags & RTW_F_DK_VALID) != 0 ||
!device_is_active(sc->sc_dev))
return;
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE,
(ifp->if_flags & IFF_RUNNING) != 0);
}
static bool
rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k)
{
if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
return false;
return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) ||
((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13);
}
static void
rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey)
{
uint8_t psr, scr;
int i, keylen = 0;
struct rtw_regs *regs;
union rtw_keys *rk;
regs = &sc->sc_regs;
rk = &sc->sc_keys;
(void)memset(rk, 0, sizeof(*rk));
/* Temporarily use software crypto for all keys. */
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (wk[i].wk_cipher == &rtw_cipher_wep)
wk[i].wk_cipher = &ieee80211_cipher_wep;
}
rtw_set_access(regs, RTW_ACCESS_CONFIG);
psr = RTW_READ8(regs, RTW_PSR);
scr = RTW_READ8(regs, RTW_SCR);
scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON);
if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
goto out;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (!rtw_key_hwsupp(sc->sc_flags, &wk[i]))
continue;
if (i == txkey) {
keylen = wk[i].wk_keylen;
break;
}
keylen = MAX(keylen, wk[i].wk_keylen);
}
if (keylen == 5)
scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON;
else if (keylen == 13)
scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (wk[i].wk_keylen != keylen ||
wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP)
continue;
/* h/w will decrypt, s/w still strips headers */
wk[i].wk_cipher = &rtw_cipher_wep;
(void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen);
}
out:
RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN);
bus_space_write_region_stream_4(regs->r_bt, regs->r_bh,
RTW_DK0, rk->rk_words, __arraycount(rk->rk_words));
bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words),
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
RTW_DPRINTF(RTW_DEBUG_KEY,
("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr,
keylen));
RTW_WBW(regs, RTW_DK0, RTW_PSR);
RTW_WRITE8(regs, RTW_PSR, psr);
RTW_WBW(regs, RTW_PSR, RTW_SCR);
RTW_WRITE8(regs, RTW_SCR, scr);
RTW_SYNC(regs, RTW_SCR, RTW_SCR);
rtw_set_access(regs, RTW_ACCESS_NONE);
sc->sc_flags |= RTW_F_DK_VALID;
}
static inline int
rtw_recall_eeprom(struct rtw_regs *regs, device_t dev)
{
int i;
uint8_t ecr;
ecr = RTW_READ8(regs, RTW_9346CR);
ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD;
RTW_WRITE8(regs, RTW_9346CR, ecr);
RTW_WBR(regs, RTW_9346CR, RTW_9346CR);
/* wait 25ms for completion */
for (i = 0; i < 250; i++) {
ecr = RTW_READ8(regs, RTW_9346CR);
if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) {
RTW_DPRINTF(RTW_DEBUG_RESET,
("%s: recall EEPROM in %dus\n", device_xname(dev),
i * 100));
return 0;
}
RTW_RBR(regs, RTW_9346CR, RTW_9346CR);
DELAY(100);
}
aprint_error_dev(dev, "recall EEPROM failed\n");
return ETIMEDOUT;
}
static inline int
rtw_reset(struct rtw_softc *sc)
{
int rc;
uint8_t config1;
sc->sc_flags &= ~RTW_F_DK_VALID;
if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0)
return rc;
rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev);
config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1);
RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN);
/* TBD turn off maximum power saving? */
return 0;
}
static inline int
rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
u_int ndescs)
{
int i, rc = 0;
for (i = 0; i < ndescs; i++) {
rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES,
0, 0, &descs[i].ts_dmamap);
if (rc != 0)
break;
}
return rc;
}
static inline int
rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
u_int ndescs)
{
int i, rc = 0;
for (i = 0; i < ndescs; i++) {
rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
&descs[i].rs_dmamap);
if (rc != 0)
break;
}
return rc;
}
static inline void
rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs,
u_int ndescs)
{
int i;
for (i = 0; i < ndescs; i++) {
if (descs[i].rs_dmamap != NULL)
bus_dmamap_destroy(dmat, descs[i].rs_dmamap);
}
}
static inline void
rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs,
u_int ndescs)
{
int i;
for (i = 0; i < ndescs; i++) {
if (descs[i].ts_dmamap != NULL)
bus_dmamap_destroy(dmat, descs[i].ts_dmamap);
}
}
static inline void
rtw_srom_free(struct rtw_srom *sr)
{
sr->sr_size = 0;
if (sr->sr_content == NULL)
return;
free(sr->sr_content, M_DEVBUF);
sr->sr_content = NULL;
}
static void
rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags,
uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr)
{
*flags |= (RTW_F_DIGPHY | RTW_F_ANTDIV);
*cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT;
*rcr |= RTW_RCR_ENCS1;
*rfchipid = RTW_RFCHIPID_PHILIPS;
}
static int
rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold,
enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale,
device_t dev)
{
int i;
const char *rfname, *paname;
char scratch[sizeof("unknown 0xXX")];
uint16_t srom_version;
*flags &= ~(RTW_F_DIGPHY | RTW_F_DFLANTB | RTW_F_ANTDIV);
*rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2);
srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION);
if (srom_version <= 0x0101) {
aprint_error_dev(dev,
"SROM version %d.%d is not understood, "
"limping along with defaults\n",
srom_version >> 8, srom_version & 0xff);
rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr);
return 0;
} else {
aprint_verbose_dev(dev, "SROM version %d.%d\n",
srom_version >> 8, srom_version & 0xff);
}
uint8_t mac[IEEE80211_ADDR_LEN];
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i);
__USE(mac);
RTW_DPRINTF(RTW_DEBUG_ATTACH,
("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac)));
*cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR);
if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0)
*flags |= RTW_F_ANTDIV;
/* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems
* to be reversed.
*/
if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0)
*flags |= RTW_F_DIGPHY;
if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0)
*flags |= RTW_F_DFLANTB;
*rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM),
RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1);
if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0)
*flags |= RTW_C_RXWEP_104;
*flags |= RTW_C_RXWEP_40; /* XXX */
*rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID);
switch (*rfchipid) {
case RTW_RFCHIPID_GCT: /* this combo seen in the wild */
rfname = "GCT GRF5101";
paname = "Winspring WS9901";
break;
case RTW_RFCHIPID_MAXIM:
rfname = "Maxim MAX2820"; /* guess */
paname = "Maxim MAX2422"; /* guess */
break;
case RTW_RFCHIPID_INTERSIL:
rfname = "Intersil HFA3873"; /* guess */
paname = "Intersil <unknown>";
break;
case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */
rfname = "Philips SA2400A";
paname = "Philips SA2411";
break;
case RTW_RFCHIPID_RFMD:
/* this is the same front-end as an atw(4)! */
rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */
"LNA: RFMD RF2494, " /* mentioned in Realtek docs */
"SYN: Silicon Labs Si4126"; /* inferred from
* reference driver
*/
paname = "RFMD RF2189"; /* mentioned in Realtek docs */
break;
case RTW_RFCHIPID_RESERVED:
rfname = paname = "reserved";
break;
default:
snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid);
rfname = paname = scratch;
}
aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname);
switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) {
case RTW_CONFIG0_GL_USA:
case _RTW_CONFIG0_GL_USA:
*locale = RTW_LOCALE_USA;
break;
case RTW_CONFIG0_GL_EUROPE:
*locale = RTW_LOCALE_EUROPE;
break;
case RTW_CONFIG0_GL_JAPAN:
*locale = RTW_LOCALE_JAPAN;
break;
default:
*locale = RTW_LOCALE_UNKNOWN;
break;
}
return 0;
}
/* Returns -1 on failure. */
static int
rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr,
device_t dev)
{
int rc;
struct seeprom_descriptor sd;
uint8_t ecr;
(void)memset(&sd, 0, sizeof(sd));
ecr = RTW_READ8(regs, RTW_9346CR);
if ((flags & RTW_F_9356SROM) != 0) {
RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n",
device_xname(dev)));
sr->sr_size = 256;
sd.sd_chip = C56_66;
} else {
RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n",
device_xname(dev)));
sr->sr_size = 128;
sd.sd_chip = C46;
}
ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK |
RTW_9346CR_EEM_MASK | RTW_9346CR_EECS);
ecr |= RTW_9346CR_EEM_PROGRAM;
RTW_WRITE8(regs, RTW_9346CR, ecr);
sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_WAITOK | M_ZERO);
/* RTL8180 has a single 8-bit register for controlling the
* 93cx6 SROM. There is no "ready" bit. The RTL8180
* input/output sense is the reverse of read_seeprom's.
