2075 lines
50 KiB
C
2075 lines
50 KiB
C
/* $NetBSD: nvme.c,v 1.54 2020/12/27 16:52:01 jmcneill Exp $ */
|
|
/* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.54 2020/12/27 16:52:01 jmcneill Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/once.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/mutex.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <dev/ic/nvmereg.h>
|
|
#include <dev/ic/nvmevar.h>
|
|
#include <dev/ic/nvmeio.h>
|
|
|
|
#include "ioconf.h"
|
|
|
|
#define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
|
|
|
|
int nvme_adminq_size = 32;
|
|
int nvme_ioq_size = 1024;
|
|
|
|
static int nvme_print(void *, const char *);
|
|
|
|
static int nvme_ready(struct nvme_softc *, uint32_t);
|
|
static int nvme_enable(struct nvme_softc *, u_int);
|
|
static int nvme_disable(struct nvme_softc *);
|
|
static int nvme_shutdown(struct nvme_softc *);
|
|
|
|
#ifdef NVME_DEBUG
|
|
static void nvme_dumpregs(struct nvme_softc *);
|
|
#endif
|
|
static int nvme_identify(struct nvme_softc *, u_int);
|
|
static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
|
|
void *);
|
|
|
|
static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
|
|
static void nvme_ccbs_free(struct nvme_queue *);
|
|
|
|
static struct nvme_ccb *
|
|
nvme_ccb_get(struct nvme_queue *, bool);
|
|
static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
|
|
|
|
static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
|
|
struct nvme_ccb *, void (*)(struct nvme_queue *,
|
|
struct nvme_ccb *, void *), int);
|
|
static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
|
|
static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
|
|
static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
|
|
static struct nvme_queue *
|
|
nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
|
|
static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
|
|
static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
|
|
static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
|
|
struct nvme_ccb *, void (*)(struct nvme_queue *,
|
|
struct nvme_ccb *, void *));
|
|
static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
|
|
static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
|
|
static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
|
|
bool (*)(void *), void *);
|
|
|
|
static struct nvme_dmamem *
|
|
nvme_dmamem_alloc(struct nvme_softc *, size_t);
|
|
static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
|
|
static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
|
|
int);
|
|
|
|
static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
|
|
void *);
|
|
static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
|
|
void *);
|
|
static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
|
|
void *);
|
|
static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
|
|
static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
|
|
void *);
|
|
static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
|
|
struct nvme_cqe *);
|
|
static int nvme_command_passthrough(struct nvme_softc *,
|
|
struct nvme_pt_command *, uint16_t, struct lwp *, bool);
|
|
|
|
static int nvme_set_number_of_queues(struct nvme_softc *, u_int, u_int *,
|
|
u_int *);
|
|
|
|
#define NVME_TIMO_QOP 5 /* queue create and delete timeout */
|
|
#define NVME_TIMO_IDENT 10 /* probe identify timeout */
|
|
#define NVME_TIMO_PT -1 /* passthrough cmd timeout */
|
|
#define NVME_TIMO_SY 60 /* sync cache timeout */
|
|
|
|
#define nvme_read4(_s, _r) \
|
|
bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
|
|
#define nvme_write4(_s, _r, _v) \
|
|
bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
|
|
/*
|
|
* Some controllers, at least Apple NVMe, always require split
|
|
* transfers, so don't use bus_space_{read,write}_8() on LP64.
|
|
*/
|
|
static inline uint64_t
|
|
nvme_read8(struct nvme_softc *sc, bus_size_t r)
|
|
{
|
|
uint64_t v;
|
|
uint32_t *a = (uint32_t *)&v;
|
|
|
|
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
|
a[0] = nvme_read4(sc, r);
|
|
a[1] = nvme_read4(sc, r + 4);
|
|
#else /* _BYTE_ORDER == _LITTLE_ENDIAN */
|
|
a[1] = nvme_read4(sc, r);
|
|
a[0] = nvme_read4(sc, r + 4);
|
|
#endif
|
|
|
|
return v;
|
|
}
|
|
|
|
static inline void
|
|
nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
|
|
{
|
|
uint32_t *a = (uint32_t *)&v;
|
|
|
|
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
|
nvme_write4(sc, r, a[0]);
|
|
nvme_write4(sc, r + 4, a[1]);
|
|
#else /* _BYTE_ORDER == _LITTLE_ENDIAN */
|
|
nvme_write4(sc, r, a[1]);
|
|
nvme_write4(sc, r + 4, a[0]);
|
|
#endif
|
|
}
|
|
#define nvme_barrier(_s, _r, _l, _f) \
|
|
bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
|
|
|
|
#ifdef NVME_DEBUG
|
|
static __used void
|
|
nvme_dumpregs(struct nvme_softc *sc)
|
|
{
|
|
uint64_t r8;
|
|
uint32_t r4;
|
|
|
|
#define DEVNAME(_sc) device_xname((_sc)->sc_dev)
|
|
r8 = nvme_read8(sc, NVME_CAP);
|
|
printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
|
|
printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
|
|
(u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
|
|
printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
|
|
(u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
|
|
printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
|
|
printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
|
|
printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
|
|
printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
|
|
printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
|
|
printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
|
|
printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
|
|
|
|
printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
|
|
|
|
r4 = nvme_read4(sc, NVME_CC);
|
|
printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
|
|
printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
|
|
(1 << NVME_CC_IOCQES_R(r4)));
|
|
printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
|
|
(1 << NVME_CC_IOSQES_R(r4)));
|
|
printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
|
|
printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
|
|
printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
|
|
(1 << NVME_CC_MPS_R(r4)));
|
|
printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
|
|
printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
|
|
|
|
r4 = nvme_read4(sc, NVME_CSTS);
|
|
printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
|
|
printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
|
|
printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
|
|
printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
|
|
|
|
r4 = nvme_read4(sc, NVME_AQA);
|
|
printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
|
|
printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
|
|
printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
|
|
|
|
printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
|
|
printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
|
|
#undef DEVNAME
|
|
}
|
|
#endif /* NVME_DEBUG */
|
|
|
|
static int
|
|
nvme_ready(struct nvme_softc *sc, uint32_t rdy)
|
|
{
|
|
u_int i = 0;
|
|
|
|
while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
|
|
if (i++ > sc->sc_rdy_to)
|
|
return ENXIO;
|
|
|
|
delay(1000);
|
|
nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_enable(struct nvme_softc *sc, u_int mps)
|
|
{
|
|
uint32_t cc, csts;
|
|
int error;
|
|
|
|
cc = nvme_read4(sc, NVME_CC);
|
|
csts = nvme_read4(sc, NVME_CSTS);
|
|
|
|
/*
|
|
* See note in nvme_disable. Short circuit if we're already enabled.
|
|
*/
|
|
if (ISSET(cc, NVME_CC_EN)) {
|
|
if (ISSET(csts, NVME_CSTS_RDY))
|
|
return 0;
|
|
|
|
goto waitready;
|
|
} else {
|
|
/* EN == 0 already wait for RDY == 0 or fail */
|
|
error = nvme_ready(sc, 0);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
|
|
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
|
|
delay(5000);
|
|
nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
|
|
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
|
|
delay(5000);
|
|
|
|
nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
|
|
NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
|
|
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
|
|
delay(5000);
|
|
|
|
CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
|
|
NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
|
|
SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
|
|
SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
|
|
SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
|
|
SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
|
|
SET(cc, NVME_CC_MPS(mps));
|
|
SET(cc, NVME_CC_EN);
|
|
|
|
nvme_write4(sc, NVME_CC, cc);
|
|
nvme_barrier(sc, 0, sc->sc_ios,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
|
|
waitready:
|
|
return nvme_ready(sc, NVME_CSTS_RDY);
|
|
}
|
|
|
|
static int
|
|
nvme_disable(struct nvme_softc *sc)
|
|
{
|
|
uint32_t cc, csts;
|
|
int error;
|
|
|
|
cc = nvme_read4(sc, NVME_CC);
|
|
csts = nvme_read4(sc, NVME_CSTS);
|
|
|
|
/*
|
|
* Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
|
|
* when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
|
|
* CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
|
|
* isn't the desired value. Short circuit if we're already disabled.
