NetBSD/sys/dev/ic/ciss.c

1685 lines
45 KiB
C

/* $NetBSD: ciss.c,v 1.50 2020/07/16 14:39:33 jdolecek Exp $ */
/* $OpenBSD: ciss.c,v 1.68 2013/05/30 16:15:02 deraadt Exp $ */
/*
* Copyright (c) 2005,2006 Michael Shalayeff
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ciss.c,v 1.50 2020/07/16 14:39:33 jdolecek Exp $");
#include "bio.h"
/* #define CISS_DEBUG */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsi_disk.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/ic/cissreg.h>
#include <dev/ic/cissvar.h>
#if NBIO > 0
#include <dev/biovar.h>
#endif /* NBIO > 0 */
#ifdef CISS_DEBUG
#define CISS_DPRINTF(m,a) if (ciss_debug & (m)) printf a
#define CISS_D_CMD 0x0001
#define CISS_D_INTR 0x0002
#define CISS_D_MISC 0x0004
#define CISS_D_DMA 0x0008
#define CISS_D_IOCTL 0x0010
#define CISS_D_ERR 0x0020
int ciss_debug = 0
| CISS_D_CMD
| CISS_D_INTR
| CISS_D_MISC
| CISS_D_DMA
| CISS_D_IOCTL
| CISS_D_ERR
;
#else
#define CISS_DPRINTF(m,a) /* m, a */
#endif
static void ciss_scsi_cmd(struct scsipi_channel *chan,
scsipi_adapter_req_t req, void *arg);
static int ciss_scsi_ioctl(struct scsipi_channel *chan, u_long cmd,
void *addr, int flag, struct proc *p);
static void cissminphys(struct buf *bp);
static int ciss_sync(struct ciss_softc *sc);
static void ciss_heartbeat(void *v);
static void ciss_shutdown(void *v);
static struct ciss_ccb *ciss_get_ccb(struct ciss_softc *);
static void ciss_put_ccb(struct ciss_softc *, struct ciss_ccb *);
static int ciss_cmd(struct ciss_softc *, struct ciss_ccb *, int, int);
static int ciss_done(struct ciss_softc *, struct ciss_ccb *);
static int ciss_error(struct ciss_softc *, struct ciss_ccb *);
struct ciss_ld *ciss_pdscan(struct ciss_softc *sc, int ld);
static int ciss_inq(struct ciss_softc *sc, struct ciss_inquiry *inq);
int ciss_ldid(struct ciss_softc *, int, struct ciss_ldid *);
int ciss_ldstat(struct ciss_softc *, int, struct ciss_ldstat *);
static int ciss_ldmap(struct ciss_softc *sc);
int ciss_pdid(struct ciss_softc *, u_int8_t, struct ciss_pdid *, int);
#if NBIO > 0
int ciss_ioctl(device_t, u_long, void *);
int ciss_ioctl_vol(struct ciss_softc *, struct bioc_vol *);
int ciss_blink(struct ciss_softc *, int, int, int, struct ciss_blink *);
int ciss_create_sensors(struct ciss_softc *);
void ciss_sensor_refresh(struct sysmon_envsys *, envsys_data_t *);
#endif /* NBIO > 0 */
static struct ciss_ccb *
ciss_get_ccb(struct ciss_softc *sc)
{
struct ciss_ccb *ccb;
mutex_enter(&sc->sc_mutex);
if ((ccb = TAILQ_LAST(&sc->sc_free_ccb, ciss_queue_head))) {
TAILQ_REMOVE(&sc->sc_free_ccb, ccb, ccb_link);
ccb->ccb_state = CISS_CCB_READY;
}
mutex_exit(&sc->sc_mutex);
return ccb;
}
static void
ciss_put_ccb(struct ciss_softc *sc, struct ciss_ccb *ccb)
{
ccb->ccb_state = CISS_CCB_FREE;
mutex_enter(&sc->sc_mutex);
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, ccb_link);
mutex_exit(&sc->sc_mutex);
}
static int
ciss_init_perf(struct ciss_softc *sc)
{
struct ciss_perf_config *pc = &sc->perfcfg;
int error, total, rseg;
if (sc->cfg.max_perfomant_mode_cmds)
sc->maxcmd = sc->cfg.max_perfomant_mode_cmds;
bus_space_read_region_4(sc->sc_iot, sc->cfg_ioh,
sc->cfgoff + sc->cfg.troff,
(u_int32_t *)pc, sizeof(*pc) / 4);
total = sizeof(uint64_t) * sc->maxcmd;
if ((error = bus_dmamem_alloc(sc->sc_dmat, total, PAGE_SIZE, 0,
sc->replyseg, 1, &rseg, BUS_DMA_WAITOK))) {
aprint_error(": cannot allocate perf area (%d)\n", error);
return -1;
}
if ((error = bus_dmamem_map(sc->sc_dmat, sc->replyseg, rseg, total,
(void **)&sc->perf_reply, BUS_DMA_WAITOK))) {
aprint_error(": cannot map perf area (%d)\n", error);
bus_dmamem_free(sc->sc_dmat, sc->replyseg, 1);
return -1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, total, 1,
total, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &sc->replymap))) {
aprint_error(": cannot create perf dmamap (%d)\n", error);
bus_dmamem_unmap(sc->sc_dmat, sc->perf_reply, total);
sc->perf_reply = NULL;
bus_dmamem_free(sc->sc_dmat, sc->replyseg, 1);
return -1;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->replymap, sc->perf_reply,
total, NULL, BUS_DMA_WAITOK))) {
aprint_error(": cannot load perf dmamap (%d)\n", error);
bus_dmamap_destroy(sc->sc_dmat, sc->replymap);
bus_dmamem_unmap(sc->sc_dmat, sc->perf_reply, total);
sc->perf_reply = NULL;
bus_dmamem_free(sc->sc_dmat, sc->replyseg, 1);
return -1;
}
memset(sc->perf_reply, 0, total);
sc->perf_cycle = 0x1;
sc->perf_rqidx = 0;
/*
* Preload the fetch table with common command sizes. This allows the
* hardware to not waste bus cycles for typical i/o commands, but also
* not tax the driver to be too exact in choosing sizes. The table
* is optimized for page-aligned i/o's, but since most i/o comes
* from the various pagers, it's a reasonable assumption to make.
*/
#define CISS_FETCH_COUNT(x) \
(sizeof(struct ciss_cmd) + sizeof(struct ciss_sg_entry) * (x - 1) + 15) / 16
pc->fetch_count[CISS_SG_FETCH_NONE] = CISS_FETCH_COUNT(0);
pc->fetch_count[CISS_SG_FETCH_1] = CISS_FETCH_COUNT(1);
pc->fetch_count[CISS_SG_FETCH_2] = CISS_FETCH_COUNT(2);
pc->fetch_count[CISS_SG_FETCH_4] = CISS_FETCH_COUNT(4);
pc->fetch_count[CISS_SG_FETCH_8] = CISS_FETCH_COUNT(8);
pc->fetch_count[CISS_SG_FETCH_16] = CISS_FETCH_COUNT(16);
pc->fetch_count[CISS_SG_FETCH_32] = CISS_FETCH_COUNT(32);
pc->fetch_count[CISS_SG_FETCH_MAX] = (sc->ccblen + 15) / 16;
pc->rq_size = sc->maxcmd;
pc->rq_count = 1; /* Hardcode for a single queue */
pc->rq_bank_hi = 0;
pc->rq_bank_lo = 0;
pc->rq[0].rq_addr_hi = 0x0;
pc->rq[0].rq_addr_lo = sc->replymap->dm_segs[0].ds_addr;
/*
* Write back the changed configuration. Tt will be picked up
* by controller together with general configuration later on.