*/
sd.sd_tag = regs->r_bt;
sd.sd_bsh = regs->r_bh;
sd.sd_regsize = 1;
sd.sd_control_offset = RTW_9346CR;
sd.sd_status_offset = RTW_9346CR;
sd.sd_dataout_offset = RTW_9346CR;
sd.sd_CK = RTW_9346CR_EESK;
sd.sd_CS = RTW_9346CR_EECS;
sd.sd_DI = RTW_9346CR_EEDO;
sd.sd_DO = RTW_9346CR_EEDI;
/* make read_seeprom enter EEPROM read/write mode */
sd.sd_MS = ecr;
sd.sd_RDY = 0;
/* TBD bus barriers */
if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) {
aprint_error_dev(dev, "could not read SROM\n");
free(sr->sr_content, M_DEVBUF);
sr->sr_content = NULL;
return -1; /* XXX */
}
/* end EEPROM read/write mode */
RTW_WRITE8(regs, RTW_9346CR,
(ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL);
RTW_WBRW(regs, RTW_9346CR, RTW_9346CR);
if ((rc = rtw_recall_eeprom(regs, dev)) != 0)
return rc;
#ifdef RTW_DEBUG
{
int i;
RTW_DPRINTF(RTW_DEBUG_ATTACH,
("\n%s: serial ROM:\n\t", device_xname(dev)));
for (i = 0; i < sr->sr_size/2; i++) {
if (((i % 8) == 0) && (i != 0))
RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t"));
RTW_DPRINTF(RTW_DEBUG_ATTACH,
(" %04x", sr->sr_content[i]));
}
RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n"));
}
#endif /* RTW_DEBUG */
return 0;
}
static void
rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid,
device_t dev)
{
uint8_t cfg4;
const char *method;
cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK;
switch (rfchipid) {
default:
cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK);
method = "fallback";
break;
case RTW_RFCHIPID_INTERSIL:
cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL;
method = "Intersil";
break;
case RTW_RFCHIPID_PHILIPS:
cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS;
method = "Philips";
break;
case RTW_RFCHIPID_GCT: /* XXX a guess */
case RTW_RFCHIPID_RFMD:
cfg4 |= RTW_CONFIG4_RFTYPE_RFMD;
method = "RFMD";
break;
}
RTW_WRITE8(regs, RTW_CONFIG4, cfg4);
RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4);
#ifdef RTW_DEBUG
RTW_DPRINTF(RTW_DEBUG_INIT,
("%s: %s RF programming method, %#02x\n", device_xname(dev), method,
RTW_READ8(regs, RTW_CONFIG4)));
#else
__USE(method);
#endif
}
static inline void
rtw_init_channels(enum rtw_locale locale,
struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev)
{
int i;
const char *name = NULL;
#define ADD_CHANNEL(_chans, _chan) do { \
(*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \
(*_chans)[_chan].ic_freq = \
ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\
} while (0)
switch (locale) {
case RTW_LOCALE_USA: /* 1-11 */
name = "USA";
for (i = 1; i <= 11; i++)
ADD_CHANNEL(chans, i);
break;
case RTW_LOCALE_JAPAN: /* 1-14 */
name = "Japan";
ADD_CHANNEL(chans, 14);
for (i = 1; i <= 14; i++)
ADD_CHANNEL(chans, i);
break;
case RTW_LOCALE_EUROPE: /* 1-13 */
name = "Europe";
for (i = 1; i <= 13; i++)
ADD_CHANNEL(chans, i);
break;
default: /* 10-11 allowed by most countries */
name = "<unknown>";
for (i = 10; i <= 11; i++)
ADD_CHANNEL(chans, i);
break;
}
aprint_normal_dev(dev, "Geographic Location %s\n", name);
#undef ADD_CHANNEL
}
static inline void
rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale)
{
uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0);
switch (cfg0 & RTW_CONFIG0_GL_MASK) {
case RTW_CONFIG0_GL_USA:
case _RTW_CONFIG0_GL_USA:
*locale = RTW_LOCALE_USA;
break;
case RTW_CONFIG0_GL_JAPAN:
*locale = RTW_LOCALE_JAPAN;
break;
case RTW_CONFIG0_GL_EUROPE:
*locale = RTW_LOCALE_EUROPE;
break;
default:
*locale = RTW_LOCALE_UNKNOWN;
break;
}
}
static inline int
rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN],
device_t dev)
{
static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
uint32_t idr0 = RTW_READ(regs, RTW_IDR0),
idr1 = RTW_READ(regs, RTW_IDR1);
(*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7));
(*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15));
(*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23));
(*addr)[3] = __SHIFTOUT(idr0, __BITS(24, 31));
(*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7));
(*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15));
if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) {
aprint_error_dev(dev,
"could not get mac address, attach failed\n");
return ENXIO;
}
aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr));
return 0;
}
static uint8_t
rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic,
struct ieee80211_channel *chan)
{
u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1;
KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14);
return RTW_SR_GET(sr, idx);
}
static void
rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb)
{
int pri;
/* nfree: the number of free descriptors in each ring.
* The beacon ring is a special case: I do not let the
* driver use all of the descriptors on the beacon ring.
* The reasons are two-fold:
*
* (1) A BEACON descriptor's OWN bit is (apparently) not
* updated, so the driver cannot easily know if the descriptor
* belongs to it, or if it is racing the NIC. If the NIC
* does not OWN every descriptor, then the driver can safely
* update the descriptors when RTW_TBDA points at tdb_next.
*
* (2) I hope that the NIC will process more than one BEACON
* descriptor in a single beacon interval, since that will
* enable multiple-BSS support. Since the NIC does not
* clear the OWN bit, there is no natural place for it to
* stop processing BEACON desciptors. Maybe it will *not*
* stop processing them! I do not want to chance the NIC
* looping around and around a saturated beacon ring, so
* I will leave one descriptor unOWNed at all times.
*/
u_int nfree[RTW_NTXPRI] =
{RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI,
RTW_NTXDESCBCN - 1};
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tdb[pri].tdb_nfree = nfree[pri];
tdb[pri].tdb_next = 0;
}
}
static int
rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb)
{
int i;
struct rtw_txsoft *ts;
SIMPLEQ_INIT(&tsb->tsb_dirtyq);
SIMPLEQ_INIT(&tsb->tsb_freeq);
for (i = 0; i < tsb->tsb_ndesc; i++) {
ts = &tsb->tsb_desc[i];
ts->ts_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
}
tsb->tsb_tx_timer = 0;
return 0;
}
static void
rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb)
{
int pri;
for (pri = 0; pri < RTW_NTXPRI; pri++)
rtw_txsoft_blk_init(&tsb[pri]);
}
static inline void
rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops)
{
KASSERT(nsync <= rdb->rdb_ndesc);
/* sync to end of ring */
if (desc0 + nsync > rdb->rdb_ndesc) {
bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
offsetof(struct rtw_descs, hd_rx[desc0]),
sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops);
nsync -= (rdb->rdb_ndesc - desc0);
desc0 = 0;
}
KASSERT(desc0 < rdb->rdb_ndesc);
KASSERT(nsync <= rdb->rdb_ndesc);
KASSERT(desc0 + nsync <= rdb->rdb_ndesc);
/* sync what remains */
bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
offsetof(struct rtw_descs, hd_rx[desc0]),
sizeof(struct rtw_rxdesc) * nsync, ops);
}
static void
rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops)
{
/* sync to end of ring */
if (desc0 + nsync > tdb->tdb_ndesc) {
bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0),
ops);
nsync -= (tdb->tdb_ndesc - desc0);
desc0 = 0;
}
/* sync what remains */
bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap,
tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0,
sizeof(struct rtw_txdesc) * nsync, ops);
}
static void
rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb)
{
int pri;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
static void
rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc)
{
int i;
struct rtw_rxsoft *rs;
for (i = 0; i < RTW_RXQLEN; i++) {
rs = &desc[i];
if (rs->rs_mbuf == NULL)
continue;
bus_dmamap_sync(dmat, rs->rs_dmamap, 0,
rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(dmat, rs->rs_dmamap);
m_freem(rs->rs_mbuf);
rs->rs_mbuf = NULL;
}
}
static inline int
rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs)
{
int rc;
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOBUFS;
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return ENOBUFS;
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
if (rs->rs_mbuf != NULL)
bus_dmamap_unload(dmat, rs->rs_dmamap);
rs->rs_mbuf = NULL;
rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT);
if (rc != 0) {
m_freem(m);
return -1;
}
rs->rs_mbuf = m;
return 0;
}
static int
rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc,
int *ndesc, device_t dev)
{
int i, rc = 0;
struct rtw_rxsoft *rs;
for (i = 0; i < RTW_RXQLEN; i++) {
rs = &desc[i];
/* we're in rtw_init, so there should be no mbufs allocated */
KASSERT(rs->rs_mbuf == NULL);
#ifdef RTW_DEBUG
if (i == rtw_rxbufs_limit) {
aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i);
rc = ENOBUFS;
break;
}
#endif /* RTW_DEBUG */
if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) {
aprint_error_dev(dev,
"rtw_rxsoft_alloc failed, %d buffers, rc %d\n",
i, rc);
break;
}
}
*ndesc = i;
return rc;
}
static inline void
rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs,
int idx, int kick)
{
int is_last = (idx == rdb->rdb_ndesc - 1);
uint32_t ctl, octl, obuf;
struct rtw_rxdesc *rd = &rdb->rdb_desc[idx];
/* sync the mbuf before the descriptor */
bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0,
rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
obuf = rd->rd_buf;
rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr);
ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) |
RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS;
if (is_last)
ctl |= RTW_RXCTL_EOR;
octl = rd->rd_ctl;
rd->rd_ctl = htole32(ctl);
#ifdef RTW_DEBUG
RTW_DPRINTF(
kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK)
: RTW_DEBUG_RECV_DESC,
("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd,
le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl),
le32toh(rd->rd_ctl)));
#else
__USE(octl);
__USE(obuf);
#endif
/* sync the descriptor */
bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap,
RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick)
{
int i;
struct rtw_rxsoft *rs;
for (i = 0; i < rdb->rdb_ndesc; i++) {
rs = &ctl[i];
rtw_rxdesc_init(rdb, rs, i, kick);
}
}
static void
rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable)
{
struct rtw_regs *regs = &sc->sc_regs;
uint8_t cr;
RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__,
enable ? "enable" : "disable", flags));
cr = RTW_READ8(regs, RTW_CR);
/* XXX reference source does not enable MULRW */
/* enable PCI Read/Write Multiple */
cr |= RTW_CR_MULRW;
/* The receive engine will always start at RDSAR. */
if (enable && (flags & ~cr & RTW_CR_RE)) {
struct rtw_rxdesc_blk *rdb;
rdb = &sc->sc_rxdesc_blk;
rdb->rdb_next = 0;
}
RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */
if (enable)
cr |= flags;
else
cr &= ~flags;
RTW_WRITE8(regs, RTW_CR, cr);
RTW_SYNC(regs, RTW_CR, RTW_CR);
#ifdef RTW_DIAG
if (cr & RTW_CR_TE)
rtw_txring_fixup(sc, __func__, __LINE__);
#endif
if (cr & RTW_CR_TE) {
rtw_tx_kick(&sc->sc_regs,
RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ);
}
}
static void
rtw_intr_rx(struct rtw_softc *sc, uint16_t isr)
{
#define IS_BEACON(__fc0) \
((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON))
static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates:
* hardware -> net80211
*/
u_int next, nproc = 0;
int hwrate, len, rate, rssi, sq, s;
uint32_t hrssi, hstat, htsfth, htsftl;
struct rtw_rxdesc *rd;
struct rtw_rxsoft *rs;
struct rtw_rxdesc_blk *rdb;
struct mbuf *m;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct ieee80211_frame_min *wh;
rdb = &sc->sc_rxdesc_blk;
for (next = rdb->rdb_next; ; next = rdb->rdb_next) {
KASSERT(next < rdb->rdb_ndesc);
rtw_rxdescs_sync(rdb, next, 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rd = &rdb->rdb_desc[next];
rs = &sc->sc_rxsoft[next];
hstat = le32toh(rd->rd_stat);
hrssi = le32toh(rd->rd_rssi);
htsfth = le32toh(rd->rd_tsfth);
htsftl = le32toh(rd->rd_tsftl);
RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n",
__func__, next, hstat, hrssi, htsfth, htsftl));
++nproc;
/* still belongs to NIC */
if ((hstat & RTW_RXSTAT_OWN) != 0) {
rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD);
break;
}
/* ieee80211_input() might reset the receive engine
* (e.g. by indirectly calling rtw_tune()), so save
* the next pointer here and retrieve it again on
* the next round.
