NetBSD/sys/dev/ic/anx_dp.c

1080 lines
30 KiB
C

/* $NetBSD: anx_dp.c,v 1.2 2020/01/04 12:08:32 jmcneill Exp $ */
/*-
* Copyright (c) 2019 Jonathan A. Kollasch <jakllsch@kollasch.net>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: anx_dp.c,v 1.2 2020/01/04 12:08:32 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <dev/ic/anx_dp.h>
#if ANXDP_AUDIO
#include <dev/audio/audio_dai.h>
#endif
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#define ANXDP_DP_TX_VERSION 0x010
#define ANXDP_TX_SW_RESET 0x014
#define RESET_DP_TX __BIT(0)
#define ANXDP_FUNC_EN_1 0x018
#define MASTER_VID_FUNC_EN_N __BIT(7)
#define RK_VID_CAP_FUNC_EN_N __BIT(6)
#define SLAVE_VID_FUNC_EN_N __BIT(5)
#define RK_VID_FIFO_FUNC_EN_N __BIT(5)
#define AUD_FIFO_FUNC_EN_N __BIT(4)
#define AUD_FUNC_EN_N __BIT(3)
#define HDCP_FUNC_EN_N __BIT(2)
#define CRC_FUNC_EN_N __BIT(1)
#define SW_FUNC_EN_N __BIT(0)
#define ANXDP_FUNC_EN_2 0x01c
#define SSC_FUNC_EN_N __BIT(7)
#define AUX_FUNC_EN_N __BIT(2)
#define SERDES_FIFO_FUNC_EN_N __BIT(1)
#define LS_CLK_DOMAIN_FUNC_EN_N __BIT(0)
#define ANXDP_VIDEO_CTL_1 0x020
#define VIDEO_EN __BIT(7)
#define VIDEO_MUTE __BIT(6)
#define ANXDP_VIDEO_CTL_2 0x024
#define ANXDP_VIDEO_CTL_3 0x028
#define ANXDP_VIDEO_CTL_4 0x02c
#define ANXDP_VIDEO_CTL_8 0x03c
#define ANXDP_VIDEO_CTL_10 0x044
#define F_SEL __BIT(4)
#define SLAVE_I_SCAN_CFG __BIT(2)
#define SLAVE_VSYNC_P_CFG __BIT(1)
#define SLAVE_HSYNC_P_CFG __BIT(0)
#define ANXDP_PLL_REG_1 0x0fc
#define REF_CLK_24M __BIT(0)
#define RKANXDP_PD 0x12c
#define DP_INC_BG __BIT(7)
#define DP_EXP_PD __BIT(6)
#define DP_PHY_PD __BIT(5)
#define RK_AUX_PD __BIT(5)
#define AUX_PD __BIT(4)
#define RK_PLL_PD __BIT(4)
#define CHx_PD(x) __BIT(x) /* 0<=x<=3 */
#define DP_ALL_PD __BITS(7,0)
#define ANXDP_LANE_MAP 0x35c
#define ANXDP_ANALOG_CTL_1 0x370
#define TX_TERMINAL_CTRL_50_OHM __BIT(4)
#define ANXDP_ANALOG_CTL_2 0x374
#define SEL_24M __BIT(3)
#define TX_DVDD_BIT_1_0625V 0x4
#define ANXDP_ANALOG_CTL_3 0x378
#define DRIVE_DVDD_BIT_1_0625V (0x4 << 5)
#define VCO_BIT_600_MICRO (0x5 << 0)
#define ANXDP_PLL_FILTER_CTL_1 0x37c
#define PD_RING_OSC __BIT(6)
#define AUX_TERMINAL_CTRL_50_OHM (2 << 4)
#define TX_CUR1_2X __BIT(2)
#define TX_CUR_16_MA 3
#define ANXDP_TX_AMP_TUNING_CTL 0x380
#define ANXDP_AUX_HW_RETRY_CTL 0x390
#define AUX_BIT_PERIOD_EXPECTED_DELAY(x) __SHIFTIN((x), __BITS(10,8))
#define AUX_HW_RETRY_INTERVAL_600_US __SHIFTIN(0, __BITS(4,3))
#define AUX_HW_RETRY_INTERVAL_800_US __SHIFTIN(1, __BITS(4,3))
#define AUX_HW_RETRY_INTERVAL_1000_US __SHIFTIN(2, __BITS(4,3))
#define AUX_HW_RETRY_INTERVAL_1800_US __SHIFTIN(3, __BITS(4,3))
#define AUX_HW_RETRY_COUNT_SEL(x) __SHIFTIN((x), __BITS(2,0))
#define ANXDP_COMMON_INT_STA_1 0x3c4
#define PLL_LOCK_CHG __BIT(6)
#define ANXDP_COMMON_INT_STA_2 0x3c8
#define ANXDP_COMMON_INT_STA_3 0x3cc
#define ANXDP_COMMON_INT_STA_4 0x3d0
#define ANXDP_DP_INT_STA 0x3dc
#define INT_HPD __BIT(6)
#define HW_TRAINING_FINISH __BIT(5)
#define RPLY_RECEIV __BIT(1)
#define AUX_ERR __BIT(0)
#define ANXDP_SYS_CTL_1 0x600
#define DET_STA __BIT(2)
#define FORCE_DET __BIT(1)
#define DET_CTRL __BIT(0)
#define ANXDP_SYS_CTL_2 0x604
#define ANXDP_SYS_CTL_3 0x608
#define HPD_STATUS __BIT(6)
#define F_HPD __BIT(5)
#define HPD_CTRL __BIT(4)
#define HDCP_RDY __BIT(3)
#define STRM_VALID __BIT(2)
#define F_VALID __BIT(1)