*/
bus_space_write_region_4(sc->sc_iot, sc->cfg_ioh,
sc->cfgoff + sc->cfg.troff,
(u_int32_t *)pc, sizeof(*pc) / 4);
bus_space_barrier(sc->sc_iot, sc->cfg_ioh,
sc->cfgoff + sc->cfg.troff, sizeof(*pc),
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
return 0;
}
int
ciss_attach(struct ciss_softc *sc)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
struct ciss_inquiry *inq;
bus_dma_segment_t seg[1];
int error, i, total, rseg, maxfer;
paddr_t pa;
if (sc->cfg.signature != CISS_SIGNATURE) {
aprint_error(": bad sign 0x%08x\n", sc->cfg.signature);
return -1;
}
if (!(sc->cfg.methods & (CISS_METH_SIMPL|CISS_METH_PERF))) {
aprint_error(": no supported method 0x%08x\n", sc->cfg.methods);
return -1;
}
if (!sc->cfg.maxsg)
sc->cfg.maxsg = MAXPHYS / PAGE_SIZE + 1;
sc->maxcmd = sc->cfg.maxcmd;
sc->maxsg = sc->cfg.maxsg;
if (sc->maxsg > MAXPHYS / PAGE_SIZE + 1)
sc->maxsg = MAXPHYS / PAGE_SIZE + 1;
i = sizeof(struct ciss_ccb) +
sizeof(ccb->ccb_cmd.sgl[0]) * (sc->maxsg - 1);
for (sc->ccblen = 0x10; sc->ccblen < i; sc->ccblen <<= 1);
sc->cfg.paddr_lim = 0; /* 32bit addrs */
sc->cfg.int_delay = 0; /* disable coalescing */
sc->cfg.int_count = 0;
strlcpy(sc->cfg.hostname, "HUMPPA", sizeof(sc->cfg.hostname));
sc->cfg.driverf |= CISS_DRV_PRF; /* enable prefetch */
if (CISS_PERF_SUPPORTED(sc)) {
sc->cfg.rmethod = CISS_METH_PERF | CISS_METH_SHORT_TAG;
if (ciss_init_perf(sc) != 0) {
/* Don't try to fallback, just bail out */
return -1;
}
} else {
sc->cfg.rmethod = CISS_METH_SIMPL;
}
bus_space_write_region_4(sc->sc_iot, sc->cfg_ioh, sc->cfgoff,
(u_int32_t *)&sc->cfg, sizeof(sc->cfg) / 4);
bus_space_barrier(sc->sc_iot, sc->cfg_ioh, sc->cfgoff, sizeof(sc->cfg),
BUS_SPACE_BARRIER_READ|BUS_SPACE_BARRIER_WRITE);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_IDB, CISS_IDB_CFG);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, CISS_IDB, 4,
BUS_SPACE_BARRIER_WRITE);
for (i = 1000; i--; DELAY(1000)) {
/* XXX maybe IDB is really 64bit? - hp dl380 needs this */
(void)bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_IDB + 4);
if (!(bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_IDB) & CISS_IDB_CFG))
break;
bus_space_barrier(sc->sc_iot, sc->sc_ioh, CISS_IDB, 4,
BUS_SPACE_BARRIER_READ);
}
if (bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_IDB) & CISS_IDB_CFG) {
aprint_error(": cannot set config\n");
return -1;
}
bus_space_read_region_4(sc->sc_iot, sc->cfg_ioh, sc->cfgoff,
(u_int32_t *)&sc->cfg, sizeof(sc->cfg) / 4);
if (!(sc->cfg.amethod & (CISS_METH_SIMPL|CISS_METH_PERF))) {
aprint_error(": cannot set method 0x%08x\n", sc->cfg.amethod);
return -1;
}
/* i'm ready for you and i hope you're ready for me */
for (i = 30000; i--; DELAY(1000)) {
if (bus_space_read_4(sc->sc_iot, sc->cfg_ioh, sc->cfgoff +
offsetof(struct ciss_config, amethod)) & CISS_METH_READY)
break;
bus_space_barrier(sc->sc_iot, sc->cfg_ioh, sc->cfgoff +
offsetof(struct ciss_config, amethod), 4,
BUS_SPACE_BARRIER_READ);
}
if (!(bus_space_read_4(sc->sc_iot, sc->cfg_ioh, sc->cfgoff +
offsetof(struct ciss_config, amethod)) & CISS_METH_READY)) {
aprint_error(": she never came ready for me 0x%08x\n",
sc->cfg.amethod);
return -1;
}
mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_VM);
mutex_init(&sc->sc_mutex_scratch, MUTEX_DEFAULT, IPL_VM);
cv_init(&sc->sc_condvar, "ciss_cmd");
total = sc->ccblen * sc->maxcmd;
if ((error = bus_dmamem_alloc(sc->sc_dmat, total, PAGE_SIZE, 0,
sc->cmdseg, 1, &rseg, BUS_DMA_NOWAIT))) {
aprint_error(": cannot allocate CCBs (%d)\n", error);
return -1;
}
if ((error = bus_dmamem_map(sc->sc_dmat, sc->cmdseg, rseg, total,
(void **)&sc->ccbs, BUS_DMA_NOWAIT))) {
aprint_error(": cannot map CCBs (%d)\n", error);
return -1;
}
memset(sc->ccbs, 0, total);
if ((error = bus_dmamap_create(sc->sc_dmat, total, 1,
total, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->cmdmap))) {
aprint_error(": cannot create CCBs dmamap (%d)\n", error);
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
return -1;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->cmdmap, sc->ccbs, total,
NULL, BUS_DMA_NOWAIT))) {
aprint_error(": cannot load CCBs dmamap (%d)\n", error);
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
TAILQ_INIT(&sc->sc_free_ccb);
maxfer = sc->maxsg * PAGE_SIZE;
for (i = 0; total > 0 && i < sc->maxcmd; i++, total -= sc->ccblen) {
ccb = (struct ciss_ccb *) ((char *)sc->ccbs + i * sc->ccblen);
cmd = &ccb->ccb_cmd;
pa = sc->cmdseg[0].ds_addr + i * sc->ccblen;
ccb->ccb_cmdpa = pa + offsetof(struct ciss_ccb, ccb_cmd);
ccb->ccb_state = CISS_CCB_FREE;
cmd->id = htole32(i << 2);
cmd->id_hi = htole32(0);
cmd->sgin = sc->maxsg;
cmd->sglen = htole16((u_int16_t)cmd->sgin);
cmd->err_len = htole32(sizeof(ccb->ccb_err));
pa += offsetof(struct ciss_ccb, ccb_err);
cmd->err_pa = htole64((u_int64_t)pa);
if ((error = bus_dmamap_create(sc->sc_dmat, maxfer, sc->maxsg,
maxfer, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&ccb->ccb_dmamap)))
break;
TAILQ_INSERT_TAIL(&sc->sc_free_ccb, ccb, ccb_link);
}
if (i < sc->maxcmd) {
aprint_error(": cannot create ccb#%d dmamap (%d)\n", i, error);