*/
rdb->rdb_next = (next + 1) % rdb->rdb_ndesc;
#ifdef RTW_DEBUG
#define PRINTSTAT(flag) do { \
if ((hstat & flag) != 0) { \
printf("%s" #flag, delim); \
delim = ","; \
} \
} while (0)
if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) {
const char *delim = "<";
printf("%s: ", device_xname(sc->sc_dev));
if ((hstat & RTW_RXSTAT_DEBUG) != 0) {
printf("status %08x", hstat);
PRINTSTAT(RTW_RXSTAT_SPLCP);
PRINTSTAT(RTW_RXSTAT_MAR);
PRINTSTAT(RTW_RXSTAT_PAR);
PRINTSTAT(RTW_RXSTAT_BAR);
PRINTSTAT(RTW_RXSTAT_PWRMGT);
PRINTSTAT(RTW_RXSTAT_CRC32);
PRINTSTAT(RTW_RXSTAT_ICV);
printf(">, ");
}
}
#endif /* RTW_DEBUG */
if ((hstat & RTW_RXSTAT_IOERROR) != 0) {
aprint_error_dev(sc->sc_dev,
"DMA error/FIFO overflow %08" PRIx32 ", "
"rx descriptor %d\n", hstat, next);
if_statinc(ifp, if_ierrors);
goto next;
}
len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK);
if (len < IEEE80211_MIN_LEN) {
sc->sc_ic.ic_stats.is_rx_tooshort++;
goto next;
}
if (len > rs->rs_mbuf->m_len) {
aprint_error_dev(sc->sc_dev,
"rx frame too long, %d > %d, %08" PRIx32
", desc %d\n",
len, rs->rs_mbuf->m_len, hstat, next);
if_statinc(ifp, if_ierrors);
goto next;
}
hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK);
if (hwrate >= __arraycount(ratetbl)) {
aprint_error_dev(sc->sc_dev,
"unknown rate #%" __PRIuBITS "\n",
__SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK));
if_statinc(ifp, if_ierrors);
goto next;
}
rate = ratetbl[hwrate];
#ifdef RTW_DEBUG
RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10,
(rate * 5) % 10, htsfth, htsftl));
#endif /* RTW_DEBUG */
/* if bad flags, skip descriptor */
if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) {
aprint_error_dev(sc->sc_dev, "too many rx segments, "
"next=%d, %08" PRIx32 "\n", next, hstat);
goto next;
}
bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0,
rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = rs->rs_mbuf;
/* if temporarily out of memory, re-use mbuf */
switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) {
case 0:
break;
case ENOBUFS:
aprint_error_dev(sc->sc_dev,
"rtw_rxsoft_alloc(, %d) failed, dropping packet\n",
next);
goto next;
default:
/* XXX shorten rx ring, instead? */
aprint_error_dev(sc->sc_dev,
"could not load DMA map\n");
}
sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ);
if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
rssi = UINT8_MAX - sq;
else {
rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI);
/* TBD find out each front-end's LNA gain in the
* front-end's units
*/
if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0)
rssi |= 0x80;
}
/* Note well: now we cannot recycle the rs_mbuf unless
* we restore its original length.
*/
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = len;
wh = mtod(m, struct ieee80211_frame_min *);
s = splnet();
if (!IS_BEACON(wh->i_fc[0]))
sc->sc_led_state.ls_event |= RTW_LED_S_RX;
sc->sc_tsfth = htsfth;
#ifdef RTW_DEBUG
if ((ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
(IFF_DEBUG | IFF_LINK2)) {
ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len,
rate, rssi);
}
#endif /* RTW_DEBUG */
if (sc->sc_radiobpf != NULL) {
struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
rr->rr_tsft =
htole64(((uint64_t)htsfth << 32) | htsftl);
rr->rr_flags = IEEE80211_RADIOTAP_F_FCS;
if ((hstat & RTW_RXSTAT_SPLCP) != 0)
rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
if ((hstat & RTW_RXSTAT_CRC32) != 0)
rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
rr->rr_rate = rate;
if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
rr->rr_u.u_philips.p_antsignal = rssi;
else {
rr->rr_u.u_other.o_antsignal = rssi;
rr->rr_u.u_other.o_barker_lock =
htole16(UINT8_MAX - sq);
}
bpf_mtap2(sc->sc_radiobpf,
rr, sizeof(sc->sc_rxtapu), m, BPF_D_IN);
}
if ((hstat & RTW_RXSTAT_RES) != 0) {
m_freem(m);
splx(s);
goto next;
}
/* CRC is included with the packet; trim it off. */
m_adj(m, -IEEE80211_CRC_LEN);
/* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */
ni = ieee80211_find_rxnode(&sc->sc_ic, wh);
ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl);
ieee80211_free_node(ni);
splx(s);
next:
rtw_rxdesc_init(rdb, rs, next, 0);
}
#undef IS_BEACON
}
static void
rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
struct rtw_txsoft *ts)
{
struct mbuf *m;
struct ieee80211_node *ni;
m = ts->ts_mbuf;
ni = ts->ts_ni;
KASSERT(m != NULL);
KASSERT(ni != NULL);
ts->ts_mbuf = NULL;
ts->ts_ni = NULL;
bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dmat, ts->ts_dmamap);
m_freem(m);
ieee80211_free_node(ni);
}
static void
rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic,
struct rtw_txsoft_blk *tsb)
{
struct rtw_txsoft *ts;
while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
rtw_txsoft_release(dmat, ic, ts);
SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
}
tsb->tsb_tx_timer = 0;
}
static inline void
rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb,
struct rtw_txsoft *ts, int ndesc)
{
uint32_t hstat;
int data_retry, rts_retry;
struct rtw_txdesc *tdn;
const char *condstring;
struct ifnet *ifp = &sc->sc_if;
rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts);
tdb->tdb_nfree += ndesc;
tdn = &tdb->tdb_desc[ts->ts_last];
hstat = le32toh(tdn->td_stat);
rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK);
data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK);
if (rts_retry + data_retry)
if_statadd(ifp, if_collisions, rts_retry + data_retry);
if ((hstat & RTW_TXSTAT_TOK) != 0)
condstring = "ok";
else {
if_statinc(ifp, if_oerrors);
condstring = "error";
}
#ifdef RTW_DEBUG
DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n",
device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last,
condstring, rts_retry, data_retry));
#else
__USE(condstring);
#endif
}
static void
rtw_reset_oactive(struct rtw_softc *sc)
{
short oflags;
int pri;
struct rtw_txsoft_blk *tsb;
struct rtw_txdesc_blk *tdb;
oflags = sc->sc_if.if_flags;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
tdb = &sc->sc_txdesc_blk[pri];
if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0)
sc->sc_if.if_flags &= ~IFF_OACTIVE;
}
if (oflags != sc->sc_if.if_flags) {
DPRINTF(sc, RTW_DEBUG_OACTIVE,
("%s: reset OACTIVE\n", __func__));
}
}
/* Collect transmitted packets. */
static bool
rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb,
struct rtw_txdesc_blk *tdb, int force)
{
bool collected = false;
int ndesc;
struct rtw_txsoft *ts;
#ifdef RTW_DEBUG
rtw_dump_rings(sc);
#endif
while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) {
/* If we're clearing a failed transmission, only clear
up to the last packet the hardware has processed. */
if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb))
break;
ndesc = 1 + ts->ts_last - ts->ts_first;
if (ts->ts_last < ts->ts_first)
ndesc += tdb->tdb_ndesc;
KASSERT(ndesc > 0);
rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (force) {
int next;
#ifdef RTW_DIAG
printf("%s: clearing packet, stats", __func__);
#endif
for (next = ts->ts_first; ;
next = RTW_NEXT_IDX(tdb, next)) {
#ifdef RTW_DIAG
printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next));
#endif
tdb->tdb_desc[next].td_stat &=
~htole32(RTW_TXSTAT_OWN);
if (next == ts->ts_last)
break;
}
rtw_txdescs_sync(tdb, ts->ts_first, ndesc,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef RTW_DIAG
next = RTW_NEXT_IDX(tdb, next);
printf(" -> end %u stat %" PRIx32 ", was %u\n", next,
le32toh(tdb->tdb_desc[next].td_stat),
rtw_txring_next(&sc->sc_regs, tdb));
#endif
} else if ((tdb->tdb_desc[ts->ts_last].td_stat &
htole32(RTW_TXSTAT_OWN)) != 0) {
rtw_txdescs_sync(tdb, ts->ts_last, 1,
BUS_DMASYNC_PREREAD);
break;
}
collected = true;
rtw_collect_txpkt(sc, tdb, ts, ndesc);
SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q);
SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q);
}
/* no more pending transmissions, cancel watchdog */
if (ts == NULL)
tsb->tsb_tx_timer = 0;
rtw_reset_oactive(sc);
return collected;
}
static void
rtw_intr_tx(struct rtw_softc *sc, uint16_t isr)
{
int pri, s;
struct rtw_txsoft_blk *tsb;
struct rtw_txdesc_blk *tdb;
struct ifnet *ifp = &sc->sc_if;
s = splnet();
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
tdb = &sc->sc_txdesc_blk[pri];
rtw_collect_txring(sc, tsb, tdb, 0);
}
if ((isr & RTW_INTR_TX) != 0)
rtw_start(ifp); /* in softint */
splx(s);
}
static void
rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr)
{
u_int next;
uint32_t tsfth, tsftl;
struct ieee80211com *ic;
struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN];
struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN];
struct mbuf *m;
int s;
s = splnet();
tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH);
tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
if ((isr & (RTW_INTR_TBDOK | RTW_INTR_TBDER)) != 0) {
next = rtw_txring_next(&sc->sc_regs, tdb);
#ifdef RTW_DEBUG
RTW_DPRINTF(RTW_DEBUG_BEACON,
("%s: beacon ring %sprocessed, isr = %#04" PRIx16
", next %u expected %u, %" PRIu64 "\n", __func__,
(next == tdb->tdb_next) ? "" : "un", isr, next,
tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl));
#else
__USE(next);
__USE(tsfth);
__USE(tsftl);
#endif
if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0)
rtw_collect_txring(sc, tsb, tdb, 1);
}
/* Start beacon transmission. */
if ((isr & RTW_INTR_BCNINT) != 0 &&
sc->sc_ic.ic_state == IEEE80211_S_RUN &&
SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) {
RTW_DPRINTF(RTW_DEBUG_BEACON,