|
|
*/
|
|
if (ISSET(cc, NVME_CC_EN)) {
|
|
if (!ISSET(csts, NVME_CSTS_RDY)) {
|
|
/* EN == 1, wait for RDY == 1 or fail */
|
|
error = nvme_ready(sc, NVME_CSTS_RDY);
|
|
if (error)
|
|
return error;
|
|
}
|
|
} else {
|
|
/* EN == 0 already wait for RDY == 0 */
|
|
if (!ISSET(csts, NVME_CSTS_RDY))
|
|
return 0;
|
|
|
|
goto waitready;
|
|
}
|
|
|
|
CLR(cc, NVME_CC_EN);
|
|
nvme_write4(sc, NVME_CC, cc);
|
|
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
|
|
|
|
/*
|
|
* Some drives have issues with accessing the mmio after we disable,
|
|
* so delay for a bit after we write the bit to cope with these issues.
|
|
*/
|
|
if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
|
|
delay(B4_CHK_RDY_DELAY_MS);
|
|
|
|
waitready:
|
|
return nvme_ready(sc, 0);
|
|
}
|
|
|
|
int
|
|
nvme_attach(struct nvme_softc *sc)
|
|
{
|
|
uint64_t cap;
|
|
uint32_t reg;
|
|
u_int dstrd;
|
|
u_int mps = PAGE_SHIFT;
|
|
u_int ncq, nsq;
|
|
uint16_t adminq_entries = nvme_adminq_size;
|
|
uint16_t ioq_entries = nvme_ioq_size;
|
|
int i;
|
|
|
|
reg = nvme_read4(sc, NVME_VS);
|
|
if (reg == 0xffffffff) {
|
|
aprint_error_dev(sc->sc_dev, "invalid mapping\n");
|
|
return 1;
|
|
}
|
|
|
|
if (NVME_VS_TER(reg) == 0)
|
|
aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
|
|
NVME_VS_MNR(reg));
|
|
else
|
|
aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
|
|
NVME_VS_MNR(reg), NVME_VS_TER(reg));
|
|
|
|
cap = nvme_read8(sc, NVME_CAP);
|
|
dstrd = NVME_CAP_DSTRD(cap);
|
|
if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
|
|
aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
|
|
"is greater than CPU page size %u\n",
|
|
1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
|
|
return 1;
|
|
}
|
|
if (NVME_CAP_MPSMAX(cap) < mps)
|
|
mps = NVME_CAP_MPSMAX(cap);
|
|
if (ioq_entries > NVME_CAP_MQES(cap))
|
|
ioq_entries = NVME_CAP_MQES(cap);
|
|
|
|
/* set initial values to be used for admin queue during probe */
|
|
sc->sc_rdy_to = NVME_CAP_TO(cap);
|
|
sc->sc_mps = 1 << mps;
|
|
sc->sc_mdts = MAXPHYS;
|
|
sc->sc_max_sgl = btoc(round_page(sc->sc_mdts));
|
|
|
|
if (nvme_disable(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
|
|
return 1;
|
|
}
|
|
|
|
sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
|
|
if (sc->sc_admin_q == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate admin queue\n");
|
|
return 1;
|
|
}
|
|
if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
|
|
goto free_admin_q;
|
|
|
|
if (nvme_enable(sc, mps) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
|
|
goto disestablish_admin_q;
|
|
}
|
|
|
|
if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
|
|
goto disable;
|
|
}
|
|
if (sc->sc_nn == 0) {
|
|
aprint_error_dev(sc->sc_dev, "namespace not found\n");
|
|
goto disable;
|
|
}
|
|
|
|
/* we know how big things are now */
|
|
sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
|
|
|
|
/* reallocate ccbs of admin queue with new max sgl. */
|
|
nvme_ccbs_free(sc->sc_admin_q);
|
|
nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
|
|
|
|
if (sc->sc_use_mq) {
|
|
/* Limit the number of queues to the number allocated in HW */
|
|
if (nvme_set_number_of_queues(sc, sc->sc_nq, &ncq, &nsq) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to get number of queues\n");
|
|
goto disable;
|
|
}
|
|
if (sc->sc_nq > ncq)
|
|
sc->sc_nq = ncq;
|
|
if (sc->sc_nq > nsq)
|
|
sc->sc_nq = nsq;
|
|
}
|
|
|
|
sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
|
|
for (i = 0; i < sc->sc_nq; i++) {
|
|
sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
|
|
if (sc->sc_q[i] == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate io queue\n");
|
|
goto free_q;
|
|
}
|
|
if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create io queue\n");
|
|
nvme_q_free(sc, sc->sc_q[i]);
|
|
goto free_q;
|
|
}
|
|
}
|
|
|
|
if (!sc->sc_use_mq)
|
|
nvme_write4(sc, NVME_INTMC, 1);
|
|
|
|
/* probe subdevices */
|
|
sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
|
|
KM_SLEEP);
|
|
nvme_rescan(sc->sc_dev, "nvme", &i);
|
|
|
|
return 0;
|
|
|
|
free_q:
|
|
while (--i >= 0) {
|
|
nvme_q_delete(sc, sc->sc_q[i]);
|
|
nvme_q_free(sc, sc->sc_q[i]);
|
|
}
|
|
disable:
|
|
nvme_disable(sc);
|
|
disestablish_admin_q:
|
|
sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
|
|
free_admin_q:
|
|
nvme_q_free(sc, sc->sc_admin_q);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
nvme_rescan(device_t self, const char *attr, const int *flags)
|
|
{
|
|
struct nvme_softc *sc = device_private(self);
|
|
struct nvme_attach_args naa;
|
|
struct nvm_namespace_format *f;
|
|
struct nvme_namespace *ns;
|
|
uint64_t cap;
|
|
int ioq_entries = nvme_ioq_size;
|
|
int i;
|
|
int error;
|
|
|
|
cap = nvme_read8(sc, NVME_CAP);
|
|
if (ioq_entries > NVME_CAP_MQES(cap))
|
|
ioq_entries = NVME_CAP_MQES(cap);
|
|
|
|
for (i = 1; i <= sc->sc_nn; i++) {
|
|
if (sc->sc_namespaces[i - 1].dev)
|
|
continue;
|
|
|
|
/* identify to check for availability */
|
|
error = nvme_ns_identify(sc, i);
|
|
if (error) {
|
|
aprint_error_dev(self, "couldn't identify namespace #%d\n", i);
|
|
continue;
|
|
}
|
|
|
|
ns = nvme_ns_get(sc, i);
|
|
KASSERT(ns);
|
|
|
|
f = &ns->ident->lbaf[NVME_ID_NS_FLBAS(ns->ident->flbas)];
|
|
|
|
/*
|
|
* NVME1.0e 6.11 Identify command
|
|
*
|
|
* LBADS values smaller than 9 are not supported, a value
|
|
* of zero means that the format is not used.