if (i == 0) {
/* TODO leaking cmd's dmamaps and shitz */
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
}
if ((error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, 0,
seg, 1, &rseg, BUS_DMA_NOWAIT))) {
aprint_error(": cannot allocate scratch buffer (%d)\n", error);
return -1;
}
if ((error = bus_dmamem_map(sc->sc_dmat, seg, rseg, PAGE_SIZE,
(void **)&sc->scratch, BUS_DMA_NOWAIT))) {
aprint_error(": cannot map scratch buffer (%d)\n", error);
return -1;
}
memset(sc->scratch, 0, PAGE_SIZE);
sc->sc_waitflag = XS_CTL_NOSLEEP; /* can't sleep yet */
mutex_enter(&sc->sc_mutex_scratch); /* is this really needed? */
inq = sc->scratch;
if (ciss_inq(sc, inq)) {
aprint_error(": adapter inquiry failed\n");
mutex_exit(&sc->sc_mutex_scratch);
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
if (!(inq->flags & CISS_INQ_BIGMAP)) {
aprint_error(": big map is not supported, flags=0x%x\n",
inq->flags);
mutex_exit(&sc->sc_mutex_scratch);
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
sc->maxunits = inq->numld;
sc->nbus = inq->nscsi_bus;
sc->ndrives = inq->buswidth ? inq->buswidth : 256;
aprint_normal(": %d LD%s, HW rev %d, FW %4.4s/%4.4s",
inq->numld, inq->numld == 1? "" : "s",
inq->hw_rev, inq->fw_running, inq->fw_stored);
if (sc->cfg.methods & CISS_METH_FIFO64)
aprint_normal(", 64bit fifo");
else if (sc->cfg.methods & CISS_METH_FIFO64_RRO)
aprint_normal(", 64bit fifo rro");
aprint_normal(", method %s %#x",
CISS_IS_PERF(sc) ? "perf" : "simple",
sc->cfg.amethod);
aprint_normal("\n");
mutex_exit(&sc->sc_mutex_scratch);
callout_init(&sc->sc_hb, 0);
callout_setfunc(&sc->sc_hb, ciss_heartbeat, sc);
callout_schedule(&sc->sc_hb, hz * 3);
/* map LDs */
if (ciss_ldmap(sc)) {
aprint_error_dev(sc->sc_dev, "adapter LD map failed\n");
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
sc->sc_lds = malloc(sc->maxunits * sizeof(*sc->sc_lds),
M_DEVBUF, M_WAITOK | M_ZERO);
sc->sc_flush = CISS_FLUSH_ENABLE;
if (!(sc->sc_sh = shutdownhook_establish(ciss_shutdown, sc))) {
aprint_error_dev(sc->sc_dev,
"unable to establish shutdown hook\n");
bus_dmamem_free(sc->sc_dmat, sc->cmdseg, 1);
bus_dmamap_destroy(sc->sc_dmat, sc->cmdmap);
return -1;
}
sc->sc_channel.chan_adapter = &sc->sc_adapter;
sc->sc_channel.chan_bustype = &scsi_bustype;
sc->sc_channel.chan_channel = 0;
sc->sc_channel.chan_ntargets = sc->maxunits;
sc->sc_channel.chan_nluns = 1; /* ciss doesn't really have SCSI luns */
sc->sc_channel.chan_openings = sc->maxcmd;
#if NBIO > 0
/* XXX Reserve some ccb's for sensor and bioctl. */
if (sc->sc_channel.chan_openings > 2)
sc->sc_channel.chan_openings -= 2;
#endif
sc->sc_channel.chan_flags = 0;
sc->sc_channel.chan_id = sc->maxunits;
sc->sc_adapter.adapt_dev = sc->sc_dev;
sc->sc_adapter.adapt_openings = sc->sc_channel.chan_openings;
sc->sc_adapter.adapt_max_periph = uimin(sc->sc_adapter.adapt_openings, 256);
sc->sc_adapter.adapt_request = ciss_scsi_cmd;
sc->sc_adapter.adapt_minphys = cissminphys;
sc->sc_adapter.adapt_ioctl = ciss_scsi_ioctl;
sc->sc_adapter.adapt_nchannels = 1;
config_found(sc->sc_dev, &sc->sc_channel, scsiprint);
#if 0
sc->sc_link_raw.adapter_softc = sc;
sc->sc_link.openings = sc->sc_channel.chan_openings;
sc->sc_link_raw.adapter = &ciss_raw_switch;
sc->sc_link_raw.adapter_target = sc->ndrives;
sc->sc_link_raw.adapter_buswidth = sc->ndrives;
config_found(sc->sc_dev, &sc->sc_channel, scsiprint);
#endif
#if NBIO > 0
/* now map all the physdevs into their lds */
/* XXX currently we assign all of them into ld0 */
for (i = 0; i < sc->maxunits && i < 1; i++)
if (!(sc->sc_lds[i] = ciss_pdscan(sc, i))) {
sc->sc_waitflag = 0; /* we can sleep now */
return 0;
}
if (bio_register(sc->sc_dev, ciss_ioctl) != 0)
aprint_error_dev(sc->sc_dev, "controller registration failed");
else
sc->sc_ioctl = ciss_ioctl;
if (ciss_create_sensors(sc) != 0)
aprint_error_dev(sc->sc_dev, "unable to create sensors");
#endif
sc->sc_waitflag = 0; /* we can sleep now */
return 0;
}
static void
ciss_shutdown(void *v)
{
struct ciss_softc *sc = v;
sc->sc_flush = CISS_FLUSH_DISABLE;
/* timeout_del(&sc->sc_hb); */
ciss_sync(sc);
}
static void
cissminphys(struct buf *bp)
{
#if 0 /* TODO */
#define CISS_MAXFER (PAGE_SIZE * (sc->maxsg + 1))
if (bp->b_bcount > CISS_MAXFER)
bp->b_bcount = CISS_MAXFER;
#endif
minphys(bp);
}
static void
ciss_enqueue(struct ciss_softc *sc, ciss_queue_head *q, uint32_t id)
{
struct ciss_ccb *ccb;
KASSERT(mutex_owned(&sc->sc_mutex));
KASSERT((id >> 2) <= sc->maxcmd);
ccb = (struct ciss_ccb *) ((char *)sc->ccbs + (id >> 2) * sc->ccblen);
ccb->ccb_cmd.id = htole32(id);
ccb->ccb_cmd.id_hi = htole32(0);
TAILQ_INSERT_TAIL(q, ccb, ccb_link);
}
static void
ciss_completed_simple(struct ciss_softc *sc, ciss_queue_head *q)
{
uint32_t id;
KASSERT(mutex_owned(&sc->sc_mutex));
for (;;) {
if (sc->cfg.methods & CISS_METH_FIFO64) {
if (bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CISS_OUTQ64_HI) == 0xffffffff) {
CISS_DPRINTF(CISS_D_CMD, ("Q"));
break;
}
id = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CISS_OUTQ64_LO);
} else if (sc->cfg.methods & CISS_METH_FIFO64_RRO) {
id = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CISS_OUTQ64_LO);
if (id == 0xffffffff) {
CISS_DPRINTF(CISS_D_CMD, ("Q"));
break;
}
(void)bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CISS_OUTQ64_HI);
} else {
id = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
CISS_OUTQ);
if (id == 0xffffffff) {
CISS_DPRINTF(CISS_D_CMD, ("Q"));
break;
}
}
CISS_DPRINTF(CISS_D_CMD, ("got=0x%x ", id));
ciss_enqueue(sc, q, id);
}
}
static void
ciss_completed_perf(struct ciss_softc *sc, ciss_queue_head *q)
{
uint32_t id;
KASSERT(mutex_owned(&sc->sc_mutex));
for (;;) {
id = sc->perf_reply[sc->perf_rqidx];
if ((id & CISS_CYCLE_MASK) != sc->perf_cycle)
break;
if (++sc->perf_rqidx == sc->maxcmd) {
sc->perf_rqidx = 0;
sc->perf_cycle ^= 1;
}
CISS_DPRINTF(CISS_D_CMD, ("got=0x%x ", id));
ciss_enqueue(sc, q, id);
}
}
static int
ciss_poll(struct ciss_softc *sc, struct ciss_ccb *ccb, int ms)
{
ciss_queue_head q;
struct ciss_ccb *ccb1;
TAILQ_INIT(&q);
ms /= 10;
while (ms-- > 0) {
DELAY(10);
mutex_enter(&sc->sc_mutex);
if (CISS_IS_PERF(sc))
ciss_completed_perf(sc, &q);
else
ciss_completed_simple(sc, &q);
mutex_exit(&sc->sc_mutex);
while (!TAILQ_EMPTY(&q)) {
ccb1 = TAILQ_FIRST(&q);
TAILQ_REMOVE(&q, ccb1, ccb_link);
KASSERT(ccb1->ccb_state == CISS_CCB_ONQ);
ciss_done(sc, ccb1);
if (ccb1 == ccb) {
KASSERT(TAILQ_EMPTY(&q));
return 0;
}
}
}
return ETIMEDOUT;
}
static int
ciss_wait(struct ciss_softc *sc, struct ciss_ccb *ccb, int ms)
{
int tohz, etick;
tohz = mstohz(ms);
if (tohz == 0)
tohz = 1;
etick = getticks() + tohz;
for (;;) {
CISS_DPRINTF(CISS_D_CMD, ("cv_timedwait(%d) ", tohz));
mutex_enter(&sc->sc_mutex);
if (cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, tohz)
== EWOULDBLOCK) {
mutex_exit(&sc->sc_mutex);
return EWOULDBLOCK;
}
mutex_exit(&sc->sc_mutex);
if (ccb->ccb_state == CISS_CCB_ONQ) {
ciss_done(sc, ccb);
return 0;
}
tohz = etick - getticks();
if (tohz <= 0)
return EWOULDBLOCK;
CISS_DPRINTF(CISS_D_CMD, ("T"));
}
}
/*
* submit a command and optionally wait for completition.
* wait arg abuses XS_CTL_POLL|XS_CTL_NOSLEEP flags to request
* to wait (XS_CTL_POLL) and to allow tsleep() (!XS_CTL_NOSLEEP)
* instead of busy loop waiting
*/
static int
ciss_cmd(struct ciss_softc *sc, struct ciss_ccb *ccb, int flags, int wait)
{
struct ciss_cmd *cmd = &ccb->ccb_cmd;
bus_dmamap_t dmap = ccb->ccb_dmamap;
u_int64_t addr;
int i, error = 0;
const bool pollsleep = ((wait & (XS_CTL_POLL|XS_CTL_NOSLEEP)) ==
XS_CTL_POLL);
if (ccb->ccb_state != CISS_CCB_READY) {
printf("%s: ccb %d not ready state=0x%x\n", device_xname(sc->sc_dev),
cmd->id, ccb->ccb_state);
return (EINVAL);
}
if (ccb->ccb_data) {
bus_dma_segment_t *sgd;
if ((error = bus_dmamap_load(sc->sc_dmat, dmap, ccb->ccb_data,
ccb->ccb_len, NULL, flags))) {
if (error == EFBIG)
printf("more than %d dma segs\n", sc->maxsg);
else
printf("error %d loading dma map\n", error);
ciss_put_ccb(sc, ccb);
return (error);
}
cmd->sgin = dmap->dm_nsegs;
sgd = dmap->dm_segs;
CISS_DPRINTF(CISS_D_DMA, ("data=%p/%zu<%#" PRIxPADDR "/%zu",
ccb->ccb_data, ccb->ccb_len, sgd->ds_addr, sgd->ds_len));
for (i = 0; i < dmap->dm_nsegs; sgd++, i++) {
cmd->sgl[i].addr_lo = htole32(sgd->ds_addr);
cmd->sgl[i].addr_hi =
htole32((u_int64_t)sgd->ds_addr >> 32);
cmd->sgl[i].len = htole32(sgd->ds_len);
cmd->sgl[i].flags = htole32(0);
if (i) {
CISS_DPRINTF(CISS_D_DMA,
(",%#" PRIxPADDR "/%zu", sgd->ds_addr,
sgd->ds_len));
}
}
CISS_DPRINTF(CISS_D_DMA, ("> "));
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
if (dmap->dm_nsegs == 0)
ccb->ccb_sg_tag = CISS_SG_FETCH_NONE;
else if (dmap->dm_nsegs == 1)
ccb->ccb_sg_tag = CISS_SG_FETCH_1;
else if (dmap->dm_nsegs == 2)
ccb->ccb_sg_tag = CISS_SG_FETCH_2;
else if (dmap->dm_nsegs <= 4)
ccb->ccb_sg_tag = CISS_SG_FETCH_4;
else if (dmap->dm_nsegs <= 8)
ccb->ccb_sg_tag = CISS_SG_FETCH_8;
else if (dmap->dm_nsegs <= 16)
ccb->ccb_sg_tag = CISS_SG_FETCH_16;
else if (dmap->dm_nsegs <= 32)
ccb->ccb_sg_tag = CISS_SG_FETCH_32;
else
ccb->ccb_sg_tag = CISS_SG_FETCH_MAX;
} else {
ccb->ccb_sg_tag = CISS_SG_FETCH_NONE;
cmd->sgin = 0;
}
cmd->sglen = htole16((u_int16_t)cmd->sgin);
memset(&ccb->ccb_err, 0, sizeof(ccb->ccb_err));
bus_dmamap_sync(sc->sc_dmat, sc->cmdmap, 0, sc->cmdmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if ((wait & (XS_CTL_POLL|XS_CTL_NOSLEEP)) == (XS_CTL_POLL|XS_CTL_NOSLEEP))
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_IMR,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_IMR) | sc->iem);
if (!pollsleep)
ccb->ccb_state = CISS_CCB_ONQ;
else
ccb->ccb_state = CISS_CCB_POLL;
CISS_DPRINTF(CISS_D_CMD, ("submit=0x%x ", cmd->id));
addr = (u_int64_t)ccb->ccb_cmdpa;
if (CISS_IS_PERF(sc)) {
KASSERT((addr & 0xf) == 0);
/*
* The bits in addr in performant mean:
* - performant mode bit (bit 0)
* - pull count (bits 1-3)
* There is no support for ioaccel mode
*/
addr |= 1 | (ccb->ccb_sg_tag << 1);
}
if (sc->cfg.methods & (CISS_METH_FIFO64|CISS_METH_FIFO64_RRO)) {
/*
* Write the upper 32bits immediately before the lower
* 32bits and set bit 63 to indicate 64bit FIFO mode.