("%s: beacon prep. time, isr = %#04" PRIx16
", %16" PRIu64 "\n", __func__, isr,
(uint64_t)tsfth << 32 | tsftl));
ic = &sc->sc_ic;
m = rtw_beacon_alloc(sc, ic->ic_bss);
if (m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate beacon\n");
splx(s);
return;
}
M_SETCTX(m, ieee80211_ref_node(ic->ic_bss));
IF_ENQUEUE(&sc->sc_beaconq, m);
rtw_start(&sc->sc_if); /* in softint */
}
splx(s);
}
static void
rtw_intr_atim(struct rtw_softc *sc)
{
/* TBD */
return;
}
#ifdef RTW_DEBUG
static void
rtw_dump_rings(struct rtw_softc *sc)
{
struct rtw_txdesc_blk *tdb;
struct rtw_rxdesc *rd;
struct rtw_rxdesc_blk *rdb;
int desc, pri;
if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0)
return;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tdb = &sc->sc_txdesc_blk[pri];
printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri,
tdb->tdb_ndesc, tdb->tdb_nfree);
for (desc = 0; desc < tdb->tdb_ndesc; desc++)
rtw_print_txdesc(sc, ".", NULL, tdb, desc);
}
rdb = &sc->sc_rxdesc_blk;
for (desc = 0; desc < RTW_RXQLEN; desc++) {
rd = &rdb->rdb_desc[desc];
printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x "
"rsvd1/tsfth %08x\n", __func__,
(desc >= rdb->rdb_ndesc) ? "UNUSED " : "",
le32toh(rd->rd_ctl), le32toh(rd->rd_rssi),
le32toh(rd->rd_buf), le32toh(rd->rd_tsfth));
}
}
#endif /* RTW_DEBUG */
static void
rtw_hwring_setup(struct rtw_softc *sc)
{
int pri;
struct rtw_regs *regs = &sc->sc_regs;
struct rtw_txdesc_blk *tdb;
sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA;
sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo);
sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA;
sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd);
sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA;
sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi);
sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA;
sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn);
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tdb = &sc->sc_txdesc_blk[pri];
RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base);
RTW_DPRINTF(RTW_DEBUG_XMIT_DESC,
("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__,
(uintptr_t)tdb->tdb_base));
}
RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx));
RTW_DPRINTF(RTW_DEBUG_RECV_DESC,
("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__,
(uintptr_t)RTW_RING_BASE(sc, hd_rx)));
RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR);
}
static int
rtw_swring_setup(struct rtw_softc *sc)
{
int rc;
struct rtw_rxdesc_blk *rdb;
rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]);
rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]);
rdb = &sc->sc_rxdesc_blk;
if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc,
sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) {
aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n");
return rc;
}
rdb = &sc->sc_rxdesc_blk;
rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1);
rdb->rdb_next = 0;
rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]);
return 0;
}
static void
rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb)
{
int i;
(void)memset(tdb->tdb_desc, 0,
sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
for (i = 0; i < tdb->tdb_ndesc; i++)
tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i));
}
static u_int
rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb)
{
return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) /
sizeof(struct rtw_txdesc);
}
#ifdef RTW_DIAG
static void
rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln)
{
int pri;
u_int next;
struct rtw_txdesc_blk *tdb;
struct rtw_regs *regs = &sc->sc_regs;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
int i;
tdb = &sc->sc_txdesc_blk[pri];
next = rtw_txring_next(regs, tdb);
if (tdb->tdb_next == next)
continue;
for (i = 0; next != tdb->tdb_next;
next = RTW_NEXT_IDX(tdb, next), i++) {
if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0)
break;
}
printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn,
ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD");
if (tdb->tdb_next == next)
continue;
tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1);
}
}
#endif
static void
rtw_txdescs_reset(struct rtw_softc *sc)
{
int pri;
struct rtw_txsoft_blk *tsb;
struct rtw_txdesc_blk *tdb;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
tdb = &sc->sc_txdesc_blk[pri];
rtw_collect_txring(sc, tsb, tdb, 1);
#ifdef RTW_DIAG
if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
printf("%s: packets left in ring %d\n", __func__, pri);
#endif
}
}
static void
rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr)
{
int s;
aprint_error_dev(sc->sc_dev, "tx fifo underflow\n");
RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16
"\n", device_xname(sc->sc_dev), isr));
s = splnet();
#ifdef RTW_DEBUG
rtw_dump_rings(sc);
#endif /* RTW_DEBUG */
/* Collect tx'd packets. XXX let's hope this stops the transmit
* timeouts.
*/
rtw_txdescs_reset(sc);
#ifdef RTW_DEBUG
rtw_dump_rings(sc);
#endif /* RTW_DEBUG */
splx(s);
}
static inline void
rtw_suspend_ticks(struct rtw_softc *sc)
{
RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
("%s: suspending ticks\n", device_xname(sc->sc_dev)));
sc->sc_do_tick = 0;
}
static inline void
rtw_resume_ticks(struct rtw_softc *sc)
{
uint32_t tsftrl0, tsftrl1, next_tint;
tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL);
next_tint = tsftrl1 + 1000000;
RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tint);
sc->sc_do_tick = 1;
#ifdef RTW_DEBUG
RTW_DPRINTF(RTW_DEBUG_TIMEOUT,
("%s: resume ticks delta %#08x now %#08x next %#08x\n",
device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tint));
#else
__USE(tsftrl0);
#endif
}
static void
rtw_intr_timeout(struct rtw_softc *sc)
{
int s;
s = splnet();
RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev)));
if (sc->sc_do_tick)
rtw_resume_ticks(sc);
splx(s);
}
int
rtw_intr(void *arg)
{
struct rtw_softc *sc = arg;
struct rtw_regs *regs = &sc->sc_regs;
uint16_t isr;
struct ifnet *ifp = &sc->sc_if;
/*
* If the interface isn't running, the interrupt couldn't
* possibly have come from us.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
device_xname(sc->sc_dev)));
return (0);
}
isr = RTW_READ16(regs, RTW_ISR);
if (isr == 0)
return (0);
/* Disable interrupts. */
RTW_WRITE16(regs, RTW_IMR, 0);
RTW_WBW(regs, RTW_IMR, RTW_IMR);
softint_schedule(sc->sc_soft_ih);
return (1);
}
static void
rtw_softintr(void *arg)
{
int i;
struct rtw_softc *sc = arg;
struct rtw_regs *regs = &sc->sc_regs;
uint16_t isr;
struct ifnet *ifp = &sc->sc_if;
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n",
device_xname(sc->sc_dev)));
return;
}
for (i = 0; i < 10; i++) {
isr = RTW_READ16(regs, RTW_ISR);
RTW_WRITE16(regs, RTW_ISR, isr);
RTW_WBR(regs, RTW_ISR, RTW_ISR);
if (sc->sc_intr_ack != NULL)
(*sc->sc_intr_ack)(regs);
if (isr == 0)
break;
#ifdef RTW_DEBUG
#define PRINTINTR(flag) do { \
if ((isr & flag) != 0) { \
printf("%s" #flag, delim); \
delim = ","; \
} \
} while (0)
if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) {
const char *delim = "<";
printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev),
isr);
PRINTINTR(RTW_INTR_TXFOVW);
PRINTINTR(RTW_INTR_TIMEOUT);
PRINTINTR(RTW_INTR_BCNINT);
PRINTINTR(RTW_INTR_ATIMINT);
PRINTINTR(RTW_INTR_TBDER);
PRINTINTR(RTW_INTR_TBDOK);
PRINTINTR(RTW_INTR_THPDER);
PRINTINTR(RTW_INTR_THPDOK);
PRINTINTR(RTW_INTR_TNPDER);
PRINTINTR(RTW_INTR_TNPDOK);
PRINTINTR(RTW_INTR_RXFOVW);
PRINTINTR(RTW_INTR_RDU);
PRINTINTR(RTW_INTR_TLPDER);
PRINTINTR(RTW_INTR_TLPDOK);
PRINTINTR(RTW_INTR_RER);
PRINTINTR(RTW_INTR_ROK);
printf(">\n");
}
#undef PRINTINTR
#endif /* RTW_DEBUG */
if ((isr & RTW_INTR_RX) != 0)
rtw_intr_rx(sc, isr);
if ((isr & RTW_INTR_TX) != 0)
rtw_intr_tx(sc, isr);
if ((isr & RTW_INTR_BEACON) != 0)
rtw_intr_beacon(sc, isr);
if ((isr & RTW_INTR_ATIMINT) != 0)
rtw_intr_atim(sc);
if ((isr & RTW_INTR_IOERROR) != 0)
rtw_intr_ioerror(sc, isr);
if ((isr & RTW_INTR_TIMEOUT) != 0)
rtw_intr_timeout(sc);
}
if (i == 10)
softint_schedule(sc->sc_soft_ih);
/* Re-enable interrupts */
RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
RTW_WBW(regs, RTW_IMR, RTW_IMR);
}
/* Must be called at splnet. */
static void
rtw_stop(struct ifnet *ifp, int disable)
{
int pri;
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct rtw_regs *regs = &sc->sc_regs;
rtw_suspend_ticks(sc);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
if (device_has_power(sc->sc_dev)) {
/* Disable interrupts. */
RTW_WRITE16(regs, RTW_IMR, 0);
RTW_WBW(regs, RTW_TPPOLL, RTW_IMR);
/* Stop the transmit and receive processes. First stop DMA,
* then disable receiver and transmitter.
*/
RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
}
for (pri = 0; pri < RTW_NTXPRI; pri++) {
rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic,
&sc->sc_txsoft_blk[pri]);
}
rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]);
/* Mark the interface as not running. Cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if (disable)
pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
return;
}
const char *
rtw_pwrstate_string(enum rtw_pwrstate power)
{
switch (power) {
case RTW_ON:
return "on";
case RTW_SLEEP:
return "sleep";
case RTW_OFF:
return "off";
default:
return "unknown";
}
}
/* XXX For Maxim, I am using the RFMD settings gleaned from the
* reference driver, plus a magic Maxim "ON" value that comes from
* the Realtek document "Windows PG for Rtl8180."