|
|
*/
|
|
if (f->lbads < 9) {
|
|
if (f->lbads > 0)
|
|
aprint_error_dev(self,
|
|
"unsupported logical data size %u\n", f->lbads);
|
|
continue;
|
|
}
|
|
|
|
memset(&naa, 0, sizeof(naa));
|
|
naa.naa_nsid = i;
|
|
naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
|
|
naa.naa_maxphys = sc->sc_mdts;
|
|
naa.naa_typename = sc->sc_modelname;
|
|
sc->sc_namespaces[i - 1].dev = config_found(sc->sc_dev, &naa,
|
|
nvme_print);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_print(void *aux, const char *pnp)
|
|
{
|
|
struct nvme_attach_args *naa = aux;
|
|
|
|
if (pnp)
|
|
aprint_normal("ld at %s", pnp);
|
|
|
|
if (naa->naa_nsid > 0)
|
|
aprint_normal(" nsid %d", naa->naa_nsid);
|
|
|
|
return UNCONF;
|
|
}
|
|
|
|
int
|
|
nvme_detach(struct nvme_softc *sc, int flags)
|
|
{
|
|
int i, error;
|
|
|
|
error = config_detach_children(sc->sc_dev, flags);
|
|
if (error)
|
|
return error;
|
|
|
|
error = nvme_shutdown(sc);
|
|
if (error)
|
|
return error;
|
|
|
|
/* from now on we are committed to detach, following will never fail */
|
|
for (i = 0; i < sc->sc_nq; i++)
|
|
nvme_q_free(sc, sc->sc_q[i]);
|
|
kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
|
|
nvme_q_free(sc, sc->sc_admin_q);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_shutdown(struct nvme_softc *sc)
|
|
{
|
|
uint32_t cc, csts;
|
|
bool disabled = false;
|
|
int i;
|
|
|
|
if (!sc->sc_use_mq)
|
|
nvme_write4(sc, NVME_INTMS, 1);
|
|
|
|
for (i = 0; i < sc->sc_nq; i++) {
|
|
if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to delete io queue %d, disabling\n", i + 1);
|
|
disabled = true;
|
|
}
|
|
}
|
|
sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
|
|
if (disabled)
|
|
goto disable;
|
|
|
|
cc = nvme_read4(sc, NVME_CC);
|
|
CLR(cc, NVME_CC_SHN_MASK);
|
|
SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
|
|
nvme_write4(sc, NVME_CC, cc);
|
|
|
|
for (i = 0; i < 4000; i++) {
|
|
nvme_barrier(sc, 0, sc->sc_ios,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
csts = nvme_read4(sc, NVME_CSTS);
|
|
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
|
|
return 0;
|
|
|
|
delay(1000);
|
|
}
|
|
|
|
aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
|
|
|
|
disable:
|
|
nvme_disable(sc);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nvme_childdet(device_t self, device_t child)
|
|
{
|
|
struct nvme_softc *sc = device_private(self);
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_nn; i++) {
|
|
if (sc->sc_namespaces[i].dev == child) {
|
|
/* Already freed ns->ident. */
|
|
sc->sc_namespaces[i].dev = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
|
|
{
|
|
struct nvme_sqe sqe;
|
|
struct nvm_identify_namespace *identify;
|
|
struct nvme_dmamem *mem;
|
|
struct nvme_ccb *ccb;
|
|
struct nvme_namespace *ns;
|
|
int rv;
|
|
|
|
KASSERT(nsid > 0);
|
|
|
|
ns = nvme_ns_get(sc, nsid);
|
|
KASSERT(ns);
|
|
|
|
if (ns->ident != NULL)
|
|
return 0;
|
|
|
|
ccb = nvme_ccb_get(sc->sc_admin_q, false);
|
|
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
|
|
|
|
mem = nvme_dmamem_alloc(sc, sizeof(*identify));
|
|
if (mem == NULL) {
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
return ENOMEM;
|
|
}
|
|
|
|
memset(&sqe, 0, sizeof(sqe));
|
|
sqe.opcode = NVM_ADMIN_IDENTIFY;
|
|
htolem32(&sqe.nsid, nsid);
|
|
htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
|
|
htolem32(&sqe.cdw10, 0);
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = &sqe;
|
|
|
|
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
|
|
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
|
|
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
|
|
if (rv != 0) {
|
|
rv = EIO;
|
|
goto done;
|
|
}
|
|
|
|
/* commit */
|
|
|
|
identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
|
|
*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
|
|
|
|
/* Convert data to host endian */
|
|
nvme_identify_namespace_swapbytes(identify);
|
|
|
|
ns->ident = identify;
|
|
|
|
done:
|
|
nvme_dmamem_free(sc, mem);
|
|
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
|
|
struct buf *bp, void *data, size_t datasize,
|
|
int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
|
|
{
|
|
struct nvme_queue *q = nvme_get_q(sc, bp, false);
|
|
struct nvme_ccb *ccb;
|
|
bus_dmamap_t dmap;
|
|
int i, error;
|
|
|
|
ccb = nvme_ccb_get(q, false);
|
|
if (ccb == NULL)
|
|
return EAGAIN;
|
|
|
|
ccb->ccb_done = nvme_ns_io_done;
|
|
ccb->ccb_cookie = cookie;
|
|
|
|
/* namespace context */
|
|
ccb->nnc_nsid = nsid;
|
|
ccb->nnc_flags = flags;
|
|
ccb->nnc_buf = bp;
|
|
ccb->nnc_datasize = datasize;
|
|
ccb->nnc_secsize = secsize;
|
|
ccb->nnc_blkno = blkno;
|
|
ccb->nnc_done = nnc_done;
|
|
|
|
dmap = ccb->ccb_dmamap;
|
|
error = bus_dmamap_load(sc->sc_dmat, dmap, data,
|
|
datasize, NULL,
|
|
(ISSET(flags, NVME_NS_CTX_F_POLL) ?
|
|
BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
|
|
(ISSET(flags, NVME_NS_CTX_F_READ) ?
|
|
BUS_DMA_READ : BUS_DMA_WRITE));
|
|
if (error) {
|
|
nvme_ccb_put(q, ccb);
|
|
return error;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
|
|
ISSET(flags, NVME_NS_CTX_F_READ) ?
|
|
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
|
|
if (dmap->dm_nsegs > 2) {
|
|
for (i = 1; i < dmap->dm_nsegs; i++) {
|
|
htolem64(&ccb->ccb_prpl[i - 1],
|
|
dmap->dm_segs[i].ds_addr);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
NVME_DMA_MAP(q->q_ccb_prpls),
|
|
ccb->ccb_prpl_off,
|
|
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
|
|
if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
|
|
return EIO;
|
|
return 0;
|
|
}
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe_io *sqe = slot;
|
|
bus_dmamap_t dmap = ccb->ccb_dmamap;
|
|
|
|
sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
|
|
NVM_CMD_READ : NVM_CMD_WRITE;
|
|
htolem32(&sqe->nsid, ccb->nnc_nsid);
|
|
|
|
htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
|
|
switch (dmap->dm_nsegs) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
|
|
break;
|
|
default:
|
|
/* the prp list is already set up and synced */
|
|
htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
|
|
break;
|
|
}
|
|
|
|
htolem64(&sqe->slba, ccb->nnc_blkno);
|
|
|
|
if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
|
|
htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
|
|
|
|
/* guaranteed by upper layers, but check just in case */
|
|
KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
|
|
htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
|
|
}
|
|
|
|
static void
|
|
nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
struct nvme_softc *sc = q->q_sc;
|
|
bus_dmamap_t dmap = ccb->ccb_dmamap;
|
|
void *nnc_cookie = ccb->ccb_cookie;
|
|
nvme_nnc_done nnc_done = ccb->nnc_done;
|
|
struct buf *bp = ccb->nnc_buf;
|
|
|
|
if (dmap->dm_nsegs > 2) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
NVME_DMA_MAP(q->q_ccb_prpls),
|
|
ccb->ccb_prpl_off,
|
|
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
|
|
BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
|
|
ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
|
|
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, dmap);
|
|
nvme_ccb_put(q, ccb);
|
|
|
|
nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
|
|
}
|
|
|
|
/*
|
|
* If there is no volatile write cache, it makes no sense to issue
|
|
* flush commands or query for the status.