*/
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_INQ64_HI,
(addr >> 32) | 0x80000000);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_INQ64_LO,
addr & 0x00000000ffffffffULL);
} else
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_INQ,
(uint32_t)addr);
if (wait & XS_CTL_POLL) {
int ms;
CISS_DPRINTF(CISS_D_CMD, ("waiting "));
ms = ccb->ccb_xs ? ccb->ccb_xs->timeout : 60000;
if (pollsleep)
error = ciss_wait(sc, ccb, ms);
else
error = ciss_poll(sc, ccb, ms);
/* if never got a chance to be done above... */
if (ccb->ccb_state != CISS_CCB_FREE) {
KASSERT(error);
ccb->ccb_err.cmd_stat = CISS_ERR_TMO;
error = ciss_done(sc, ccb);
}
CISS_DPRINTF(CISS_D_CMD, ("done %d:%d",
ccb->ccb_err.cmd_stat, ccb->ccb_err.scsi_stat));
}
if ((wait & (XS_CTL_POLL|XS_CTL_NOSLEEP)) == (XS_CTL_POLL|XS_CTL_NOSLEEP))
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_IMR,
bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_IMR) & ~sc->iem);
return (error);
}
static int
ciss_done(struct ciss_softc *sc, struct ciss_ccb *ccb)
{
struct scsipi_xfer *xs = ccb->ccb_xs;
struct ciss_cmd *cmd;
int error = 0;
CISS_DPRINTF(CISS_D_CMD, ("ciss_done(%p) ", ccb));
if (ccb->ccb_state != CISS_CCB_ONQ) {
printf("%s: unqueued ccb %p ready, state=0x%x\n",
device_xname(sc->sc_dev), ccb, ccb->ccb_state);
return 1;
}
ccb->ccb_state = CISS_CCB_READY;
if (ccb->ccb_cmd.id & CISS_CMD_ERR)
error = ciss_error(sc, ccb);
cmd = &ccb->ccb_cmd;
if (ccb->ccb_data) {
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, (cmd->flags & CISS_CDB_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap);
ccb->ccb_xs = NULL;
ccb->ccb_data = NULL;
}
ciss_put_ccb(sc, ccb);
if (xs) {
xs->resid = 0;
CISS_DPRINTF(CISS_D_CMD, ("scsipi_done(%p) ", xs));
if (xs->cmd->opcode == INQUIRY) {
struct scsipi_inquiry_data *inq;
inq = (struct scsipi_inquiry_data *)xs->data;
if ((inq->version & SID_ANSII) == 0 &&
(inq->flags3 & SID_CmdQue) != 0) {
inq->version |= 2;
}
}
scsipi_done(xs);
}
return error;
}
static int
ciss_error(struct ciss_softc *sc, struct ciss_ccb *ccb)
{
struct ciss_error *err = &ccb->ccb_err;
struct scsipi_xfer *xs = ccb->ccb_xs;
int rv;
switch ((rv = le16toh(err->cmd_stat))) {
case CISS_ERR_OK:
rv = 0;
break;
case CISS_ERR_INVCMD:
if (xs == NULL ||
xs->cmd->opcode != SCSI_SYNCHRONIZE_CACHE_10)
printf("%s: invalid cmd 0x%x: 0x%x is not valid @ 0x%x[%d]\n",
device_xname(sc->sc_dev), ccb->ccb_cmd.id,
err->err_info, err->err_type[3], err->err_type[2]);
if (xs) {
memset(&xs->sense, 0, sizeof(xs->sense));
xs->sense.scsi_sense.response_code =
SSD_RCODE_CURRENT | SSD_RCODE_VALID;
xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
xs->sense.scsi_sense.asc = 0x24; /* ill field */
xs->sense.scsi_sense.ascq = 0x0;
xs->error = XS_SENSE;
}
rv = EIO;
break;
case CISS_ERR_TMO:
xs->error = XS_TIMEOUT;
rv = ETIMEDOUT;
break;
case CISS_ERR_UNRUN:
/* Underrun */
xs->resid = le32toh(err->resid);
CISS_DPRINTF(CISS_D_CMD, (" underrun resid=0x%x ",
xs->resid));
rv = EIO;
break;
default:
if (xs) {
CISS_DPRINTF(CISS_D_CMD, ("scsi_stat=%x ", err->scsi_stat));
switch (err->scsi_stat) {
case SCSI_CHECK:
xs->error = XS_SENSE;
memcpy(&xs->sense, &err->sense[0],
sizeof(xs->sense));
CISS_DPRINTF(CISS_D_CMD, (" sense=%02x %02x %02x %02x ",
err->sense[0], err->sense[1], err->sense[2], err->sense[3]));
rv = EIO;
break;
case XS_BUSY:
xs->error = XS_BUSY;
rv = EBUSY;
break;
default:
CISS_DPRINTF(CISS_D_ERR, ("%s: "
"cmd_stat=%x scsi_stat=0x%x resid=0x%x\n",
device_xname(sc->sc_dev), rv, err->scsi_stat,
le32toh(err->resid)));
printf("ciss driver stuffup in %s:%d: %s()\n",
__FILE__, __LINE__, __func__);
xs->error = XS_DRIVER_STUFFUP;
rv = EIO;
break;
}
xs->resid = le32toh(err->resid);
} else
rv = EIO;
}
ccb->ccb_cmd.id &= htole32(~3);
return rv;
}
static int
ciss_inq(struct ciss_softc *sc, struct ciss_inquiry *inq)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
ccb = ciss_get_ccb(sc);
ccb->ccb_len = sizeof(*inq);
ccb->ccb_data = inq;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = htole32(CISS_CMD_MODE_PERIPH);
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_IN;
cmd->tmo = htole16(0);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_GET;
cmd->cdb[6] = CISS_CMS_CTRL_CTRL;
cmd->cdb[7] = sizeof(*inq) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*inq) & 0xff;
return ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL|XS_CTL_NOSLEEP);
}
static int
ciss_ldmap(struct ciss_softc *sc)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
struct ciss_ldmap *lmap;
int total, rv;
mutex_enter(&sc->sc_mutex_scratch);
lmap = sc->scratch;
lmap->size = htobe32(sc->maxunits * sizeof(lmap->map));
total = sizeof(*lmap) + (sc->maxunits - 1) * sizeof(lmap->map);
ccb = ciss_get_ccb(sc);
ccb->ccb_len = total;
ccb->ccb_data = lmap;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = CISS_CMD_MODE_PERIPH;
cmd->tgt2 = 0;
cmd->cdblen = 12;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_IN;
cmd->tmo = htole16(30);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_LDMAP;
cmd->cdb[8] = total >> 8; /* biiiig endian */
cmd->cdb[9] = total & 0xff;
rv = ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL|XS_CTL_NOSLEEP);
if (rv) {
mutex_exit(&sc->sc_mutex_scratch);
return rv;
}
CISS_DPRINTF(CISS_D_MISC, ("lmap %x:%x\n",
lmap->map[0].tgt, lmap->map[0].tgt2));
mutex_exit(&sc->sc_mutex_scratch);
return 0;
}
static int
ciss_sync(struct ciss_softc *sc)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