*/
static void
rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm));
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
/* XXX I am using the RFMD settings gleaned from the reference
* driver. They agree
*/
static void
rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm));
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static void
rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power,
int before_rf, int digphy)
{
uint32_t anaparm;
anaparm = RTW_READ(regs, RTW_ANAPARM);
anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF);
switch (power) {
case RTW_OFF:
if (before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_SLEEP:
if (!before_rf)
return;
anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP;
anaparm |= RTW_ANAPARM_TXDACOFF;
break;
case RTW_ON:
if (!before_rf)
return;
if (digphy) {
anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON;
/* XXX guess */
anaparm |= RTW_ANAPARM_TXDACOFF;
} else
anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON;
break;
}
RTW_DPRINTF(RTW_DEBUG_PWR,
("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n",
__func__, rtw_pwrstate_string(power),
(before_rf) ? "before" : "after", anaparm));
RTW_WRITE(regs, RTW_ANAPARM, anaparm);
RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM);
}
static void
rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf,
int digphy)
{
struct rtw_regs *regs = &sc->sc_regs;
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
(*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy);
rtw_set_access(regs, RTW_ACCESS_NONE);
return;
}
static int
rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power)
{
int rc;
RTW_DPRINTF(RTW_DEBUG_PWR,
("%s: %s->%s\n", __func__,
rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power)));
if (sc->sc_pwrstate == power)
return 0;
rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY);
rc = rtw_rf_pwrstate(sc->sc_rf, power);
rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY);
switch (power) {
case RTW_ON:
/* TBD set LEDs */
break;
case RTW_SLEEP:
/* TBD */
break;
case RTW_OFF:
/* TBD */
break;
}
if (rc == 0)
sc->sc_pwrstate = power;
else
sc->sc_pwrstate = RTW_OFF;
return rc;
}
static int
rtw_tune(struct rtw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap;
u_int chan;
int rc;
int antdiv = sc->sc_flags & RTW_F_ANTDIV,
dflantb = sc->sc_flags & RTW_F_DFLANTB;
chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
KASSERT(chan != IEEE80211_CHAN_ANY);
rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq);
rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags);
rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq);
rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags);
if (chan == sc->sc_cur_chan) {
RTW_DPRINTF(RTW_DEBUG_TUNE,
("%s: already tuned chan #%d\n", __func__, chan));
return 0;
}
rtw_suspend_ticks(sc);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
/* TBD wait for Tx to complete */
KASSERT(device_has_power(sc->sc_dev));
if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf,
rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr,
ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) {
/* XXX condition on powersaving */
aprint_error_dev(sc->sc_dev, "phy init failed\n");
}
sc->sc_cur_chan = chan;
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
rtw_resume_ticks(sc);
return rc;
}
bool
rtw_suspend(device_t self, const pmf_qual_t *qual)
{
int rc;
struct rtw_softc *sc = device_private(self);
sc->sc_flags &= ~RTW_F_DK_VALID;
if (!device_has_power(self))
return false;
/* turn off PHY */
if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) {
aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc);
return false;
}
rtw_disable_interrupts(&sc->sc_regs);
return true;
}
bool
rtw_resume(device_t self, const pmf_qual_t *qual)
{
struct rtw_softc *sc = device_private(self);
/* Power may have been removed, resetting WEP keys.
*/
sc->sc_flags &= ~RTW_F_DK_VALID;
rtw_enable_interrupts(sc);
return true;
}
static void
rtw_transmit_config(struct rtw_regs *regs)
{
uint32_t tcr;
tcr = RTW_READ(regs, RTW_TCR);
tcr |= RTW_TCR_CWMIN;
tcr &= ~RTW_TCR_MXDMA_MASK;
tcr |= RTW_TCR_MXDMA_256;
tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */
tcr &= ~RTW_TCR_LBK_MASK;
tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */
/* set short/long retry limits */
tcr &= ~(RTW_TCR_SRL_MASK | RTW_TCR_LRL_MASK);
tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK);
tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */
RTW_WRITE(regs, RTW_TCR, tcr);
RTW_SYNC(regs, RTW_TCR, RTW_TCR);
}
static void
rtw_disable_interrupts(struct rtw_regs *regs)
{
RTW_WRITE16(regs, RTW_IMR, 0);
RTW_WBW(regs, RTW_IMR, RTW_ISR);
RTW_WRITE16(regs, RTW_ISR, 0xffff);
RTW_SYNC(regs, RTW_IMR, RTW_ISR);
}
static void
rtw_enable_interrupts(struct rtw_softc *sc)
{
struct rtw_regs *regs = &sc->sc_regs;
sc->sc_inten = RTW_INTR_RX | RTW_INTR_TX | RTW_INTR_BEACON
| RTW_INTR_ATIMINT;
sc->sc_inten |= RTW_INTR_IOERROR | RTW_INTR_TIMEOUT;
RTW_WRITE16(regs, RTW_IMR, sc->sc_inten);
RTW_WBW(regs, RTW_IMR, RTW_ISR);
RTW_WRITE16(regs, RTW_ISR, 0xffff);
RTW_SYNC(regs, RTW_IMR, RTW_ISR);
/* XXX necessary? */
if (sc->sc_intr_ack != NULL)
(*sc->sc_intr_ack)(regs);
}
static void
rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode)
{
uint8_t msr;
/* I'm guessing that MSR is protected as CONFIG[0123] are. */
rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG);
msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK;
switch (opmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_IBSS:
msr |= RTW_MSR_NETYPE_ADHOC_OK;
break;
case IEEE80211_M_HOSTAP:
msr |= RTW_MSR_NETYPE_AP_OK;
break;
case IEEE80211_M_MONITOR:
/* XXX */
msr |= RTW_MSR_NETYPE_NOLINK;
break;
case IEEE80211_M_STA:
msr |= RTW_MSR_NETYPE_INFRA_OK;
break;
}
RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr);
rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE);
}
#define rtw_calchash(addr) \
(ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26)
static void
rtw_pktfilt_load(struct rtw_softc *sc)
{
struct rtw_regs *regs = &sc->sc_regs;
struct ieee80211com *ic = &sc->sc_ic;
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &sc->sc_if;
int hash;
uint32_t hashes[2] = { 0, 0 };
struct ether_multi *enm;
struct ether_multistep step;
/* XXX might be necessary to stop Rx/Tx engines while setting filters */
sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK;
sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK);
sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT;
/* MAC auto-reset PHY (huh?) */
sc->sc_rcr |= RTW_RCR_ENMARP;
/* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */
sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE;
switch (ic->ic_opmode) {
case IEEE80211_M_MONITOR:
sc->sc_rcr |= RTW_RCR_MONITOR;
break;
case IEEE80211_M_AHDEMO:
case IEEE80211_M_IBSS:
/* receive broadcasts in our BSS */
sc->sc_rcr |= RTW_RCR_ADD3;
break;
default:
break;
}
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Program the 64-bit multicast hash filter.
*/
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
/* XXX */
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
ifp->if_flags |= IFF_ALLMULTI;
break;
}
hash = rtw_calchash(enm->enm_addrlo);
hashes[hash >> 5] |= (1 << (hash & 0x1f));
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
/* XXX accept all broadcast if scanning */
if ((ifp->if_flags & IFF_BROADCAST) != 0)
sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */
sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */
sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */
ifp->if_flags |= IFF_ALLMULTI;
}
if (ifp->if_flags & IFF_ALLMULTI)
hashes[0] = hashes[1] = 0xffffffff;
if ((hashes[0] | hashes[1]) != 0)
sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */
RTW_WRITE(regs, RTW_MAR0, hashes[0]);
RTW_WRITE(regs, RTW_MAR1, hashes[1]);
RTW_WRITE(regs, RTW_RCR, sc->sc_rcr);
RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */
DPRINTF(sc, RTW_DEBUG_PKTFILT,
("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n",
device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0),
RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR)));
}
static struct mbuf *
rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m;
struct ieee80211_beacon_offsets boff;
if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) {
RTW_DPRINTF(RTW_DEBUG_BEACON,
("%s: m %p len %u\n", __func__, m, m->m_len));
}
return m;
}
/* Must be called at splnet. */
static int
rtw_init(struct ifnet *ifp)
{
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct rtw_regs *regs = &sc->sc_regs;
int rc;
if (device_is_active(sc->sc_dev)) {
/* Cancel pending I/O and reset. */
rtw_stop(ifp, 0);
} else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) ||
!device_is_active(sc->sc_dev))
return 0;
DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n",
__func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0)
goto out;
if ((rc = rtw_swring_setup(sc)) != 0)
goto out;
rtw_transmit_config(regs);
rtw_set_access(regs, RTW_ACCESS_CONFIG);
RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */
RTW_WBW(regs, RTW_MSR, RTW_BRSR);
/* long PLCP header, 1Mb/2Mb basic rate */
RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS);
RTW_SYNC(regs, RTW_BRSR, RTW_BRSR);
rtw_set_access(regs, RTW_ACCESS_ANAPARM);
rtw_set_access(regs, RTW_ACCESS_NONE);
/* XXX from reference sources */
RTW_WRITE(regs, RTW_FEMR, 0xffff);
RTW_SYNC(regs, RTW_FEMR, RTW_FEMR);
rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev);
RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay);
/* from Linux driver */
RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC);
RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT);
rtw_enable_interrupts(sc);
rtw_pktfilt_load(sc);
rtw_hwring_setup(sc);
rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
ifp->if_flags |= IFF_RUNNING;
ic->ic_state = IEEE80211_S_INIT;
RTW_WRITE16(regs, RTW_BSSID16, 0x0);
RTW_WRITE(regs, RTW_BSSID32, 0x0);
rtw_resume_ticks(sc);
rtw_set_nettype(sc, IEEE80211_M_MONITOR);
if (ic->ic_opmode == IEEE80211_M_MONITOR)
return ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
out:
aprint_error_dev(sc->sc_dev, "interface not running\n");
return rc;
}
static inline void
rtw_led_init(struct rtw_regs *regs)
{
uint8_t cfg0, cfg1;
rtw_set_access(regs, RTW_ACCESS_CONFIG);
cfg0 = RTW_READ8(regs, RTW_CONFIG0);
cfg0 |= RTW_CONFIG0_LEDGPOEN;
RTW_WRITE8(regs, RTW_CONFIG0, cfg0);
cfg1 = RTW_READ8(regs, RTW_CONFIG1);
RTW_DPRINTF(RTW_DEBUG_LED,
("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1));
cfg1 &= ~RTW_CONFIG1_LEDS_MASK;
cfg1 |= RTW_CONFIG1_LEDS_TX_RX;
RTW_WRITE8(regs, RTW_CONFIG1, cfg1);
rtw_set_access(regs, RTW_ACCESS_NONE);
}
/*
* IEEE80211_S_INIT: LED1 off
*
* IEEE80211_S_AUTH,
* IEEE80211_S_ASSOC,
* IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx
*
* IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx
*/
static void
rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate)
{