|
|
*/
|
|
static bool
|
|
nvme_has_volatile_write_cache(struct nvme_softc *sc)
|
|
{
|
|
/* sc_identify is filled during attachment */
|
|
return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
|
|
}
|
|
|
|
static bool
|
|
nvme_ns_sync_finished(void *cookie)
|
|
{
|
|
int *result = cookie;
|
|
|
|
return (*result != 0);
|
|
}
|
|
|
|
int
|
|
nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
|
|
{
|
|
struct nvme_queue *q = nvme_get_q(sc, NULL, true);
|
|
struct nvme_ccb *ccb;
|
|
int result = 0;
|
|
|
|
if (!nvme_has_volatile_write_cache(sc)) {
|
|
/* cache not present, no value in trying to flush it */
|
|
return 0;
|
|
}
|
|
|
|
ccb = nvme_ccb_get(q, true);
|
|
KASSERT(ccb != NULL);
|
|
|
|
ccb->ccb_done = nvme_ns_sync_done;
|
|
ccb->ccb_cookie = &result;
|
|
|
|
/* namespace context */
|
|
ccb->nnc_nsid = nsid;
|
|
ccb->nnc_flags = flags;
|
|
ccb->nnc_done = NULL;
|
|
|
|
if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
|
|
if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
|
|
return EIO;
|
|
return 0;
|
|
}
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
|
|
|
|
/* wait for completion */
|
|
nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
|
|
KASSERT(result != 0);
|
|
|
|
return (result > 0) ? 0 : EIO;
|
|
}
|
|
|
|
static void
|
|
nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *sqe = slot;
|
|
|
|
sqe->opcode = NVM_CMD_FLUSH;
|
|
htolem32(&sqe->nsid, ccb->nnc_nsid);
|
|
}
|
|
|
|
static void
|
|
nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
int *result = ccb->ccb_cookie;
|
|
uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
|
|
|
|
if (status == NVME_CQE_SC_SUCCESS)
|
|
*result = 1;
|
|
else
|
|
*result = -1;
|
|
|
|
nvme_ccb_put(q, ccb);
|
|
}
|
|
|
|
static bool
|
|
nvme_getcache_finished(void *xc)
|
|
{
|
|
int *addr = xc;
|
|
|
|
return (*addr != 0);
|
|
}
|
|
|
|
/*
|
|
* Get status of volatile write cache. Always asynchronous.
|
|
*/
|
|
int
|
|
nvme_admin_getcache(struct nvme_softc *sc, int *addr)
|
|
{
|
|
struct nvme_ccb *ccb;
|
|
struct nvme_queue *q = sc->sc_admin_q;
|
|
int result = 0, error;
|
|
|
|
if (!nvme_has_volatile_write_cache(sc)) {
|
|
/* cache simply not present */
|
|
*addr = 0;
|
|
return 0;
|
|
}
|
|
|
|
ccb = nvme_ccb_get(q, true);
|
|
KASSERT(ccb != NULL);
|
|
|
|
ccb->ccb_done = nvme_getcache_done;
|
|
ccb->ccb_cookie = &result;
|
|
|
|
/* namespace context */
|
|
ccb->nnc_flags = 0;
|
|
ccb->nnc_done = NULL;
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
|
|
|
|
/* wait for completion */
|
|
nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
|
|
KASSERT(result != 0);
|
|
|
|
if (result > 0) {
|
|
*addr = result;
|
|
error = 0;
|
|
} else
|
|
error = EINVAL;
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *sqe = slot;
|
|
|
|
sqe->opcode = NVM_ADMIN_GET_FEATURES;
|
|
htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
|
|
htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
|
|
}
|
|
|
|
static void
|
|
nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
int *addr = ccb->ccb_cookie;
|
|
uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
|
|
uint32_t cdw0 = lemtoh32(&cqe->cdw0);
|
|
int result;
|
|
|
|
if (status == NVME_CQE_SC_SUCCESS) {
|
|
result = 0;
|
|
|
|
/*
|
|
* DPO not supported, Dataset Management (DSM) field doesn't
|
|
* specify the same semantics. FUA is always supported.
|
|
*/
|
|
result = DKCACHE_FUA;
|
|
|
|
if (cdw0 & NVM_VOLATILE_WRITE_CACHE_WCE)
|
|
result |= DKCACHE_WRITE;
|
|
|
|
/*
|
|
* If volatile write cache is present, the flag shall also be
|
|
* settable.
|
|
*/
|
|
result |= DKCACHE_WCHANGE;
|
|
|
|
/*
|
|
* ONCS field indicates whether the optional SAVE is also
|
|
* supported for Set Features. According to spec v1.3,
|
|
* Volatile Write Cache however doesn't support persistency
|
|
* across power cycle/reset.
|
|
*/
|
|
|
|
} else {
|
|
result = -1;
|
|
}
|
|
|
|
*addr = result;
|
|
|
|
nvme_ccb_put(q, ccb);
|
|
}
|
|
|
|
struct nvme_setcache_state {
|
|
int dkcache;
|
|
int result;
|
|
};
|
|
|
|
static bool
|
|
nvme_setcache_finished(void *xc)
|
|
{
|
|
struct nvme_setcache_state *st = xc;
|
|
|
|
return (st->result != 0);
|
|
}
|
|
|
|
static void
|
|
nvme_setcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *sqe = slot;
|
|
struct nvme_setcache_state *st = ccb->ccb_cookie;
|
|
|
|
sqe->opcode = NVM_ADMIN_SET_FEATURES;
|
|
htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
|
|
if (st->dkcache & DKCACHE_WRITE)
|
|
htolem32(&sqe->cdw11, NVM_VOLATILE_WRITE_CACHE_WCE);
|
|
}
|
|
|
|
static void
|
|
nvme_setcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
struct nvme_setcache_state *st = ccb->ccb_cookie;
|
|
uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
|
|
|
|
if (status == NVME_CQE_SC_SUCCESS) {
|
|
st->result = 1;
|
|
} else {
|
|
st->result = -1;
|
|
}
|
|
|
|
nvme_ccb_put(q, ccb);
|
|
}
|
|
|
|
/*
|
|
* Set status of volatile write cache. Always asynchronous.