#define VALID_CTRL __BIT(0)
#define ANXDP_SYS_CTL_4 0x60c
#define ANXDP_PKT_SEND_CTL 0x640
#define ANXDP_HDCP_CTL 0x648
#define ANXDP_LINK_BW_SET 0x680
#define ANXDP_LANE_COUNT_SET 0x684
#define ANXDP_TRAINING_PTN_SET 0x688
#define SCRAMBLING_DISABLE __BIT(5)
#define SW_TRAINING_PATTERN_SET_PTN2 __SHIFTIN(2, __BITS(1,0))
#define SW_TRAINING_PATTERN_SET_PTN1 __SHIFTIN(1, __BITS(1,0))
#define ANXDP_LNx_LINK_TRAINING_CTL(x) (0x68c + 4 * (x)) /* 0 <= x <= 3 */
#define MAX_PRE_REACH __BIT(5)
#define PRE_EMPHASIS_SET(x) __SHIFTIN((x), __BITS(4,3))
#define MAX_DRIVE_REACH __BIT(2)
#define DRIVE_CURRENT_SET(x) __SHIFTIN((x), __BITS(1,0))
#define ANXDP_DEBUG_CTL 0x6c0
#define PLL_LOCK __BIT(4)
#define F_PLL_LOCK __BIT(3)
#define PLL_LOCK_CTRL __BIT(2)
#define PN_INV __BIT(0)
#define ANXDP_LINK_DEBUG_CTL 0x6e0
#define ANXDP_PLL_CTL 0x71c
#define ANXDP_PHY_PD 0x720
#define ANXDP_PHY_TEST 0x724
#define MACRO_RST __BIT(5)
#define ANXDP_M_AUD_GEN_FILTER_TH 0x778
#define ANXDP_AUX_CH_STA 0x780
#define AUX_BUSY __BIT(4)
#define AUX_STATUS(x) __SHIFTOUT((x), __BITS(3,0))
#define ANXDP_AUX_ERR_NUM 0x784
#define ANXDP_AUX_CH_DEFER_CTL 0x788
#define DEFER_CTRL_EN __BIT(7)
#define DEFER_COUNT(x) __SHIFTIN((x), __BITS(6,0))
#define ANXDP_AUX_RX_COMM 0x78c
#define AUX_RX_COMM_I2C_DEFER __BIT(3)
#define AUX_RX_COMM_AUX_DEFER __BIT(1)
#define ANXDP_BUFFER_DATA_CTL 0x790
#define BUF_CLR __BIT(7)
#define BUF_DATA_COUNT(x) __SHIFTIN((x), __BITS(4,0))
#define ANXDP_AUX_CH_CTL_1 0x794
#define AUX_LENGTH(x) __SHIFTIN((x) - 1, __BITS(7,4))
#define AUX_TX_COMM(x) __SHIFTOUT(x, __BITS(3,0))
#define AUX_TX_COMM_DP __BIT(3)
#define AUX_TX_COMM_MOT __BIT(2)
#define AUX_TX_COMM_READ __BIT(0)
#define ANXDP_AUX_ADDR_7_0 0x798
#define AUX_ADDR_7_0(x) (((x) >> 0) & 0xff)
#define ANXDP_AUX_ADDR_15_8 0x79c
#define AUX_ADDR_15_8(x) (((x) >> 8) & 0xff)
#define ANXDP_AUX_ADDR_19_16 0x7a0
#define AUX_ADDR_19_16(x) (((x) >> 16) & 0xf)
#define ANXDP_AUX_CH_CTL_2 0x7a4
#define ADDR_ONLY __BIT(1)
#define AUX_EN __BIT(0)
#define ANXDP_BUF_DATA(x) (0x7c0 + 4 * (x))
#define ANXDP_SOC_GENERAL_CTL 0x800
#define AUDIO_MODE_SPDIF_MODE __BIT(8)
#define VIDEO_MODE_SLAVE_MODE __BIT(1)
#define ANXDP_CRC_CON 0x890
#define ANXDP_PLL_REG_2 0x9e4
#define ANXDP_PLL_REG_3 0x9e8
#define ANXDP_PLL_REG_4 0x9ec
#define ANXDP_PLL_REG_5 0xa00
#if ANXDP_AUDIO
enum anxdp_dai_mixer_ctrl {
ANXDP_DAI_OUTPUT_CLASS,
ANXDP_DAI_INPUT_CLASS,
ANXDP_DAI_OUTPUT_MASTER_VOLUME,
ANXDP_DAI_INPUT_DAC_VOLUME,
ANXDP_DAI_MIXER_CTRL_LAST
};
static void
anxdp_audio_init(struct anxdp_softc *sc)
{
}
#endif
static inline const bool
isrockchip(struct anxdp_softc * const sc)
{
return (sc->sc_flags & ANXDP_FLAG_ROCKCHIP) != 0;
}
static enum drm_connector_status
anxdp_connector_detect(struct drm_connector *connector, bool force)
{
#if 0
struct anxdp_connector *anxdp_connector = to_anxdp_connector(connector);
struct anxdp_softc * const sc = anxdp_connector->sc;
/* XXX HPD */
#endif
return connector_status_connected;
}
static void
anxdp_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
static const struct drm_connector_funcs anxdp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = anxdp_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = anxdp_connector_destroy,
};
static void
anxdp_analog_power_up_all(struct anxdp_softc * const sc)
{