struct rtw_led_state *ls;
ls = &sc->sc_led_state;
switch (nstate) {
case IEEE80211_S_INIT:
rtw_led_init(&sc->sc_regs);
aprint_debug_dev(sc->sc_dev, "stopping blink\n");
callout_stop(&ls->ls_slow_ch);
callout_stop(&ls->ls_fast_ch);
ls->ls_slowblink = 0;
ls->ls_actblink = 0;
ls->ls_default = 0;
break;
case IEEE80211_S_SCAN:
aprint_debug_dev(sc->sc_dev, "scheduling blink\n");
callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
/*FALLTHROUGH*/
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
ls->ls_default = RTW_LED1;
ls->ls_actblink = RTW_LED1;
ls->ls_slowblink = RTW_LED1;
break;
case IEEE80211_S_RUN:
ls->ls_slowblink = 0;
break;
}
rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
}
static void
rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid)
{
uint8_t led_condition;
bus_size_t ofs;
uint8_t mask, newval, val;
led_condition = ls->ls_default;
if (ls->ls_state & RTW_LED_S_SLOW)
led_condition ^= ls->ls_slowblink;
if (ls->ls_state & (RTW_LED_S_RX | RTW_LED_S_TX))
led_condition ^= ls->ls_actblink;
RTW_DPRINTF(RTW_DEBUG_LED,
("%s: LED condition %" PRIx8 "\n", __func__, led_condition));
switch (hwverid) {
default:
case 'F':
ofs = RTW_PSR;
newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1;
if (led_condition & RTW_LED0)
newval &= ~RTW_PSR_LEDGPO0;
if (led_condition & RTW_LED1)
newval &= ~RTW_PSR_LEDGPO1;
break;
case 'D':
ofs = RTW_9346CR;
mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS;
newval = RTW_9346CR_EEM_PROGRAM;
if (led_condition & RTW_LED0)
newval |= RTW_9346CR_EEDI;
if (led_condition & RTW_LED1)
newval |= RTW_9346CR_EECS;
break;
}
val = RTW_READ8(regs, ofs);
RTW_DPRINTF(RTW_DEBUG_LED,
("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val,
(uintptr_t)ofs));
val &= ~mask;
val |= newval;
RTW_WRITE8(regs, ofs, val);
RTW_DPRINTF(RTW_DEBUG_LED,
("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val,
(uintptr_t)ofs));
RTW_SYNC(regs, ofs, ofs);
}
static void
rtw_led_fastblink(void *arg)
{
int ostate, s;
struct rtw_softc *sc = (struct rtw_softc *)arg;
struct rtw_led_state *ls = &sc->sc_led_state;
s = splnet();
ostate = ls->ls_state;
ls->ls_state ^= ls->ls_event;
if ((ls->ls_event & RTW_LED_S_TX) == 0)
ls->ls_state &= ~RTW_LED_S_TX;
if ((ls->ls_event & RTW_LED_S_RX) == 0)
ls->ls_state &= ~RTW_LED_S_RX;
ls->ls_event = 0;
if (ostate != ls->ls_state)
rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
splx(s);
aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n");
callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS);
}
static void
rtw_led_slowblink(void *arg)
{
int s;
struct rtw_softc *sc = (struct rtw_softc *)arg;
struct rtw_led_state *ls = &sc->sc_led_state;
s = splnet();
ls->ls_state ^= RTW_LED_S_SLOW;
rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid);
splx(s);
aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n");
callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS);
}
static void
rtw_led_detach(struct rtw_led_state *ls)
{
callout_destroy(&ls->ls_fast_ch);
callout_destroy(&ls->ls_slow_ch);
}
static void
rtw_led_attach(struct rtw_led_state *ls, void *arg)
{
callout_init(&ls->ls_fast_ch, 0);
callout_init(&ls->ls_slow_ch, 0);
callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg);
callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg);
}
static int
rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
int rc = 0, s;
struct rtw_softc *sc = ifp->if_softc;
s = splnet();
if (cmd == SIOCSIFFLAGS) {
if ((rc = ifioctl_common(ifp, cmd, data)) != 0)
;
else switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_UP:
rc = rtw_init(ifp);
RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
break;
case IFF_UP | IFF_RUNNING:
if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
rtw_pktfilt_load(sc);
RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
break;
case IFF_RUNNING:
RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__);
rtw_stop(ifp, 1);
break;
default:
break;
}
} else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET)
; /* nothing to do */
else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
/* reload packet filter if running */
if (ifp->if_flags & IFF_RUNNING)
rtw_pktfilt_load(sc);
rc = 0;
} else if ((ifp->if_flags & IFF_UP) != 0)
rc = rtw_init(ifp);
else
rc = 0;
splx(s);
return rc;
}
/* Select a transmit ring with at least one h/w and s/w descriptor free.
* Return 0 on success, -1 on failure.
*/
static inline int
rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp,
struct rtw_txdesc_blk **tdbp, int pri)
{
struct rtw_txsoft_blk *tsb;
struct rtw_txdesc_blk *tdb;
KASSERT(pri >= 0 && pri < RTW_NTXPRI);
tsb = &sc->sc_txsoft_blk[pri];
tdb = &sc->sc_txdesc_blk[pri];
if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) {
if (tsb->tsb_tx_timer == 0)
tsb->tsb_tx_timer = 5;
*tsbp = NULL;
*tdbp = NULL;
return -1;
}
*tsbp = tsb;
*tdbp = tdb;
return 0;
}
static inline struct mbuf *
rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri,
struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp,
struct ieee80211_node **nip, short *if_flagsp)
{
struct mbuf *m;
if (IF_IS_EMPTY(ifq))
return NULL;
if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
__func__, pri));
*if_flagsp |= IFF_OACTIVE;
sc->sc_if.if_timer = 1;
return NULL;
}
IF_DEQUEUE(ifq, m);
*nip = M_GETCTX(m, struct ieee80211_node *);
M_SETCTX(m, NULL);
KASSERT(*nip != NULL);
return m;
}
/* Point *mp at the next 802.11 frame to transmit. Point *tsbp
* at the driver's selection of transmit control block for the packet.
*/
static inline int
rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp,
struct rtw_txdesc_blk **tdbp, struct mbuf **mp,
struct ieee80211_node **nip)
{
int pri;
struct ether_header *eh;
struct mbuf *m0;
struct rtw_softc *sc;
short *if_flagsp;
*mp = NULL;
sc = (struct rtw_softc *)ifp->if_softc;
DPRINTF(sc, RTW_DEBUG_XMIT,
("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
if_flagsp = &ifp->if_flags;
if (sc->sc_ic.ic_state == IEEE80211_S_RUN &&
(*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp,
tdbp, nip, if_flagsp)) != NULL) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n",
__func__));
return 0;
}
if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp,
tdbp, nip, if_flagsp)) != NULL) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n",
__func__));
return 0;
}
if (sc->sc_ic.ic_state != IEEE80211_S_RUN) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__));
return 0;
}
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
__func__));
return 0;
}
pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD;
if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) {
DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n",
__func__, pri));
*if_flagsp |= IFF_OACTIVE;
sc->sc_if.if_timer = 1;
return 0;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n",
__func__));
return 0;
}
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__));
if_statinc(ifp, if_opackets);
bpf_mtap(ifp, m0, BPF_D_OUT);
eh = mtod(m0, struct ether_header *);
*nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost);
if (*nip == NULL) {
/* NB: ieee80211_find_txnode does stat+msg */
m_freem(m0);
return -1;
}
if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) {
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__));
if_statinc(ifp, if_oerrors);
return -1;
}
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
*mp = m0;
return 0;
}
static int
rtw_seg_too_short(bus_dmamap_t dmamap)
{
int i;
for (i = 0; i < dmamap->dm_nsegs; i++) {
if (dmamap->dm_segs[i].ds_len < 4)
return 1;
}
return 0;
}
/* TBD factor with atw_start */
static struct mbuf *
rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain,
u_int ndescfree, device_t dev)
{
int first, rc;
struct mbuf *m, *m0;
m0 = chain;
/*
* Load the DMA map. Copy and try (once) again if the packet
* didn't fit in the alloted number of segments.
*/
for (first = 1;
((rc = bus_dmamap_load_mbuf(dmat, dmam, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 ||
dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first;
first = 0) {
if (rc == 0) {
#ifdef RTW_DIAGxxx
if (rtw_seg_too_short(dmam)) {
printf("%s: short segment, mbuf lengths:", __func__);
for (m = m0; m; m = m->m_next)
printf(" %d", m->m_len);
printf("\n");
}
#endif
bus_dmamap_unload(dmat, dmam);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(dev, "unable to allocate Tx mbuf\n");
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
aprint_error_dev(dev,
"cannot allocate Tx cluster\n");
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
m_freem(m0);
m0 = m;
m = NULL;
}
if (rc != 0) {
aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc);
m_freem(m0);
return NULL;
} else if (rtw_seg_too_short(dmam)) {
aprint_error_dev(dev,
"cannot load Tx buffer, segment too short\n");
bus_dmamap_unload(dmat, dmam);
m_freem(m0);
return NULL;
} else if (dmam->dm_nsegs > ndescfree) {
aprint_error_dev(dev, "too many tx segments\n");
bus_dmamap_unload(dmat, dmam);
m_freem(m0);
return NULL;
}
return m0;
}
#ifdef RTW_DEBUG
static void
rtw_print_txdesc(struct rtw_softc *sc, const char *action,
struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc)
{
struct rtw_txdesc *td = &tdb->tdb_desc[desc];
DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x "
"buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n",
device_xname(sc->sc_dev), ts, action, desc,
le32toh(td->td_buf), le32toh(td->td_next),
le32toh(td->td_ctl0), le32toh(td->td_ctl1),
le32toh(td->td_len)));
}
#endif /* RTW_DEBUG */
static void
rtw_start(struct ifnet *ifp)
{
int desc, i, lastdesc, npkt, rate;
uint32_t proto_ctl0, ctl0, ctl1;
bus_dmamap_t dmamap;
struct ieee80211com *ic;
struct ieee80211_duration *d0;
struct ieee80211_frame_min *wh;
struct ieee80211_node *ni = NULL; /* XXX: GCC */
struct mbuf *m0;
struct rtw_softc *sc;
struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */
struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */
struct rtw_txsoft *ts;
struct rtw_txdesc *td;
struct ieee80211_key *k;
sc = (struct rtw_softc *)ifp->if_softc;
ic = &sc->sc_ic;
DPRINTF(sc, RTW_DEBUG_XMIT,
("%s: enter %s\n", device_xname(sc->sc_dev), __func__));
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
goto out;
/* XXX do real rate control */
proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0)
proto_ctl0 |= RTW_TXCTL0_SPLCP;
for (;;) {
if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1)
continue;
if (m0 == NULL)
break;
wh = mtod(m0, struct ieee80211_frame_min *);
if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 &&
(k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
m_freem(m0);
break;
} else
k = NULL;
ts = SIMPLEQ_FIRST(&tsb->tsb_freeq);
dmamap = ts->ts_dmamap;
m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0,
tdb->tdb_nfree, sc->sc_dev);
if (m0 == NULL || dmamap->dm_nsegs == 0) {
DPRINTF(sc, RTW_DEBUG_XMIT,
("%s: fail dmamap load\n", __func__));
goto post_dequeue_err;
}
/* Note well: rtw_dmamap_load_txbuf may have created
* a new chain, so we must find the header once
* more.