|
|
*/
|
|
int
|
|
nvme_admin_setcache(struct nvme_softc *sc, int dkcache)
|
|
{
|
|
struct nvme_ccb *ccb;
|
|
struct nvme_queue *q = sc->sc_admin_q;
|
|
int error;
|
|
struct nvme_setcache_state st;
|
|
|
|
if (!nvme_has_volatile_write_cache(sc)) {
|
|
/* cache simply not present */
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
if (dkcache & ~(DKCACHE_WRITE)) {
|
|
/* unsupported parameters */
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
ccb = nvme_ccb_get(q, true);
|
|
KASSERT(ccb != NULL);
|
|
|
|
memset(&st, 0, sizeof(st));
|
|
st.dkcache = dkcache;
|
|
|
|
ccb->ccb_done = nvme_setcache_done;
|
|
ccb->ccb_cookie = &st;
|
|
|
|
/* namespace context */
|
|
ccb->nnc_flags = 0;
|
|
ccb->nnc_done = NULL;
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_setcache_fill);
|
|
|
|
/* wait for completion */
|
|
nvme_q_wait_complete(sc, q, nvme_setcache_finished, &st);
|
|
KASSERT(st.result != 0);
|
|
|
|
if (st.result > 0)
|
|
error = 0;
|
|
else
|
|
error = EINVAL;
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
|
|
{
|
|
struct nvme_namespace *ns;
|
|
struct nvm_identify_namespace *identify;
|
|
|
|
ns = nvme_ns_get(sc, nsid);
|
|
KASSERT(ns);
|
|
|
|
identify = ns->ident;
|
|
ns->ident = NULL;
|
|
if (identify != NULL)
|
|
kmem_free(identify, sizeof(*identify));
|
|
}
|
|
|
|
struct nvme_pt_state {
|
|
struct nvme_pt_command *pt;
|
|
bool finished;
|
|
};
|
|
|
|
static void
|
|
nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_softc *sc = q->q_sc;
|
|
struct nvme_sqe *sqe = slot;
|
|
struct nvme_pt_state *state = ccb->ccb_cookie;
|
|
struct nvme_pt_command *pt = state->pt;
|
|
bus_dmamap_t dmap = ccb->ccb_dmamap;
|
|
int i;
|
|
|
|
sqe->opcode = pt->cmd.opcode;
|
|
htolem32(&sqe->nsid, pt->cmd.nsid);
|
|
|
|
if (pt->buf != NULL && pt->len > 0) {
|
|
htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
|
|
switch (dmap->dm_nsegs) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
|
|
break;
|
|
default:
|
|
for (i = 1; i < dmap->dm_nsegs; i++) {
|
|
htolem64(&ccb->ccb_prpl[i - 1],
|
|
dmap->dm_segs[i].ds_addr);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
NVME_DMA_MAP(q->q_ccb_prpls),
|
|
ccb->ccb_prpl_off,
|
|
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
|
|
BUS_DMASYNC_PREWRITE);
|
|
htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
|
|
break;
|
|
}
|
|
}
|
|
|
|
htolem32(&sqe->cdw10, pt->cmd.cdw10);
|
|
htolem32(&sqe->cdw11, pt->cmd.cdw11);
|
|
htolem32(&sqe->cdw12, pt->cmd.cdw12);
|
|
htolem32(&sqe->cdw13, pt->cmd.cdw13);
|
|
htolem32(&sqe->cdw14, pt->cmd.cdw14);
|
|
htolem32(&sqe->cdw15, pt->cmd.cdw15);
|
|
}
|
|
|
|
static void
|
|
nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
|
|
{
|
|
struct nvme_softc *sc = q->q_sc;
|
|
struct nvme_pt_state *state = ccb->ccb_cookie;
|
|
struct nvme_pt_command *pt = state->pt;
|
|
bus_dmamap_t dmap = ccb->ccb_dmamap;
|
|
|
|
if (pt->buf != NULL && pt->len > 0) {
|
|
if (dmap->dm_nsegs > 2) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
NVME_DMA_MAP(q->q_ccb_prpls),
|
|
ccb->ccb_prpl_off,
|
|
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
|
|
BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
|
|
pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, dmap);
|
|
}
|
|
|
|
pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
|
|
pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
|
|
|
|
state->finished = true;
|
|
|
|
nvme_ccb_put(q, ccb);
|
|
}
|
|
|
|
static bool
|
|
nvme_pt_finished(void *cookie)
|
|
{
|
|
struct nvme_pt_state *state = cookie;
|
|
|
|
return state->finished;
|
|
}
|
|
|
|
static int
|
|
nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
|
|
uint16_t nsid, struct lwp *l, bool is_adminq)
|
|
{
|
|
struct nvme_queue *q;
|
|
struct nvme_ccb *ccb;
|
|
void *buf = NULL;
|
|
struct nvme_pt_state state;
|
|
int error;
|
|
|
|
/* limit command size to maximum data transfer size */
|
|
if ((pt->buf == NULL && pt->len > 0) ||
|
|
(pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
|
|
return EINVAL;
|
|
|
|
q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc, NULL, true);
|
|
ccb = nvme_ccb_get(q, true);
|
|
KASSERT(ccb != NULL);
|
|
|
|
if (pt->buf != NULL) {
|
|
KASSERT(pt->len > 0);
|
|
buf = kmem_alloc(pt->len, KM_SLEEP);
|
|
if (!pt->is_read) {
|
|
error = copyin(pt->buf, buf, pt->len);
|
|
if (error)
|
|
goto kmem_free;
|
|
}
|
|
error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
|
|
pt->len, NULL,
|
|
BUS_DMA_WAITOK |
|
|
(pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
|
|
if (error)
|
|
goto kmem_free;
|
|
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
|
|
0, ccb->ccb_dmamap->dm_mapsize,
|
|
pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
state.pt = pt;
|
|
state.finished = false;
|
|
|
|
ccb->ccb_done = nvme_pt_done;
|
|
ccb->ccb_cookie = &state;
|
|
|
|
pt->cmd.nsid = nsid;
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_pt_fill);
|
|
|
|
/* wait for completion */
|
|
nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
|
|
KASSERT(state.finished);
|
|
|
|
error = 0;
|
|
|
|
if (buf != NULL) {
|
|
if (error == 0 && pt->is_read)
|
|
error = copyout(buf, pt->buf, pt->len);
|
|
kmem_free:
|
|
kmem_free(buf, pt->len);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
|
|
{
|
|
struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
|
|
uint32_t tail;
|
|
|
|
mutex_enter(&q->q_sq_mtx);
|
|
tail = q->q_sq_tail;
|
|
if (++q->q_sq_tail >= q->q_entries)
|
|
q->q_sq_tail = 0;
|
|
|
|
sqe += tail;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
|
|
sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
|
|
memset(sqe, 0, sizeof(*sqe));
|
|
(*fill)(q, ccb, sqe);
|
|
htolem16(&sqe->cid, ccb->ccb_id);
|
|
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
|
|
sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
|
|
|
|
nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
|
|
mutex_exit(&q->q_sq_mtx);
|
|
}
|
|
|
|
struct nvme_poll_state {
|
|
struct nvme_sqe s;
|
|
struct nvme_cqe c;
|
|
void *cookie;
|
|
void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
|
|
};
|
|
|
|
static int
|
|
nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
|
|
{
|
|
struct nvme_poll_state state;
|
|
uint16_t flags;
|
|
int step = 10;
|
|
int maxloop = timo_sec * 1000000 / step;
|
|
int error = 0;
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
(*fill)(q, ccb, &state.s);
|
|
|
|
state.done = ccb->ccb_done;
|
|
state.cookie = ccb->ccb_cookie;
|
|
|
|
ccb->ccb_done = nvme_poll_done;
|
|
ccb->ccb_cookie = &state;
|
|
|
|
nvme_q_submit(sc, q, ccb, nvme_poll_fill);
|
|
while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
|
|
if (nvme_q_complete(sc, q) == 0)
|
|
delay(step);
|
|
|
|
if (timo_sec >= 0 && --maxloop <= 0) {
|
|
error = ETIMEDOUT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error == 0) {
|
|
flags = lemtoh16(&state.c.flags);
|
|
return flags & ~NVME_CQE_PHASE;
|
|
} else {
|
|
/*
|
|
* If it succeds later, it would hit ccb which will have been
|
|
* already reused for something else. Not good. Cross
|
|
* fingers and hope for best. XXX do controller reset?