const bus_size_t pd_reg = isrockchip(sc) ? RKANXDP_PD : ANXDP_PHY_PD;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, DP_ALL_PD);
delay(15);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg,
DP_ALL_PD & ~DP_INC_BG);
delay(15);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, 0);
}
static int
anxdp_await_pll_lock(struct anxdp_softc * const sc)
{
u_int timeout;
for (timeout = 0; timeout < 100; timeout++) {
if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL) &
PLL_LOCK) != 0)
return 0;
delay(20);
}
return ETIMEDOUT;
}
static void
anxdp_init_hpd(struct anxdp_softc * const sc)
{
uint32_t sc3;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_COMMON_INT_STA_4, 0x7);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA, INT_HPD);
sc3 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3);
sc3 &= ~(F_HPD | HPD_CTRL);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3, sc3);
sc3 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3);
sc3 |= F_HPD | HPD_CTRL;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3, sc3);
}
static void
anxdp_init_aux(struct anxdp_softc * const sc)
{
uint32_t fe2, pd, hrc;
const bus_size_t pd_reg = isrockchip(sc) ? RKANXDP_PD : ANXDP_PHY_PD;
const uint32_t pd_mask = isrockchip(sc) ? RK_AUX_PD : AUX_PD;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA,
RPLY_RECEIV | AUX_ERR);
pd = bus_space_read_4(sc->sc_bst, sc->sc_bsh, pd_reg);
pd |= pd_mask;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, pd);
delay(11);
pd = bus_space_read_4(sc->sc_bst, sc->sc_bsh, pd_reg);
pd &= ~pd_mask;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, pd_reg, pd);
fe2 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2);
fe2 |= AUX_FUNC_EN_N;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, fe2);
hrc = AUX_HW_RETRY_COUNT_SEL(0) | AUX_HW_RETRY_INTERVAL_600_US;
if (!isrockchip(sc))
hrc |= AUX_BIT_PERIOD_EXPECTED_DELAY(3);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_HW_RETRY_CTL, hrc);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_DEFER_CTL,
DEFER_CTRL_EN | DEFER_COUNT(1));
fe2 = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2);
fe2 &= ~AUX_FUNC_EN_N;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, fe2);
}
static int
anxdp_connector_get_modes(struct drm_connector *connector)
{
struct anxdp_connector *anxdp_connector = to_anxdp_connector(connector);
struct anxdp_softc * const sc = anxdp_connector->sc;
struct edid *pedid = NULL;
int error;
pedid = drm_get_edid(connector, &sc->sc_dpaux.ddc);
#if ANXDP_AUDIO
if (pedid) {
anxdp_connector->monitor_audio =
drm_detect_monitor_audio(pedid);
} else {
anxdp_connector->monitor_audio = false;
}
#endif
drm_mode_connector_update_edid_property(connector, pedid);
if (pedid == NULL)
return 0;
error = drm_add_edid_modes(connector, pedid);
drm_edid_to_eld(connector, pedid);
if (pedid != NULL)
kfree(pedid);
return error;
}
static struct drm_encoder *
anxdp_connector_best_encoder(struct drm_connector *connector)
{
int enc_id = connector->encoder_ids[0];
struct drm_mode_object *obj;
struct drm_encoder *encoder = NULL;
if (enc_id) {
obj = drm_mode_object_find(connector->dev, enc_id,
DRM_MODE_OBJECT_ENCODER);
if (obj == NULL)
return NULL;
encoder = obj_to_encoder(obj);
}
return encoder;
}
static const struct drm_connector_helper_funcs anxdp_connector_helper_funcs = {