*/
wh = mtod(m0, struct ieee80211_frame_min *);
/* XXX do real rate control */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT)
rate = 2;
else
rate = MAX(2, ieee80211_get_rate(ni));
#ifdef RTW_DEBUG
if ((ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
(IFF_DEBUG | IFF_LINK2)) {
ieee80211_dump_pkt(mtod(m0, uint8_t *),
(dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len
: sizeof(wh),
rate, 0);
}
#endif /* RTW_DEBUG */
ctl0 = proto_ctl0 |
__SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK);
switch (rate) {
default:
case 2:
ctl0 |= RTW_TXCTL0_RATE_1MBPS;
break;
case 4:
ctl0 |= RTW_TXCTL0_RATE_2MBPS;
break;
case 11:
ctl0 |= RTW_TXCTL0_RATE_5MBPS;
break;
case 22:
ctl0 |= RTW_TXCTL0_RATE_11MBPS;
break;
}
/* XXX >= ? Compare after fragmentation? */
if (m0->m_pkthdr.len > ic->ic_rtsthreshold)
ctl0 |= RTW_TXCTL0_RTSEN;
/* XXX Sometimes writes a bogus keyid; h/w doesn't
* seem to care, since we don't activate h/w Tx
* encryption.
*/
if (k != NULL &&
k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) {
ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) &
RTW_TXCTL0_KEYID_MASK;
}
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN);
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_BEACON)
ctl0 |= RTW_TXCTL0_BEACON;
}
if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len,
ic->ic_flags, ic->ic_fragthreshold,
rate, &ts->ts_d0, &ts->ts_dn, &npkt,
(ifp->if_flags & (IFF_DEBUG | IFF_LINK2)) ==
(IFF_DEBUG | IFF_LINK2)) == -1) {
DPRINTF(sc, RTW_DEBUG_XMIT,
("%s: fail compute duration\n", __func__));
goto post_load_err;
}
d0 = &ts->ts_d0;
*(uint16_t*)wh->i_dur = htole16(d0->d_data_dur);
ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) |
__SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK);
if (d0->d_residue)
ctl1 |= RTW_TXCTL1_LENGEXT;
/* TBD fragmentation */
ts->ts_first = tdb->tdb_next;
rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
BUS_DMASYNC_PREWRITE);
KASSERT(ts->ts_first < tdb->tdb_ndesc);
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (sc->sc_radiobpf != NULL) {
struct rtw_tx_radiotap_header *rt = &sc->sc_txtap;
rt->rt_rate = rate;
bpf_mtap2(sc->sc_radiobpf, rt, sizeof(sc->sc_txtapu),
m0, BPF_D_OUT);
}
for (i = 0, lastdesc = desc = ts->ts_first;
i < dmamap->dm_nsegs;
i++, desc = RTW_NEXT_IDX(tdb, desc)) {
if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) {
DPRINTF(sc, RTW_DEBUG_XMIT_DESC,
("%s: seg too long\n", __func__));
goto post_load_err;
}
td = &tdb->tdb_desc[desc];
td->td_ctl0 = htole32(ctl0);
td->td_ctl1 = htole32(ctl1);
td->td_buf = htole32(dmamap->dm_segs[i].ds_addr);
td->td_len = htole32(dmamap->dm_segs[i].ds_len);
td->td_next = htole32(RTW_NEXT_DESC(tdb, desc));
if (i != 0)
td->td_ctl0 |= htole32(RTW_TXCTL0_OWN);
lastdesc = desc;
#ifdef RTW_DEBUG
rtw_print_txdesc(sc, "load", ts, tdb, desc);
#endif /* RTW_DEBUG */
}
KASSERT(desc < tdb->tdb_ndesc);
ts->ts_ni = ni;
KASSERT(ni != NULL);
ts->ts_mbuf = m0;
ts->ts_last = lastdesc;
tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS);
tdb->tdb_desc[ts->ts_first].td_ctl0 |=
htole32(RTW_TXCTL0_FS);
#ifdef RTW_DEBUG
rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first);
rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last);
#endif /* RTW_DEBUG */
tdb->tdb_nfree -= dmamap->dm_nsegs;
tdb->tdb_next = desc;
rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
tdb->tdb_desc[ts->ts_first].td_ctl0 |=
htole32(RTW_TXCTL0_OWN);
#ifdef RTW_DEBUG
rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first);
#endif /* RTW_DEBUG */
rtw_txdescs_sync(tdb, ts->ts_first, 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q);
SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q);
if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN])
sc->sc_led_state.ls_event |= RTW_LED_S_TX;
tsb->tsb_tx_timer = 5;
ifp->if_timer = 1;
rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll);
}
out:
DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__));
return;
post_load_err:
bus_dmamap_unload(sc->sc_dmat, dmamap);
m_freem(m0);
post_dequeue_err:
ieee80211_free_node(ni);
return;
}
static void
rtw_idle(struct rtw_regs *regs)
{
int active;
uint8_t tppoll;
/* request stop DMA; wait for packets to stop transmitting. */
RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL);
RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL);
for (active = 0; active < 300 &&
(tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0;
active++)
DELAY(10);
printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__,
active * 10, tppoll);
}
static void
rtw_watchdog(struct ifnet *ifp)
{
int pri, tx_timeouts = 0;
struct rtw_softc *sc;
struct rtw_txsoft_blk *tsb;
sc = ifp->if_softc;
ifp->if_timer = 0;
if (!device_is_active(sc->sc_dev))
return;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
if (tsb->tsb_tx_timer == 0)
continue;
else if (--tsb->tsb_tx_timer == 0) {
if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq))
continue;
else if (rtw_collect_txring(sc, tsb,
&sc->sc_txdesc_blk[pri], 0))
continue;
printf("%s: transmit timeout, priority %d\n",
ifp->if_xname, pri);
if_statinc(ifp, if_oerrors);
if (pri != RTW_TXPRIBCN)
tx_timeouts++;
} else
ifp->if_timer = 1;
}
if (tx_timeouts > 0) {
/* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr,
* reset s/w tx-ring pointers, and start transmission.
*
* TBD Stop/restart just the broken rings?
*/
rtw_idle(&sc->sc_regs);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0);
rtw_txdescs_reset(sc);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
rtw_start(ifp);
}
ieee80211_watchdog(&sc->sc_ic);
return;
}
static void
rtw_next_scan(void *arg)
{
struct ieee80211com *ic = arg;
int s;
/* don't call rtw_start w/o network interrupts blocked */
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
static void
rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0)
{
uint16_t bcnitv, bintritv, intval;
int i;
struct rtw_regs *regs = &sc->sc_regs;
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]);
RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32);
rtw_set_access(regs, RTW_ACCESS_CONFIG);
intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK));
bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK;
bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK);
RTW_WRITE16(regs, RTW_BCNITV, bcnitv);
/* interrupt host 1ms before the TBTT */
bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV;
bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV);
RTW_WRITE16(regs, RTW_BINTRITV, bintritv);
/* magic from Linux */
RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND));
RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV));
rtw_set_access(regs, RTW_ACCESS_NONE);
rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1);
}
/* Synchronize the hardware state with the software state. */
static int
rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
enum ieee80211_state ostate;
int error;
ostate = ic->ic_state;
aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
rtw_led_newstate(sc, nstate);
aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__);
if (nstate == IEEE80211_S_INIT) {
callout_stop(&sc->sc_scan_ch);
sc->sc_cur_chan = IEEE80211_CHAN_ANY;
return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
}
if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT)
rtw_pwrstate(sc, RTW_ON);
if ((error = rtw_tune(sc)) != 0)
return error;
switch (nstate) {
case IEEE80211_S_INIT:
panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
(void)memset(ic->ic_bss->ni_bssid, 0,
IEEE80211_ADDR_LEN);
rtw_set_nettype(sc, IEEE80211_M_MONITOR);
}
callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000,
rtw_next_scan, ic);
break;
case IEEE80211_S_RUN:
switch (ic->ic_opmode) {
case IEEE80211_M_HOSTAP:
case IEEE80211_M_IBSS:
rtw_set_nettype(sc, IEEE80211_M_MONITOR);
/*FALLTHROUGH*/
case IEEE80211_M_AHDEMO:
case IEEE80211_M_STA:
rtw_join_bss(sc, ic->ic_bss->ni_bssid,
ic->ic_bss->ni_intval);
break;
case IEEE80211_M_MONITOR:
break;
}
rtw_set_nettype(sc, ic->ic_opmode);
break;
case IEEE80211_S_ASSOC:
case IEEE80211_S_AUTH:
break;
}
if (nstate != IEEE80211_S_SCAN)
callout_stop(&sc->sc_scan_ch);
return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg);
}
/* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */
static uint64_t
rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp)
{
uint32_t tsftl, tsfth;
tsfth = RTW_READ(regs, RTW_TSFTRH);
tsftl = RTW_READ(regs, RTW_TSFTRL);
if (tsftl < rstamp) /* Compensate for rollover. */
tsfth--;
return ((uint64_t)tsfth << 32) | rstamp;
}
static void
rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
{
struct ifnet *ifp = ic->ic_ifp;
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
(*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
case IEEE80211_FC0_SUBTYPE_BEACON:
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_RUN &&
device_is_active(sc->sc_dev)) {
uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp);
if (le64toh(ni->ni_tstamp.tsf) >= tsf)
(void)ieee80211_ibss_merge(ni);
}
break;
default:
break;
}
return;
}
static struct ieee80211_node *
rtw_node_alloc(struct ieee80211_node_table *nt)
{
struct ifnet *ifp = nt->nt_ic->ic_ifp;
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt);
DPRINTF(sc, RTW_DEBUG_NODE,
("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
return ni;
}
static void
rtw_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc;
DPRINTF(sc, RTW_DEBUG_NODE,
("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
ether_sprintf(ni->ni_bssid)));
(*sc->sc_mtbl.mt_node_free)(ni);
}
static int
rtw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
(IFF_RUNNING | IFF_UP))
rtw_init(ifp); /* XXX lose error */
error = 0;
}
return error;
}
static void
rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct rtw_softc *sc = ifp->if_softc;
if (!device_is_active(sc->sc_dev)) {
imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
imr->ifm_status = 0;
return;
}
ieee80211_media_status(ifp, imr);
}
static inline void
rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc)
{
(void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ);
ifp->if_softc = softc;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_ioctl = rtw_ioctl;
ifp->if_start = rtw_start;
ifp->if_watchdog = rtw_watchdog;
ifp->if_init = rtw_init;
ifp->if_stop = rtw_stop;
}
static inline void
rtw_set80211props(struct ieee80211com *ic)
{
int nrate;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
nrate = 0;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
IEEE80211_RATE_BASIC | 2;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] =
IEEE80211_RATE_BASIC | 4;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
}
static inline void
rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic)
{
mtbl->mt_newstate = ic->ic_newstate;
ic->ic_newstate = rtw_newstate;
mtbl->mt_recv_mgmt = ic->ic_recv_mgmt;
ic->ic_recv_mgmt = rtw_recv_mgmt;
mtbl->mt_node_free = ic->ic_node_free;
ic->ic_node_free = rtw_node_free;
mtbl->mt_node_alloc = ic->ic_node_alloc;
ic->ic_node_alloc = rtw_node_alloc;
ic->ic_crypto.cs_key_delete = rtw_key_delete;
ic->ic_crypto.cs_key_set = rtw_key_set;
ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin;
ic->ic_crypto.cs_key_update_end = rtw_key_update_end;
}
static inline void