|
|
*/
|
|
aprint_error_dev(sc->sc_dev, "polled command timed out\n");
|
|
|
|
/* Invoke the callback to clean state anyway */
|
|
struct nvme_cqe cqe;
|
|
memset(&cqe, 0, sizeof(cqe));
|
|
ccb->ccb_done(q, ccb, &cqe);
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *sqe = slot;
|
|
struct nvme_poll_state *state = ccb->ccb_cookie;
|
|
|
|
*sqe = state->s;
|
|
}
|
|
|
|
static void
|
|
nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
struct nvme_poll_state *state = ccb->ccb_cookie;
|
|
|
|
state->c = *cqe;
|
|
SET(state->c.flags, htole16(NVME_CQE_PHASE));
|
|
|
|
ccb->ccb_cookie = state->cookie;
|
|
state->done(q, ccb, &state->c);
|
|
}
|
|
|
|
static void
|
|
nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *src = ccb->ccb_cookie;
|
|
struct nvme_sqe *dst = slot;
|
|
|
|
*dst = *src;
|
|
}
|
|
|
|
static void
|
|
nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
|
|
struct nvme_cqe *cqe)
|
|
{
|
|
}
|
|
|
|
static int
|
|
nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
|
|
{
|
|
struct nvme_ccb *ccb;
|
|
struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
|
|
uint16_t flags;
|
|
int rv = 0;
|
|
|
|
mutex_enter(&q->q_cq_mtx);
|
|
|
|
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
|
|
for (;;) {
|
|
cqe = &ring[q->q_cq_head];
|
|
flags = lemtoh16(&cqe->flags);
|
|
if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
|
|
break;
|
|
|
|
ccb = &q->q_ccbs[lemtoh16(&cqe->cid)];
|
|
|
|
if (++q->q_cq_head >= q->q_entries) {
|
|
q->q_cq_head = 0;
|
|
q->q_cq_phase ^= NVME_CQE_PHASE;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* If we get spurious completion notification, something
|
|
* is seriously hosed up. Very likely DMA to some random
|
|
* memory place happened, so just bail out.
|
|
*/
|
|
if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
|
|
panic("%s: invalid ccb detected",
|
|
device_xname(sc->sc_dev));
|
|
/* NOTREACHED */
|
|
}
|
|
#endif
|
|
|
|
rv++;
|
|
|
|
/*
|
|
* Unlock the mutex before calling the ccb_done callback
|
|
* and re-lock afterwards. The callback triggers lddone()
|
|
* which schedules another i/o, and also calls nvme_ccb_put().
|
|
* Unlock/relock avoids possibility of deadlock.
|
|
*/
|
|
mutex_exit(&q->q_cq_mtx);
|
|
ccb->ccb_done(q, ccb, cqe);
|
|
mutex_enter(&q->q_cq_mtx);
|
|
}
|
|
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
|
|
|
|
if (rv)
|
|
nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
|
|
|
|
mutex_exit(&q->q_cq_mtx);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
nvme_q_wait_complete(struct nvme_softc *sc,
|
|
struct nvme_queue *q, bool (*finished)(void *), void *cookie)
|
|
{
|
|
mutex_enter(&q->q_ccb_mtx);
|
|
if (finished(cookie))
|
|
goto out;
|
|
|
|
for(;;) {
|
|
q->q_ccb_waiting = true;
|
|
cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
|
|
|
|
if (finished(cookie))
|
|
break;
|
|
}
|
|
|
|
out:
|
|
mutex_exit(&q->q_ccb_mtx);
|
|
}
|
|
|
|
static int
|
|
nvme_identify(struct nvme_softc *sc, u_int mps)
|
|
{
|
|
char sn[41], mn[81], fr[17];
|
|
struct nvm_identify_controller *identify;
|
|
struct nvme_dmamem *mem;
|
|
struct nvme_ccb *ccb;
|
|
u_int mdts;
|
|
int rv = 1;
|
|
|
|
ccb = nvme_ccb_get(sc->sc_admin_q, false);
|
|
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
|
|
|
|
mem = nvme_dmamem_alloc(sc, sizeof(*identify));
|
|
if (mem == NULL)
|
|
return 1;
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = mem;
|
|
|
|
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
|
|
NVME_TIMO_IDENT);
|
|
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
|
|
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
|
|
if (rv != 0)
|
|
goto done;
|
|
|
|
identify = NVME_DMA_KVA(mem);
|
|
sc->sc_identify = *identify;
|
|
identify = NULL;
|
|
|
|
/* Convert data to host endian */
|
|
nvme_identify_controller_swapbytes(&sc->sc_identify);
|
|
|
|
strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
|
|
sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
|
|
strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
|
|
sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
|
|
strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
|
|
sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
|
|
aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
|
|
sn);
|
|
|
|
strlcpy(sc->sc_modelname, mn, sizeof(sc->sc_modelname));
|
|
|
|
if (sc->sc_identify.mdts > 0) {
|
|
mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
|
|
if (mdts < sc->sc_mdts)
|
|
sc->sc_mdts = mdts;
|
|
}
|
|
|
|
sc->sc_nn = sc->sc_identify.nn;
|
|
|
|
done:
|
|
nvme_dmamem_free(sc, mem);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
|
|
{
|
|
struct nvme_sqe_q sqe;
|
|
struct nvme_ccb *ccb;
|
|
int rv;
|
|
|
|
if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
|
|
return 1;
|
|
|
|
ccb = nvme_ccb_get(sc->sc_admin_q, false);
|
|
KASSERT(ccb != NULL);
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = &sqe;
|
|
|
|
memset(&sqe, 0, sizeof(sqe));
|
|
sqe.opcode = NVM_ADMIN_ADD_IOCQ;
|
|
htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
|
|
htolem16(&sqe.qsize, q->q_entries - 1);
|
|
htolem16(&sqe.qid, q->q_id);
|
|
sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
|
|
if (sc->sc_use_mq)
|
|
htolem16(&sqe.cqid, q->q_id); /* qid == vector */
|
|
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
|
|
if (rv != 0)
|
|
goto fail;
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = &sqe;
|
|
|
|
memset(&sqe, 0, sizeof(sqe));
|
|
sqe.opcode = NVM_ADMIN_ADD_IOSQ;
|
|
htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
|
|
htolem16(&sqe.qsize, q->q_entries - 1);
|
|
htolem16(&sqe.qid, q->q_id);
|
|
htolem16(&sqe.cqid, q->q_id);
|
|
sqe.qflags = NVM_SQE_Q_PC;
|
|
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
|
|
if (rv != 0)
|
|
goto fail;
|
|
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
return 0;
|
|
|
|
fail:
|
|
if (sc->sc_use_mq)
|
|
sc->sc_intr_disestablish(sc, q->q_id);
|
|
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
|
|
{
|
|
struct nvme_sqe_q sqe;
|
|
struct nvme_ccb *ccb;
|
|
int rv;
|
|
|
|
ccb = nvme_ccb_get(sc->sc_admin_q, false);
|
|
KASSERT(ccb != NULL);
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = &sqe;