.get_modes = anxdp_connector_get_modes,
.best_encoder = anxdp_connector_best_encoder,
};
static int
anxdp_bridge_attach(struct drm_bridge *bridge)
{
struct anxdp_softc * const sc = bridge->driver_private;
struct anxdp_connector *anxdp_connector = &sc->sc_connector;
struct drm_connector *connector = &anxdp_connector->base;
int error;
anxdp_connector->sc = sc;
connector->polled =
DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_connector_init(bridge->dev, connector, &anxdp_connector_funcs,
connector->connector_type);
drm_connector_helper_add(connector, &anxdp_connector_helper_funcs);
error = drm_mode_connector_attach_encoder(connector, bridge->encoder);
if (error != 0)
return error;
return drm_connector_register(connector);
}
static void
anxdp_macro_reset(struct anxdp_softc * const sc)
{
uint32_t val;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST);
val |= MACRO_RST;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST, val);
delay(10);
val &= ~MACRO_RST;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PHY_TEST, val);
}
static void
anxdp_link_start(struct anxdp_softc * const sc, struct drm_dp_link * const link)
{
uint8_t training[4];
uint32_t val;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LINK_BW_SET, drm_dp_link_rate_to_bw_code(link->rate));
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_LANE_COUNT_SET, link->num_lanes);
if (0 != drm_dp_link_configure(&sc->sc_dpaux, link))
return;
for (u_int i = 0; i < link->num_lanes; i++) {
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
ANXDP_LNx_LINK_TRAINING_CTL(i));
val &= ~(PRE_EMPHASIS_SET(3)|DRIVE_CURRENT_SET(3));
val |= PRE_EMPHASIS_SET(0);
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
ANXDP_LNx_LINK_TRAINING_CTL(i), val);
}
if (anxdp_await_pll_lock(sc) != 0) {
device_printf(sc->sc_dev, "PLL lock timeout\n");
}
for (u_int i = 0; i < link->num_lanes; i++) {
training[i] = DP_TRAIN_PRE_EMPH_LEVEL_0 |
DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
}
drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training,
link->num_lanes);
}
static void
anxdp_process_clock_recovery(struct anxdp_softc * const sc,
struct drm_dp_link * const link)
{
u_int i, tries;
uint8_t link_status[DP_LINK_STATUS_SIZE];
uint8_t training[4];
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET,
SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN1);
drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET,
DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_1);
tries = 0;
again:
if (tries++ >= 10) {
device_printf(sc->sc_dev, "cr fail\n");
return;
}
drm_dp_link_train_clock_recovery_delay(sc->sc_dpcd);
if (DP_LINK_STATUS_SIZE !=
drm_dp_dpcd_read_link_status(&sc->sc_dpaux, link_status)) {
return;
}
if (!drm_dp_clock_recovery_ok(link_status, link->num_lanes)) {
goto cr_fail;
}
return;
cr_fail:
for (i = 0; i < link->num_lanes; i++) {
uint8_t vs, pe;
vs = drm_dp_get_adjust_request_voltage(link_status, i);
pe = drm_dp_get_adjust_request_pre_emphasis(link_status, i);
training[i] = vs | pe;
}
for (i = 0; i < link->num_lanes; i++) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
ANXDP_LNx_LINK_TRAINING_CTL(i), training[i]);
}
drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training,
link->num_lanes);
goto again;
}
static void
anxdp_process_eq(struct anxdp_softc * const sc, struct drm_dp_link * const link)