rtw_init_radiotap(struct rtw_softc *sc)
{
uint32_t present;
memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS)
present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT);
else
present = htole32(RTW_RX_RADIOTAP_PRESENT);
sc->sc_rxtap.rr_ihdr.it_present = present;
memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT);
}
static int
rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen)
{
SIMPLEQ_INIT(&tsb->tsb_dirtyq);
SIMPLEQ_INIT(&tsb->tsb_freeq);
tsb->tsb_ndesc = qlen;
tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF,
M_WAITOK);
return 0;
}
static void
rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc)
{
int pri;
struct rtw_txsoft_blk *tsb;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
free(tsb->tsb_desc, M_DEVBUF);
tsb->tsb_desc = NULL;
}
}
static int
rtw_txsoft_blk_setup_all(struct rtw_softc *sc)
{
int pri, rc = 0;
int qlen[RTW_NTXPRI] =
{RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN};
struct rtw_txsoft_blk *tsbs;
tsbs = sc->sc_txsoft_blk;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]);
if (rc != 0)
break;
}
tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ;
tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ;
tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ;
tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ;
return rc;
}
static void
rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc,
u_int ndesc, bus_addr_t ofs, bus_addr_t physbase)
{
tdb->tdb_ndesc = ndesc;
tdb->tdb_desc = desc;
tdb->tdb_physbase = physbase;
tdb->tdb_ofs = ofs;
(void)memset(tdb->tdb_desc, 0,
sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc);
rtw_txdesc_blk_init(tdb);
tdb->tdb_next = 0;
}
static void
rtw_txdesc_blk_setup_all(struct rtw_softc *sc)
{
rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO],
&sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO,
RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo));
rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD],
&sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD,
RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd));
rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI],
&sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI,
RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi));
rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN],
&sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN,
RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn));
}
static struct rtw_rf *
rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy)
{
rtw_rf_write_t rf_write;
struct rtw_rf *rf;
switch (rfchipid) {
default:
rf_write = rtw_rf_hostwrite;
break;
case RTW_RFCHIPID_INTERSIL:
case RTW_RFCHIPID_PHILIPS:
case RTW_RFCHIPID_GCT: /* XXX a guess */
case RTW_RFCHIPID_RFMD:
rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite;
break;
}
switch (rfchipid) {
case RTW_RFCHIPID_GCT:
rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0);
sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
break;
case RTW_RFCHIPID_MAXIM:
rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0);
sc->sc_pwrstate_cb = rtw_maxim_pwrstate;
break;
case RTW_RFCHIPID_PHILIPS:
rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy);
sc->sc_pwrstate_cb = rtw_philips_pwrstate;
break;
case RTW_RFCHIPID_RFMD:
/* XXX RFMD has no RF constructor */
sc->sc_pwrstate_cb = rtw_rfmd_pwrstate;
/*FALLTHROUGH*/
default:
return NULL;
}
rf->rf_continuous_tx_cb =
(rtw_continuous_tx_cb_t)rtw_continuous_tx_enable;
rf->rf_continuous_tx_arg = (void *)sc;
return rf;
}
/* Revision C and later use a different PHY delay setting than
* revisions A and B.
*/
static uint8_t
rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr)
{
#define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV)
#define REVC (REVAB | RTW_RCR_RXFTH_WHOLE)
uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY);
RTW_WRITE(regs, RTW_RCR, REVAB);
RTW_WBW(regs, RTW_RCR, RTW_RCR);
RTW_WRITE(regs, RTW_RCR, REVC);
RTW_WBR(regs, RTW_RCR, RTW_RCR);
if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC)
phydelay |= RTW_PHYDELAY_REVC_MAGIC;
RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */
RTW_SYNC(regs, RTW_RCR, RTW_RCR);
return phydelay;
#undef REVC
}
void
rtw_attach(struct rtw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
struct rtw_txsoft_blk *tsb;
int pri, rc;
pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
rtw_cipher_wep = ieee80211_cipher_wep;
rtw_cipher_wep.ic_decap = rtw_wep_decap;
NEXT_ATTACH_STATE(sc, DETACHED);
sc->sc_soft_ih = softint_establish(SOFTINT_NET, rtw_softintr, sc);
if (sc->sc_soft_ih == NULL) {
aprint_error_dev(sc->sc_dev, "could not establish softint\n");
goto err;
}
switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) {
case RTW_TCR_HWVERID_F:
sc->sc_hwverid = 'F';
break;
case RTW_TCR_HWVERID_D:
sc->sc_hwverid = 'D';
break;
default:
sc->sc_hwverid = '?';
break;
}
aprint_verbose_dev(sc->sc_dev, "hardware version %c\n",
sc->sc_hwverid);
rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs),
RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs,
0);
if (rc != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate hw descriptors, error %d\n", rc);
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC);
rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs,
sc->sc_desc_nsegs, sizeof(struct rtw_descs),
(void **)&sc->sc_descs, BUS_DMA_COHERENT);
if (rc != 0) {
aprint_error_dev(sc->sc_dev,
"could not map hw descriptors, error %d\n", rc);
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP);
rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1,
sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap);
if (rc != 0) {
aprint_error_dev(sc->sc_dev,
"could not create DMA map for hw descriptors, error %d\n",
rc);
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE);
sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat;
sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap;
for (pri = 0; pri < RTW_NTXPRI; pri++) {
sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat;
sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap;
}
rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs,
sizeof(struct rtw_descs), NULL, 0);
if (rc != 0) {
aprint_error_dev(sc->sc_dev,
"could not load DMA map for hw descriptors, error %d\n",
rc);
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD);
if (rtw_txsoft_blk_setup_all(sc) != 0)
goto err;
NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP);
rtw_txdesc_blk_setup_all(sc);
NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP);
sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0];
for (pri = 0; pri < RTW_NTXPRI; pri++) {
tsb = &sc->sc_txsoft_blk[pri];
if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat,
&tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not load DMA map for hw tx descriptors, "
"error %d\n", rc);
goto err;
}
}
NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE);
if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0],
RTW_RXQLEN)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not load DMA map for hw rx descriptors, error %d\n",
rc);
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE);
/* Reset the chip to a known state. */
if (rtw_reset(sc) != 0)
goto err;
NEXT_ATTACH_STATE(sc, FINISH_RESET);
sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR);
if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0)
sc->sc_flags |= RTW_F_9356SROM;
if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom,
sc->sc_dev) != 0)
goto err;
NEXT_ATTACH_STATE(sc, FINISH_READ_SROM);
if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr,
&sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale,
sc->sc_dev) != 0) {
aprint_error_dev(sc->sc_dev,
"attach failed, malformed serial ROM\n");
goto err;
}
aprint_verbose_dev(sc->sc_dev, "%s PHY\n",
((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog");
aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n",
sc->sc_csthr);
NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM);
sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid,
sc->sc_flags & RTW_F_DIGPHY);
if (sc->sc_rf == NULL) {
aprint_verbose_dev(sc->sc_dev,
"attach failed, could not attach RF\n");
goto err;
}
NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH);
sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr);
RTW_DPRINTF(RTW_DEBUG_ATTACH,
("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay));
if (sc->sc_locale == RTW_LOCALE_UNKNOWN)
rtw_identify_country(&sc->sc_regs, &sc->sc_locale);
rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev);
if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr,
sc->sc_dev) != 0)
goto err;
NEXT_ATTACH_STATE(sc, FINISH_ID_STA);
rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc);
IFQ_SET_READY(&ifp->if_snd);
sc->sc_ic.ic_ifp = ifp;
rtw_set80211props(&sc->sc_ic);
rtw_led_attach(&sc->sc_led_state, (void *)sc);
NEXT_ATTACH_STATE(sc, FINISH_LED_ATTACH);
/*
* Call MI attach routines.
*/
rc = if_initialize(ifp);
if (rc != 0) {
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", rc);
goto err;
}
ieee80211_ifattach(ic);
/* Use common softint-based if_input */
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic);
/* possibly we should fill in our own sc_send_prresp, since
* the RTL8180 is probably sending probe responses in ad hoc
* mode.
*/
/* complete initialization */
ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status);
callout_init(&sc->sc_scan_ch, 0);
rtw_init_radiotap(sc);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
NEXT_ATTACH_STATE(sc, FINISHED);
ieee80211_announce(ic);
return;
err:
rtw_detach(sc);
return;
}
int
rtw_detach(struct rtw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int pri, s;
s = splnet();
switch (sc->sc_attach_state) {
case FINISHED:
rtw_stop(ifp, 1);
pmf_device_deregister(sc->sc_dev);
callout_stop(&sc->sc_scan_ch);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
/*FALLTHROUGH*/
case FINISH_LED_ATTACH:
rtw_led_detach(&sc->sc_led_state);
/*FALLTHROUGH*/
case FINISH_ID_STA:
case FINISH_RF_ATTACH:
rtw_rf_destroy(sc->sc_rf);
sc->sc_rf = NULL;
/*FALLTHROUGH*/
case FINISH_PARSE_SROM:
case FINISH_READ_SROM:
rtw_srom_free(&sc->sc_srom);
/*FALLTHROUGH*/
case FINISH_RESET:
case FINISH_RXMAPS_CREATE:
rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0],
RTW_RXQLEN);
/*FALLTHROUGH*/
case FINISH_TXMAPS_CREATE:
for (pri = 0; pri < RTW_NTXPRI; pri++) {
rtw_txdesc_dmamaps_destroy(sc->sc_dmat,
sc->sc_txsoft_blk[pri].tsb_desc,
sc->sc_txsoft_blk[pri].tsb_ndesc);
}
/*FALLTHROUGH*/
case FINISH_TXDESCBLK_SETUP:
case FINISH_TXCTLBLK_SETUP:
rtw_txsoft_blk_cleanup_all(sc);
/*FALLTHROUGH*/
case FINISH_DESCMAP_LOAD:
bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap);
/*FALLTHROUGH*/
case FINISH_DESCMAP_CREATE:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap);
/*FALLTHROUGH*/
case FINISH_DESC_MAP:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
sizeof(struct rtw_descs));
/*FALLTHROUGH*/
case FINISH_DESC_ALLOC:
bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs,
sc->sc_desc_nsegs);
/*FALLTHROUGH*/
case DETACHED:
if (sc->sc_soft_ih != NULL) {
softint_disestablish(sc->sc_soft_ih);
sc->sc_soft_ih = NULL;
}
NEXT_ATTACH_STATE(sc, DETACHED);
break;
}
splx(s);
return 0;
}