|
|
|
|
memset(&sqe, 0, sizeof(sqe));
|
|
sqe.opcode = NVM_ADMIN_DEL_IOSQ;
|
|
htolem16(&sqe.qid, q->q_id);
|
|
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
|
|
if (rv != 0)
|
|
goto fail;
|
|
|
|
ccb->ccb_done = nvme_empty_done;
|
|
ccb->ccb_cookie = &sqe;
|
|
|
|
memset(&sqe, 0, sizeof(sqe));
|
|
sqe.opcode = NVM_ADMIN_DEL_IOCQ;
|
|
htolem16(&sqe.qid, q->q_id);
|
|
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
|
|
if (rv != 0)
|
|
goto fail;
|
|
|
|
fail:
|
|
nvme_ccb_put(sc->sc_admin_q, ccb);
|
|
|
|
if (rv == 0 && sc->sc_use_mq) {
|
|
if (sc->sc_intr_disestablish(sc, q->q_id))
|
|
rv = 1;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static void
|
|
nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
|
|
{
|
|
struct nvme_sqe *sqe = slot;
|
|
struct nvme_dmamem *mem = ccb->ccb_cookie;
|
|
|
|
sqe->opcode = NVM_ADMIN_IDENTIFY;
|
|
htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
|
|
htolem32(&sqe->cdw10, 1);
|
|
}
|
|
|
|
static int
|
|
nvme_set_number_of_queues(struct nvme_softc *sc, u_int nq, u_int *ncqa,
|
|
u_int *nsqa)
|
|
{
|
|
struct nvme_pt_state state;
|
|
struct nvme_pt_command pt;
|
|
struct nvme_ccb *ccb;
|
|
int rv;
|
|
|
|
ccb = nvme_ccb_get(sc->sc_admin_q, false);
|
|
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
|
|
|
|
memset(&pt, 0, sizeof(pt));
|
|
pt.cmd.opcode = NVM_ADMIN_SET_FEATURES;
|
|
pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
|
|
pt.cmd.cdw11 = ((nq - 1) << 16) | (nq - 1);
|
|
|
|
memset(&state, 0, sizeof(state));
|
|
state.pt = &pt;
|
|
state.finished = false;
|
|
|
|
ccb->ccb_done = nvme_pt_done;
|
|
ccb->ccb_cookie = &state;
|
|
|
|
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
|
|
|
|
if (rv != 0) {
|
|
*ncqa = *nsqa = 0;
|
|
return EIO;
|
|
}
|
|
|
|
*ncqa = (pt.cpl.cdw0 >> 16) + 1;
|
|
*nsqa = (pt.cpl.cdw0 & 0xffff) + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
|
|
{
|
|
struct nvme_softc *sc = q->q_sc;
|
|
struct nvme_ccb *ccb;
|
|
bus_addr_t off;
|
|
uint64_t *prpl;
|
|
u_int i;
|
|
|
|
mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
|
|
cv_init(&q->q_ccb_wait, "nvmeqw");
|
|
q->q_ccb_waiting = false;
|
|
SIMPLEQ_INIT(&q->q_ccb_list);
|
|
|
|
q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
|
|
|
|
q->q_nccbs = nccbs;
|
|
q->q_ccb_prpls = nvme_dmamem_alloc(sc,
|
|
sizeof(*prpl) * sc->sc_max_sgl * nccbs);
|
|
|
|
prpl = NVME_DMA_KVA(q->q_ccb_prpls);
|
|
off = 0;
|
|
|
|
for (i = 0; i < nccbs; i++) {
|
|
ccb = &q->q_ccbs[i];
|
|
|
|
if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
|
|
sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
|
|
sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
|
|
&ccb->ccb_dmamap) != 0)
|
|
goto free_maps;
|
|
|
|
ccb->ccb_id = i;
|
|
ccb->ccb_prpl = prpl;
|
|
ccb->ccb_prpl_off = off;
|
|
ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
|
|
|
|
SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
|
|
|
|
prpl += sc->sc_max_sgl;
|
|
off += sizeof(*prpl) * sc->sc_max_sgl;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_maps:
|
|
nvme_ccbs_free(q);
|
|
return 1;
|
|
}
|
|
|
|
static struct nvme_ccb *
|
|
nvme_ccb_get(struct nvme_queue *q, bool wait)
|
|
{
|
|
struct nvme_ccb *ccb = NULL;
|
|
|
|
mutex_enter(&q->q_ccb_mtx);
|
|
again:
|
|
ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
|
|
if (ccb != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
|
|
#ifdef DEBUG
|
|
ccb->ccb_cookie = NULL;
|
|
#endif
|
|
} else {
|
|
if (__predict_false(wait)) {
|
|
q->q_ccb_waiting = true;
|
|
cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
|
|
goto again;
|
|
}
|
|
}
|
|
mutex_exit(&q->q_ccb_mtx);
|
|
|
|
return ccb;
|
|
}
|
|
|
|
static void
|
|
nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
|
|
{
|
|
|
|
mutex_enter(&q->q_ccb_mtx);
|
|
#ifdef DEBUG
|
|
ccb->ccb_cookie = (void *)NVME_CCB_FREE;
|
|
#endif
|
|
SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
|
|
|
|
/* It's unlikely there are any waiters, it's not used for regular I/O */
|
|
if (__predict_false(q->q_ccb_waiting)) {
|
|
q->q_ccb_waiting = false;
|
|
cv_broadcast(&q->q_ccb_wait);
|
|
}
|
|
|
|
mutex_exit(&q->q_ccb_mtx);
|
|
}
|
|
|
|
static void
|
|
nvme_ccbs_free(struct nvme_queue *q)
|
|
{
|
|
struct nvme_softc *sc = q->q_sc;
|
|
struct nvme_ccb *ccb;
|
|
|
|
mutex_enter(&q->q_ccb_mtx);
|
|
while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
|
|
SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
|
|
/*
|
|
* bus_dmamap_destroy() may call vm_map_lock() and rw_enter()
|
|
* internally. don't hold spin mutex
|
|
*/
|
|
mutex_exit(&q->q_ccb_mtx);
|
|
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
|
|
mutex_enter(&q->q_ccb_mtx);
|
|
}
|
|
mutex_exit(&q->q_ccb_mtx);
|
|
|
|
nvme_dmamem_free(sc, q->q_ccb_prpls);
|
|
kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
|
|
q->q_ccbs = NULL;
|
|
cv_destroy(&q->q_ccb_wait);
|
|
mutex_destroy(&q->q_ccb_mtx);
|
|
}
|
|
|
|
static struct nvme_queue *
|
|
nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
|
|
{
|
|
struct nvme_queue *q;
|
|
|
|
q = kmem_alloc(sizeof(*q), KM_SLEEP);
|
|
q->q_sc = sc;
|
|
q->q_sq_dmamem = nvme_dmamem_alloc(sc,
|
|
sizeof(struct nvme_sqe) * entries);
|
|
if (q->q_sq_dmamem == NULL)
|
|
goto free;
|
|
|
|
q->q_cq_dmamem = nvme_dmamem_alloc(sc,
|
|
sizeof(struct nvme_cqe) * entries);
|
|
if (q->q_cq_dmamem == NULL)
|
|
goto free_sq;
|
|
|
|
memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
|
|
memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
|
|
|
|
mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
|
|
mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
|
|
q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
|
|
q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
|
|
q->q_id = id;
|
|
q->q_entries = entries;
|
|
q->q_sq_tail = 0;
|
|
q->q_cq_head = 0;
|
|
q->q_cq_phase = NVME_CQE_PHASE;
|
|
|
|
nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
|
|
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* Due to definition of full and empty queue (queue is empty
|
|
* when head == tail, full when tail is one less then head),
|
|
* we can actually only have (entries - 1) in-flight commands.