struct ciss_flush *flush;
int rv;
mutex_enter(&sc->sc_mutex_scratch);
flush = sc->scratch;
memset(flush, 0, sizeof(*flush));
flush->flush = sc->sc_flush;
ccb = ciss_get_ccb(sc);
ccb->ccb_len = sizeof(*flush);
ccb->ccb_data = flush;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = CISS_CMD_MODE_PERIPH;
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_OUT;
cmd->tmo = 0;
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_SET;
cmd->cdb[6] = CISS_CMS_CTRL_FLUSH;
cmd->cdb[7] = sizeof(*flush) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*flush) & 0xff;
rv = ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL|XS_CTL_NOSLEEP);
mutex_exit(&sc->sc_mutex_scratch);
return rv;
}
int
ciss_ldid(struct ciss_softc *sc, int target, struct ciss_ldid *id)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
ccb = ciss_get_ccb(sc);
if (ccb == NULL)
return ENOMEM;
ccb->ccb_len = sizeof(*id);
ccb->ccb_data = id;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = htole32(CISS_CMD_MODE_PERIPH);
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_IN;
cmd->tmo = htole16(0);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_GET;
cmd->cdb[1] = target;
cmd->cdb[6] = CISS_CMS_CTRL_LDIDEXT;
cmd->cdb[7] = sizeof(*id) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*id) & 0xff;
return ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL | sc->sc_waitflag);
}
int
ciss_ldstat(struct ciss_softc *sc, int target, struct ciss_ldstat *stat)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
ccb = ciss_get_ccb(sc);
if (ccb == NULL)
return ENOMEM;
ccb->ccb_len = sizeof(*stat);
ccb->ccb_data = stat;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = htole32(CISS_CMD_MODE_PERIPH);
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_IN;
cmd->tmo = htole16(0);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_GET;
cmd->cdb[1] = target;
cmd->cdb[6] = CISS_CMS_CTRL_LDSTAT;
cmd->cdb[7] = sizeof(*stat) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*stat) & 0xff;
return ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL | sc->sc_waitflag);
}
int
ciss_pdid(struct ciss_softc *sc, u_int8_t drv, struct ciss_pdid *id, int wait)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
ccb = ciss_get_ccb(sc);
if (ccb == NULL)
return ENOMEM;
ccb->ccb_len = sizeof(*id);
ccb->ccb_data = id;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = htole32(CISS_CMD_MODE_PERIPH);
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_IN;
cmd->tmo = htole16(0);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_GET;
cmd->cdb[2] = drv;
cmd->cdb[6] = CISS_CMS_CTRL_PDID;
cmd->cdb[7] = sizeof(*id) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*id) & 0xff;
return ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, wait);
}
struct ciss_ld *
ciss_pdscan(struct ciss_softc *sc, int ld)
{
struct ciss_pdid *pdid;
struct ciss_ld *ldp;
u_int8_t drv, buf[128];
int i, j, k = 0;
mutex_enter(&sc->sc_mutex_scratch);
pdid = sc->scratch;
if (sc->ndrives == 256) {
for (i = 0; i < CISS_BIGBIT; i++)
if (!ciss_pdid(sc, i, pdid,
XS_CTL_POLL|XS_CTL_NOSLEEP) &&
(pdid->present & CISS_PD_PRESENT))
buf[k++] = i;
} else
for (i = 0; i < sc->nbus; i++)
for (j = 0; j < sc->ndrives; j++) {
drv = CISS_BIGBIT + i * sc->ndrives + j;
if (!ciss_pdid(sc, drv, pdid,
XS_CTL_POLL|XS_CTL_NOSLEEP))
buf[k++] = drv;
}
mutex_exit(&sc->sc_mutex_scratch);
if (!k)
return NULL;
ldp = malloc(sizeof(*ldp) + (k-1), M_DEVBUF, M_WAITOK);
memset(&ldp->bling, 0, sizeof(ldp->bling));
ldp->ndrives = k;
ldp->xname[0] = 0;
memcpy(ldp->tgts, buf, k);
return ldp;
}
static void
ciss_scsi_cmd(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_xfer *xs;
struct scsipi_xfer_mode *xm;
struct ciss_softc *sc = device_private(chan->chan_adapter->adapt_dev);
u_int8_t target;
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
CISS_DPRINTF(CISS_D_CMD, ("ciss_scsi_cmd "));
switch (req)
{
case ADAPTER_REQ_RUN_XFER:
xs = (struct scsipi_xfer *) arg;
target = xs->xs_periph->periph_target;
CISS_DPRINTF(CISS_D_CMD, ("targ=%d ", target));
if (xs->cmdlen > CISS_MAX_CDB) {
CISS_DPRINTF(CISS_D_CMD, ("CDB too big %p ", xs));
memset(&xs->sense, 0, sizeof(xs->sense));
xs->error = XS_SENSE;
printf("ciss driver stuffup in %s:%d: %s()\n",
__FILE__, __LINE__, __func__);
scsipi_done(xs);
break;
}
xs->error = XS_NOERROR;
/* XXX emulate SYNCHRONIZE_CACHE ??? */
ccb = ciss_get_ccb(sc);
cmd = &ccb->ccb_cmd;
ccb->ccb_len = xs->datalen;
ccb->ccb_data = xs->data;
ccb->ccb_xs = xs;
cmd->tgt = CISS_CMD_MODE_LD | target;
cmd->tgt2 = 0;
cmd->cdblen = xs->cmdlen;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL;
if (xs->xs_control & XS_CTL_DATA_IN)
cmd->flags |= CISS_CDB_IN;
else if (xs->xs_control & XS_CTL_DATA_OUT)
cmd->flags |= CISS_CDB_OUT;
cmd->tmo = htole16(xs->timeout < 1000? 1 : xs->timeout / 1000);
memcpy(&cmd->cdb[0], xs->cmd, xs->cmdlen);
CISS_DPRINTF(CISS_D_CMD, ("cmd=%02x %02x %02x %02x %02x %02x ",
cmd->cdb[0], cmd->cdb[1], cmd->cdb[2],
cmd->cdb[3], cmd->cdb[4], cmd->cdb[5]));
if (ciss_cmd(sc, ccb, BUS_DMA_WAITOK,
xs->xs_control & (XS_CTL_POLL|XS_CTL_NOSLEEP))) {
printf("ciss driver stuffup in %s:%d: %s()\n",
__FILE__, __LINE__, __func__);
xs->error = XS_DRIVER_STUFFUP;
scsipi_done(xs);
return;
}
break;
case ADAPTER_REQ_GROW_RESOURCES:
/*
* Not supported.
*/
break;
case ADAPTER_REQ_SET_XFER_MODE:
/*
* We can't change the transfer mode, but at least let
* scsipi know what the adapter has negociated.