{
u_int i, tries;
uint8_t link_status[DP_LINK_STATUS_SIZE];
uint8_t training[4];
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET,
SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN2);
drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET,
DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2);
tries = 0;
again:
if (tries++ >= 10) {
device_printf(sc->sc_dev, "eq fail\n");
return;
}
drm_dp_link_train_channel_eq_delay(sc->sc_dpcd);
if (DP_LINK_STATUS_SIZE !=
drm_dp_dpcd_read_link_status(&sc->sc_dpaux, link_status)) {
return;
}
if (!drm_dp_channel_eq_ok(link_status, link->num_lanes)) {
goto eq_fail;
}
return;
eq_fail:
for (i = 0; i < link->num_lanes; i++) {
uint8_t vs, pe;
vs = drm_dp_get_adjust_request_voltage(link_status, i);
pe = drm_dp_get_adjust_request_pre_emphasis(link_status, i);
training[i] = vs | pe;
}
for (i = 0; i < link->num_lanes; i++) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
ANXDP_LNx_LINK_TRAINING_CTL(i), training[i]);
}
drm_dp_dpcd_write(&sc->sc_dpaux, DP_TRAINING_LANE0_SET, training,
link->num_lanes);
goto again;
}
static void
anxdp_train_link(struct anxdp_softc * const sc)
{
struct drm_dp_link link;
anxdp_macro_reset(sc);
if (0 != drm_dp_link_probe(&sc->sc_dpaux, &link)) {
device_printf(sc->sc_dev, "link probe failed\n");
return;
}
if (0 != drm_dp_link_power_up(&sc->sc_dpaux, &link))
return;
if (DP_RECEIVER_CAP_SIZE != drm_dp_dpcd_read(&sc->sc_dpaux, DP_DPCD_REV,
sc->sc_dpcd, DP_RECEIVER_CAP_SIZE))
return;
anxdp_link_start(sc, &link);
anxdp_process_clock_recovery(sc, &link);
anxdp_process_eq(sc, &link);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TRAINING_PTN_SET, 0);
drm_dp_dpcd_writeb(&sc->sc_dpaux, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_DISABLE);
}
static void
anxdp_bringup(struct anxdp_softc * const sc)
{
uint32_t val;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1);
val &= ~VIDEO_EN;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1);
val &= ~VIDEO_MUTE;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val);
val = SW_FUNC_EN_N;
if (isrockchip(sc)) {
val |= RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N;
} else {
val |= MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N |
AUD_FIFO_FUNC_EN_N | AUD_FUNC_EN_N | HDCP_FUNC_EN_N;
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2,
SSC_FUNC_EN_N | AUX_FUNC_EN_N | SERDES_FIFO_FUNC_EN_N |
LS_CLK_DOMAIN_FUNC_EN_N);
delay(30);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_M_AUD_GEN_FILTER_TH, 2);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SOC_GENERAL_CTL, 0x101);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TX_SW_RESET,
RESET_DP_TX);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_1,
TX_TERMINAL_CTRL_50_OHM);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_2,
SEL_24M | TX_DVDD_BIT_1_0625V);
if (isrockchip(sc)) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_1,
REF_CLK_24M);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_2,
0x95);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_3,
0x40);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_4,
0x58);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_REG_5,
0x22);
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_ANALOG_CTL_3,
DRIVE_DVDD_BIT_1_0625V | VCO_BIT_600_MICRO);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_PLL_FILTER_CTL_1,