|
|
*/
|
|
if (nvme_ccbs_alloc(q, entries - 1) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
|
|
goto free_cq;
|
|
}
|
|
|
|
return q;
|
|
|
|
free_cq:
|
|
nvme_dmamem_free(sc, q->q_cq_dmamem);
|
|
free_sq:
|
|
nvme_dmamem_free(sc, q->q_sq_dmamem);
|
|
free:
|
|
kmem_free(q, sizeof(*q));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
|
|
{
|
|
nvme_ccbs_free(q);
|
|
mutex_destroy(&q->q_sq_mtx);
|
|
mutex_destroy(&q->q_cq_mtx);
|
|
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
|
|
nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
|
|
nvme_dmamem_free(sc, q->q_cq_dmamem);
|
|
nvme_dmamem_free(sc, q->q_sq_dmamem);
|
|
kmem_free(q, sizeof(*q));
|
|
}
|
|
|
|
int
|
|
nvme_intr(void *xsc)
|
|
{
|
|
struct nvme_softc *sc = xsc;
|
|
|
|
/*
|
|
* INTx is level triggered, controller deasserts the interrupt only
|
|
* when we advance command queue head via write to the doorbell.
|
|
* Tell the controller to block the interrupts while we process
|
|
* the queue(s).
|
|
*/
|
|
nvme_write4(sc, NVME_INTMS, 1);
|
|
|
|
softint_schedule(sc->sc_softih[0]);
|
|
|
|
/* don't know, might not have been for us */
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
nvme_softintr_intx(void *xq)
|
|
{
|
|
struct nvme_queue *q = xq;
|
|
struct nvme_softc *sc = q->q_sc;
|
|
|
|
nvme_q_complete(sc, sc->sc_admin_q);
|
|
if (sc->sc_q != NULL)
|
|
nvme_q_complete(sc, sc->sc_q[0]);
|
|
|
|
/*
|
|
* Processing done, tell controller to issue interrupts again. There
|
|
* is no race, as NVMe spec requires the controller to maintain state,
|
|
* and assert the interrupt whenever there are unacknowledged
|
|
* completion queue entries.
|
|
*/
|
|
nvme_write4(sc, NVME_INTMC, 1);
|
|
}
|
|
|
|
int
|
|
nvme_intr_msi(void *xq)
|
|
{
|
|
struct nvme_queue *q = xq;
|
|
|
|
KASSERT(q && q->q_sc && q->q_sc->sc_softih
|
|
&& q->q_sc->sc_softih[q->q_id]);
|
|
|
|
/*
|
|
* MSI/MSI-X are edge triggered, so can handover processing to softint
|
|
* without masking the interrupt.
|
|
*/
|
|
softint_schedule(q->q_sc->sc_softih[q->q_id]);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
nvme_softintr_msi(void *xq)
|
|
{
|
|
struct nvme_queue *q = xq;
|
|
struct nvme_softc *sc = q->q_sc;
|
|
|
|
nvme_q_complete(sc, q);
|
|
}
|
|
|
|
static struct nvme_dmamem *
|
|
nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
|
|
{
|
|
struct nvme_dmamem *ndm;
|
|
int nsegs;
|
|
|
|
ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
|
|
if (ndm == NULL)
|
|
return NULL;
|
|
|
|
ndm->ndm_size = size;
|
|
|
|
if (bus_dmamap_create(sc->sc_dmat, size, btoc(round_page(size)), size, 0,
|
|
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
|
|
goto ndmfree;
|
|
|
|
if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
|
|
1, &nsegs, BUS_DMA_WAITOK) != 0)
|
|
goto destroy;
|
|
|
|
if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
|
|
&ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
|
|
goto free;
|
|
|
|
if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
|
|
NULL, BUS_DMA_WAITOK) != 0)
|
|
goto unmap;
|
|
|
|
memset(ndm->ndm_kva, 0, size);
|
|
bus_dmamap_sync(sc->sc_dmat, ndm->ndm_map, 0, size, BUS_DMASYNC_PREREAD);
|
|
|
|
return ndm;
|
|
|
|
unmap:
|
|
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
|
|
free:
|
|
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
|
|
destroy:
|
|
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
|
|
ndmfree:
|
|
kmem_free(ndm, sizeof(*ndm));
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
|
|
{
|
|
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
|
|
0, NVME_DMA_LEN(mem), ops);
|
|
}
|
|
|
|
void
|
|
nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
|
|
{
|
|
bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
|
|
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
|
|
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
|
|
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
|
|
kmem_free(ndm, sizeof(*ndm));
|
|
}
|
|
|
|
/*
|
|
* ioctl
|
|
*/
|
|
|
|
dev_type_open(nvmeopen);
|
|
dev_type_close(nvmeclose);
|
|
dev_type_ioctl(nvmeioctl);
|
|
|
|
const struct cdevsw nvme_cdevsw = {
|
|
.d_open = nvmeopen,
|
|
.d_close = nvmeclose,
|
|
.d_read = noread,
|
|
.d_write = nowrite,
|
|
.d_ioctl = nvmeioctl,
|
|
.d_stop = nostop,
|
|
.d_tty = notty,
|
|
.d_poll = nopoll,
|
|
.d_mmap = nommap,
|
|
.d_kqfilter = nokqfilter,
|
|
.d_discard = nodiscard,
|
|
.d_flag = D_OTHER,
|
|
};
|
|
|
|
/*
|
|
* Accept an open operation on the control device.
|
|
*/
|
|
int
|
|
nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
|
|
{
|
|
struct nvme_softc *sc;
|
|
int unit = minor(dev) / 0x10000;
|
|
int nsid = minor(dev) & 0xffff;
|
|
int nsidx;
|
|
|
|
if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
|
|
return ENXIO;
|
|
if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
|
|
return ENXIO;
|
|
|
|
if (nsid == 0) {
|
|
/* controller */
|
|
if (ISSET(sc->sc_flags, NVME_F_OPEN))
|
|
return EBUSY;
|
|
SET(sc->sc_flags, NVME_F_OPEN);
|
|
} else {
|
|
/* namespace */
|
|
nsidx = nsid - 1;
|
|
if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
|
|
return ENXIO;
|
|
if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
|
|
return EBUSY;
|
|
SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Accept the last close on the control device.
|
|
*/
|
|
int
|
|
nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
|
|
{
|
|
struct nvme_softc *sc;
|
|
int unit = minor(dev) / 0x10000;
|
|
int nsid = minor(dev) & 0xffff;
|
|
int nsidx;
|
|
|
|
sc = device_lookup_private(&nvme_cd, unit);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
|
|
if (nsid == 0) {
|
|
/* controller */
|
|
CLR(sc->sc_flags, NVME_F_OPEN);
|
|
} else {
|
|
/* namespace */
|
|
nsidx = nsid - 1;
|
|
if (nsidx >= sc->sc_nn)
|
|
return ENXIO;
|
|
CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle control operations.
|
|
*/
|
|
int
|
|
nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
|
|
{
|
|
struct nvme_softc *sc;
|
|
int unit = minor(dev) / 0x10000;
|
|
int nsid = minor(dev) & 0xffff;
|
|
struct nvme_pt_command *pt;
|
|
|
|
sc = device_lookup_private(&nvme_cd, unit);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
|
|
switch (cmd) {
|
|
case NVME_PASSTHROUGH_CMD:
|
|
pt = data;
|
|
return nvme_command_passthrough(sc, data,
|
|
nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
|
|
}
|
|
|
|
return ENOTTY;
|
|
}
|