*/
xm = (struct scsipi_xfer_mode *)arg;
xm->xm_mode |= PERIPH_CAP_TQING;
scsipi_async_event(chan, ASYNC_EVENT_XFER_MODE, xm);
break;
default:
printf("%s: %d %d unsupported\n", __func__, __LINE__, req);
}
}
static void
ciss_completed_process(struct ciss_softc *sc, ciss_queue_head *q)
{
struct ciss_ccb *ccb;
while (!TAILQ_EMPTY(q)) {
ccb = TAILQ_FIRST(q);
TAILQ_REMOVE(q, ccb, ccb_link);
if (ccb->ccb_state == CISS_CCB_POLL) {
ccb->ccb_state = CISS_CCB_ONQ;
mutex_enter(&sc->sc_mutex);
cv_broadcast(&sc->sc_condvar);
mutex_exit(&sc->sc_mutex);
} else
ciss_done(sc, ccb);
}
}
int
ciss_intr_simple_intx(void *v)
{
struct ciss_softc *sc = v;
ciss_queue_head q;
int hit = 0;
CISS_DPRINTF(CISS_D_INTR, ("intr "));
/* XXX shouldn't be necessary, intr triggers only if enabled */
if (!(bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_ISR) & sc->iem))
return 0;
TAILQ_INIT(&q);
mutex_enter(&sc->sc_mutex);
ciss_completed_simple(sc, &q);
mutex_exit(&sc->sc_mutex);
hit = (!TAILQ_EMPTY(&q));
ciss_completed_process(sc, &q);
KASSERT(TAILQ_EMPTY(&q));
CISS_DPRINTF(CISS_D_INTR, ("exit\n"));
return hit;
}
int
ciss_intr_perf_intx(void *v)
{
struct ciss_softc *sc = v;
CISS_DPRINTF(CISS_D_INTR, ("intr "));
/* Clear the interrupt and flush the bridges. Docs say that the flush
* needs to be done twice, which doesn't seem right.
*/
bus_space_read_4(sc->sc_iot, sc->sc_ioh, CISS_OSR);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, CISS_ODC, CISS_ODC_CLEAR);
return ciss_intr_perf_msi(sc);
}
int
ciss_intr_perf_msi(void *v)
{
struct ciss_softc *sc = v;
ciss_queue_head q;
CISS_DPRINTF(CISS_D_INTR, ("intr "));
TAILQ_INIT(&q);
mutex_enter(&sc->sc_mutex);
ciss_completed_perf(sc, &q);
mutex_exit(&sc->sc_mutex);
ciss_completed_process(sc, &q);
KASSERT(TAILQ_EMPTY(&q));
CISS_DPRINTF(CISS_D_INTR, ("exit"));
return 1;
}
static void
ciss_heartbeat(void *v)
{
struct ciss_softc *sc = v;
u_int32_t hb;
hb = bus_space_read_4(sc->sc_iot, sc->cfg_ioh,
sc->cfgoff + offsetof(struct ciss_config, heartbeat));
if (hb == sc->heartbeat) {
sc->fibrillation++;
CISS_DPRINTF(CISS_D_ERR, ("%s: fibrillation #%d (value=%d)\n",
device_xname(sc->sc_dev), sc->fibrillation, hb));
if (sc->fibrillation >= 11) {
/* No heartbeat for 33 seconds */
panic("%s: dead", device_xname(sc->sc_dev)); /* XXX reset! */
}
} else {
sc->heartbeat = hb;
if (sc->fibrillation) {
CISS_DPRINTF(CISS_D_ERR, ("%s: "
"fibrillation ended (value=%d)\n",
device_xname(sc->sc_dev), hb));
}
sc->fibrillation = 0;
}
callout_schedule(&sc->sc_hb, hz * 3);
}
static int
ciss_scsi_ioctl(struct scsipi_channel *chan, u_long cmd,
void *addr, int flag, struct proc *p)
{
#if NBIO > 0
return ciss_ioctl(chan->chan_adapter->adapt_dev, cmd, addr);
#else
return ENOTTY;
#endif
}
#if NBIO > 0
const int ciss_level[] = { 0, 4, 1, 5, 51, 7 };
const int ciss_stat[] = { BIOC_SVONLINE, BIOC_SVOFFLINE, BIOC_SVOFFLINE,
BIOC_SVDEGRADED, BIOC_SVREBUILD, BIOC_SVREBUILD, BIOC_SVDEGRADED,
BIOC_SVDEGRADED, BIOC_SVINVALID, BIOC_SVINVALID, BIOC_SVBUILDING,
BIOC_SVOFFLINE, BIOC_SVBUILDING };
int
ciss_ioctl(device_t dev, u_long cmd, void *addr)
{
struct ciss_softc *sc = device_private(dev);
struct bioc_inq *bi;
struct bioc_disk *bd;
struct bioc_blink *bb;
struct ciss_ldstat *ldstat;
struct ciss_pdid *pdid;
struct ciss_blink *blink;
struct ciss_ld *ldp;
u_int8_t drv;
int ld, pd, error = 0;
switch (cmd) {
case BIOCINQ:
bi = (struct bioc_inq *)addr;
strlcpy(bi->bi_dev, device_xname(sc->sc_dev), sizeof(bi->bi_dev));
bi->bi_novol = sc->maxunits;
bi->bi_nodisk = sc->sc_lds[0]->ndrives;
break;
case BIOCVOL:
error = ciss_ioctl_vol(sc, (struct bioc_vol *)addr);
break;
case BIOCDISK_NOVOL:
/*
* XXX since we don't know how to associate physical drives with logical drives
* yet, BIOCDISK_NOVOL is equivalent to BIOCDISK to the volume that we've
* associated all physical drives to.
* Maybe assoicate all physical drives to all logical volumes, but only return
* physical drives on one logical volume. Which one? Either 1st volume that
* is degraded, rebuilding, or failed?
*/
bd = (struct bioc_disk *)addr;
bd->bd_volid = 0;
bd->bd_disknovol = true;
/* FALLTHROUGH */
case BIOCDISK:
bd = (struct bioc_disk *)addr;
if (bd->bd_volid < 0 || bd->bd_volid > sc->maxunits) {
error = EINVAL;
break;
}
ldp = sc->sc_lds[0];
if (!ldp || (pd = bd->bd_diskid) < 0 || pd > ldp->ndrives) {
error = EINVAL;
break;
}
ldstat = sc->scratch;
if ((error = ciss_ldstat(sc, bd->bd_volid, ldstat))) {
break;
}
bd->bd_status = -1;
if (ldstat->stat == CISS_LD_REBLD &&
ldstat->bigrebuild == ldp->tgts[pd])
bd->bd_status = BIOC_SDREBUILD;
if (ciss_bitset(ldp->tgts[pd] & (~CISS_BIGBIT),
ldstat->bigfailed)) {
bd->bd_status = BIOC_SDFAILED;
bd->bd_size = 0;
bd->bd_channel = (ldp->tgts[pd] & (~CISS_BIGBIT)) /
sc->ndrives;
bd->bd_target = ldp->tgts[pd] % sc->ndrives;
bd->bd_lun = 0;
bd->bd_vendor[0] = '\0';
bd->bd_serial[0] = '\0';
bd->bd_procdev[0] = '\0';
} else {
pdid = sc->scratch;
if ((error = ciss_pdid(sc, ldp->tgts[pd], pdid,
XS_CTL_POLL))) {
bd->bd_status = BIOC_SDFAILED;
bd->bd_size = 0;
bd->bd_channel = (ldp->tgts[pd] & (~CISS_BIGBIT)) /
sc->ndrives;
bd->bd_target = ldp->tgts[pd] % sc->ndrives;
bd->bd_lun = 0;
bd->bd_vendor[0] = '\0';
bd->bd_serial[0] = '\0';
bd->bd_procdev[0] = '\0';
error = 0;
break;
}
if (bd->bd_status < 0) {
if (pdid->config & CISS_PD_SPARE)