PD_RING_OSC | AUX_TERMINAL_CTRL_50_OHM | TX_CUR1_2X | TX_CUR_16_MA);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_TX_AMP_TUNING_CTL, 0);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1);
val &= ~SW_FUNC_EN_N;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val);
anxdp_analog_power_up_all(sc);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_COMMON_INT_STA_1,
PLL_LOCK_CHG);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL);
val &= ~(F_PLL_LOCK | PLL_LOCK_CTRL);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DEBUG_CTL, val);
if (anxdp_await_pll_lock(sc) != 0) {
device_printf(sc->sc_dev, "PLL lock timeout\n");
}
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2);
val &= ~(SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N |
AUX_FUNC_EN_N);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_2, val);
anxdp_init_hpd(sc);
anxdp_init_aux(sc);
}
static void
anxdp_bridge_enable(struct drm_bridge *bridge)
{
struct anxdp_softc * const sc = bridge->driver_private;
uint32_t val;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1);
if (isrockchip(sc)) {
val &= ~(RK_VID_CAP_FUNC_EN_N | RK_VID_FIFO_FUNC_EN_N);
} else {
val &= ~(MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N);
val |= MASTER_VID_FUNC_EN_N;
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_FUNC_EN_1, val);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_10);
val &= ~(SLAVE_I_SCAN_CFG|SLAVE_VSYNC_P_CFG|SLAVE_HSYNC_P_CFG);
if ((sc->sc_curmode.flags & DRM_MODE_FLAG_INTERLACE) != 0)
val |= SLAVE_I_SCAN_CFG;
if ((sc->sc_curmode.flags & DRM_MODE_FLAG_NVSYNC) != 0)
val |= SLAVE_VSYNC_P_CFG;
if ((sc->sc_curmode.flags & DRM_MODE_FLAG_NHSYNC) != 0)
val |= SLAVE_HSYNC_P_CFG;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_10, val);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SOC_GENERAL_CTL,
AUDIO_MODE_SPDIF_MODE | VIDEO_MODE_SLAVE_MODE);
anxdp_train_link(sc);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1);
val |= VIDEO_EN;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_VIDEO_CTL_1, val);
if (sc->sc_panel != NULL &&
sc->sc_panel->funcs != NULL &&
sc->sc_panel->funcs->enable != NULL)
sc->sc_panel->funcs->enable(sc->sc_panel);
#if ANXDP_AUDIO
if (sc->sc_connector.monitor_audio)
anxdp_audio_init(sc);
#endif
}
static void
anxdp_bridge_pre_enable(struct drm_bridge *bridge)
{
}
static void
anxdp_bridge_disable(struct drm_bridge *bridge)
{
}
static void
anxdp_bridge_post_disable(struct drm_bridge *bridge)
{
}
static void
anxdp_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode)
{
struct anxdp_softc * const sc = bridge->driver_private;
sc->sc_curmode = *adjusted_mode;
}
static bool
anxdp_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode)
{
return true;
}
static const struct drm_bridge_funcs anxdp_bridge_funcs = {
.attach = anxdp_bridge_attach,
.enable = anxdp_bridge_enable,
.pre_enable = anxdp_bridge_pre_enable,
.disable = anxdp_bridge_disable,
.post_disable = anxdp_bridge_post_disable,
.mode_set = anxdp_bridge_mode_set,
.mode_fixup = anxdp_bridge_mode_fixup,
};
#if ANXDP_AUDIO
static int
anxdp_dai_set_format(audio_dai_tag_t dai, u_int format)
{
return 0;
}
static int
anxdp_dai_add_device(audio_dai_tag_t dai, audio_dai_tag_t aux)
{
/* Not supported */
return 0;
}
static void
anxdp_audio_swvol_codec(audio_filter_arg_t *arg)
{
struct anxdp_softc * const sc = arg->context;
const aint_t *src;
aint_t *dst;
u_int sample_count;
u_int i;
src = arg->src;
dst = arg->dst;
sample_count = arg->count * arg->srcfmt->channels;
for (i = 0; i < sample_count; i++) {
aint2_t v = (aint2_t)(*src++);
v = v * sc->sc_swvol / 255;
*dst++ = (aint_t)v;
}
}
static int
anxdp_audio_set_format(void *priv, int setmode,
const audio_params_t *play, const audio_params_t *rec,
audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
struct anxdp_softc * const sc = priv;
pfil->codec = anxdp_audio_swvol_codec;
pfil->context = sc;
return 0;
}
static int
anxdp_audio_set_port(void *priv, mixer_ctrl_t *mc)
{
struct anxdp_softc * const sc = priv;
switch (mc->dev) {
case ANXDP_DAI_OUTPUT_MASTER_VOLUME:
case ANXDP_DAI_INPUT_DAC_VOLUME:
sc->sc_swvol = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
return 0;
default:
return ENXIO;
}
}
static int
anxdp_audio_get_port(void *priv, mixer_ctrl_t *mc)
{
struct anxdp_softc * const sc = priv;
switch (mc->dev) {
case ANXDP_DAI_OUTPUT_MASTER_VOLUME:
case ANXDP_DAI_INPUT_DAC_VOLUME:
mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_swvol;
mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_swvol;
return 0;
default:
return ENXIO;
}
}
static int
anxdp_audio_query_devinfo(void *priv, mixer_devinfo_t *di)
{
switch (di->index) {
case ANXDP_DAI_OUTPUT_CLASS:
di->mixer_class = di->index;
strcpy(di->label.name, AudioCoutputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case ANXDP_DAI_INPUT_CLASS:
di->mixer_class = di->index;
strcpy(di->label.name, AudioCinputs);
di->type = AUDIO_MIXER_CLASS;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case ANXDP_DAI_OUTPUT_MASTER_VOLUME:
di->mixer_class = ANXDP_DAI_OUTPUT_CLASS;
strcpy(di->label.name, AudioNmaster);
di->un.v.delta = 1;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
di->type = AUDIO_MIXER_VALUE;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
case ANXDP_DAI_INPUT_DAC_VOLUME:
di->mixer_class = ANXDP_DAI_INPUT_CLASS;
strcpy(di->label.name, AudioNdac);
di->un.v.delta = 1;
di->un.v.num_channels = 2;
strcpy(di->un.v.units.name, AudioNvolume);
di->type = AUDIO_MIXER_VALUE;
di->next = di->prev = AUDIO_MIXER_LAST;
return 0;
default:
return ENXIO;
}
}
static const struct audio_hw_if anxdp_dai_hw_if = {
.set_format = anxdp_audio_set_format,
.set_port = anxdp_audio_set_port,
.get_port = anxdp_audio_get_port,
.query_devinfo = anxdp_audio_query_devinfo,
};
#endif
static ssize_t
anxdp_dp_aux_transfer(struct drm_dp_aux *dpaux, struct drm_dp_aux_msg *dpmsg)
{
struct anxdp_softc * const sc = container_of(dpaux, struct anxdp_softc,
sc_dpaux);
size_t loop_timeout = 0;
uint32_t val;
size_t i;
ssize_t ret = 0;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_BUFFER_DATA_CTL,
BUF_CLR);
val = AUX_LENGTH(dpmsg->size);
if ((dpmsg->request & DP_AUX_I2C_MOT) != 0)
val |= AUX_TX_COMM_MOT;
switch (dpmsg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_I2C_WRITE:
break;
case DP_AUX_I2C_READ:
val |= AUX_TX_COMM_READ;
break;
case DP_AUX_NATIVE_WRITE:
val |= AUX_TX_COMM_DP;
break;
case DP_AUX_NATIVE_READ:
val |= AUX_TX_COMM_READ | AUX_TX_COMM_DP;
break;
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_1, val);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_7_0,
AUX_ADDR_7_0(dpmsg->address));