bd->bd_status = BIOC_SDHOTSPARE;
else if (pdid->present & CISS_PD_PRESENT)
bd->bd_status = BIOC_SDONLINE;
else
bd->bd_status = BIOC_SDINVALID;
}
bd->bd_size = (u_int64_t)le32toh(pdid->nblocks) *
le16toh(pdid->blksz);
bd->bd_channel = pdid->bus;
bd->bd_target = pdid->target;
bd->bd_lun = 0;
strlcpy(bd->bd_vendor, pdid->model,
sizeof(bd->bd_vendor));
strlcpy(bd->bd_serial, pdid->serial,
sizeof(bd->bd_serial));
bd->bd_procdev[0] = '\0';
}
break;
case BIOCBLINK:
bb = (struct bioc_blink *)addr;
blink = sc->scratch;
error = EINVAL;
/* XXX workaround completely dumb scsi addressing */
for (ld = 0; ld < sc->maxunits; ld++) {
ldp = sc->sc_lds[ld];
if (!ldp)
continue;
if (sc->ndrives == 256)
drv = bb->bb_target;
else
drv = CISS_BIGBIT +
bb->bb_channel * sc->ndrives +
bb->bb_target;
for (pd = 0; pd < ldp->ndrives; pd++)
if (ldp->tgts[pd] == drv)
error = ciss_blink(sc, ld, pd,
bb->bb_status, blink);
}
break;
default:
error = EINVAL;
}
return (error);
}
int
ciss_ioctl_vol(struct ciss_softc *sc, struct bioc_vol *bv)
{
struct ciss_ldid *ldid;
struct ciss_ld *ldp;
struct ciss_ldstat *ldstat;
struct ciss_pdid *pdid;
int error = 0;
u_int blks;
if (bv->bv_volid < 0 || bv->bv_volid > sc->maxunits) {
return EINVAL;
}
ldp = sc->sc_lds[bv->bv_volid];
ldid = sc->scratch;
if ((error = ciss_ldid(sc, bv->bv_volid, ldid))) {
return error;
}
bv->bv_status = BIOC_SVINVALID;
blks = (u_int)le16toh(ldid->nblocks[1]) << 16 |
le16toh(ldid->nblocks[0]);
bv->bv_size = blks * (u_quad_t)le16toh(ldid->blksize);
bv->bv_level = ciss_level[ldid->type];
/*
* XXX Should only return bv_nodisk for logigal volume that we've associated
* the physical drives to: either the 1st degraded, rebuilding, or failed
* volume else volume 0?
*/
if (ldp) {
bv->bv_nodisk = ldp->ndrives;
strlcpy(bv->bv_dev, ldp->xname, sizeof(bv->bv_dev));
}
strlcpy(bv->bv_vendor, "CISS", sizeof(bv->bv_vendor));
ldstat = sc->scratch;
memset(ldstat, 0, sizeof(*ldstat));
if ((error = ciss_ldstat(sc, bv->bv_volid, ldstat))) {
return error;
}
bv->bv_percent = -1;
bv->bv_seconds = 0;
if (ldstat->stat < sizeof(ciss_stat)/sizeof(ciss_stat[0]))
bv->bv_status = ciss_stat[ldstat->stat];
if (bv->bv_status == BIOC_SVREBUILD ||
bv->bv_status == BIOC_SVBUILDING) {
u_int64_t prog;
ldp = sc->sc_lds[0];
if (ldp) {
bv->bv_nodisk = ldp->ndrives;
strlcpy(bv->bv_dev, ldp->xname, sizeof(bv->bv_dev));
}
/*
* XXX ldstat->prog is blocks remaining on physical drive being rebuilt
* blks is only correct for a RAID1 set; RAID5 needs to determine the
* size of the physical device - which we don't yet know.
* ldstat->bigrebuild has physical device target, so could be used with
* pdid to get size. Another way is to save pd information in sc so it's
* easy to reference.
*/
prog = (u_int64_t)((ldstat->prog[3] << 24) |
(ldstat->prog[2] << 16) | (ldstat->prog[1] << 8) |
ldstat->prog[0]);
pdid = sc->scratch;
if (!ciss_pdid(sc, ldstat->bigrebuild, pdid, XS_CTL_POLL)) {
blks = le32toh(pdid->nblocks);
bv->bv_percent = (blks - prog) * 1000ULL / blks;
}
}
return 0;
}
int
ciss_blink(struct ciss_softc *sc, int ld, int pd, int stat,
struct ciss_blink *blink)
{
struct ciss_ccb *ccb;
struct ciss_cmd *cmd;
struct ciss_ld *ldp;
if (ld > sc->maxunits)
return EINVAL;
ldp = sc->sc_lds[ld];
if (!ldp || pd > ldp->ndrives)
return EINVAL;
ldp->bling.pdtab[ldp->tgts[pd]] = stat == BIOC_SBUNBLINK? 0 :
CISS_BLINK_ALL;
memcpy(blink, &ldp->bling, sizeof(*blink));
ccb = ciss_get_ccb(sc);
if (ccb == NULL)
return ENOMEM;
ccb->ccb_len = sizeof(*blink);
ccb->ccb_data = blink;
ccb->ccb_xs = NULL;
cmd = &ccb->ccb_cmd;
cmd->tgt = htole32(CISS_CMD_MODE_PERIPH);
cmd->tgt2 = 0;
cmd->cdblen = 10;
cmd->flags = CISS_CDB_CMD | CISS_CDB_SIMPL | CISS_CDB_OUT;
cmd->tmo = htole16(0);
memset(&cmd->cdb[0], 0, sizeof(cmd->cdb));
cmd->cdb[0] = CISS_CMD_CTRL_SET;
cmd->cdb[6] = CISS_CMS_CTRL_PDBLINK;
cmd->cdb[7] = sizeof(*blink) >> 8; /* biiiig endian */
cmd->cdb[8] = sizeof(*blink) & 0xff;
return ciss_cmd(sc, ccb, BUS_DMA_NOWAIT, XS_CTL_POLL);
}
int
ciss_create_sensors(struct ciss_softc *sc)
{
int i;
int nsensors = sc->maxunits;
if (nsensors == 0) {
return 0;
}
sc->sc_sme = sysmon_envsys_create();
sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
M_DEVBUF, M_WAITOK | M_ZERO);
for (i = 0; i < nsensors; i++) {
sc->sc_sensor[i].units = ENVSYS_DRIVE;
sc->sc_sensor[i].state = ENVSYS_SINVALID;
sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
/* Enable monitoring for drive state changes */
sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
/* logical drives */
snprintf(sc->sc_sensor[i].desc,
sizeof(sc->sc_sensor[i].desc), "%s:%d",
device_xname(sc->sc_dev), i);
if (sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_sensor[i]))
goto out;
}
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = ciss_sensor_refresh;
if (sysmon_envsys_register(sc->sc_sme)) {
printf("%s: unable to register with sysmon\n",
device_xname(sc->sc_dev));
return(1);
}
return (0);
out:
free(sc->sc_sensor, M_DEVBUF);
sysmon_envsys_destroy(sc->sc_sme);
return EINVAL;
}
void
ciss_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct ciss_softc *sc = sme->sme_cookie;
struct bioc_vol bv;
if (edata->sensor >= sc->maxunits)
return;
memset(&bv, 0, sizeof(bv));
bv.bv_volid = edata->sensor;
if (ciss_ioctl_vol(sc, &bv))
bv.bv_status = BIOC_SVINVALID;
bio_vol_to_envsys(edata, &bv);
}
#endif /* NBIO > 0 */