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_15_8,
AUX_ADDR_15_8(dpmsg->address));
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_ADDR_19_16,
AUX_ADDR_19_16(dpmsg->address));
if (!(dpmsg->request & DP_AUX_I2C_READ)) {
for (i = 0; i < dpmsg->size; i++) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
ANXDP_BUF_DATA(i),
((const uint8_t *)(dpmsg->buffer))[i]);
ret++;
}
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_2,
AUX_EN | ((dpmsg->size == 0) ? ADDR_ONLY : 0));
loop_timeout = 0;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_CTL_2);
while ((val & AUX_EN) != 0) {
if (++loop_timeout > 20000) {
ret = -ETIMEDOUT;
goto out;
}
delay(25);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
ANXDP_AUX_CH_CTL_2);
}
loop_timeout = 0;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA);
while (!(val & RPLY_RECEIV)) {
if (++loop_timeout > 2000) {
ret = -ETIMEDOUT;
goto out;
}
delay(10);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
ANXDP_DP_INT_STA);
}
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA,
RPLY_RECEIV);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA);
if ((val & AUX_ERR) != 0) {
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_DP_INT_STA,
AUX_ERR);
ret = -EREMOTEIO;
goto out;
}
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_CH_STA);
if (AUX_STATUS(val) != 0) {
ret = -EREMOTEIO;
goto out;
}
if ((dpmsg->request & DP_AUX_I2C_READ)) {
for (i = 0; i < dpmsg->size; i++) {
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
ANXDP_BUF_DATA(i));
((uint8_t *)(dpmsg->buffer))[i] = val & 0xffU;
ret++;
}
}
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_AUX_RX_COMM);
if (val == AUX_RX_COMM_AUX_DEFER)
dpmsg->reply = DP_AUX_NATIVE_REPLY_DEFER;
else if (val == AUX_RX_COMM_I2C_DEFER)
dpmsg->reply = DP_AUX_I2C_REPLY_DEFER;
else if ((dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE ||
(dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_READ)
dpmsg->reply = DP_AUX_I2C_REPLY_ACK;
else if ((dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE ||
(dpmsg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_READ)
dpmsg->reply = DP_AUX_NATIVE_REPLY_ACK;
out:
if (ret < 0)
anxdp_init_aux(sc);
return ret;
}
void
anxdp_dpms(struct anxdp_softc *sc, int mode)
{
switch (mode) {
case DRM_MODE_DPMS_ON:
pmf_event_inject(NULL, PMFE_DISPLAY_ON);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
pmf_event_inject(NULL, PMFE_DISPLAY_OFF);
break;
}
}
int
anxdp_attach(struct anxdp_softc *sc)
{
#if ANXDP_AUDIO
sc->sc_swvol = 255;
/*
* Initialize audio DAI
*/
sc->sc_dai.dai_set_format = anxdp_dai_set_format;
sc->sc_dai.dai_add_device = anxdp_dai_add_device;
sc->sc_dai.dai_hw_if = &anxdp_dai_hw_if;
sc->sc_dai.dai_dev = sc->sc_dev;
sc->sc_dai.dai_priv = sc;
#endif
sc->sc_dpaux.name = "DP Aux";
sc->sc_dpaux.transfer = anxdp_dp_aux_transfer;
sc->sc_dpaux.dev = sc->sc_dev;
if (drm_dp_aux_register(&sc->sc_dpaux) != 0) {
device_printf(sc->sc_dev, "registering DP Aux failed\n");
}
anxdp_bringup(sc);
return 0;
}
int
anxdp_bind(struct anxdp_softc *sc, struct drm_encoder *encoder)
{
int error;
sc->sc_bridge.driver_private = sc;
sc->sc_bridge.funcs = &anxdp_bridge_funcs;
sc->sc_bridge.encoder = encoder;
error = drm_bridge_attach(encoder->dev, &sc->sc_bridge);
if (error != 0)
return EIO;
encoder->bridge = &sc->sc_bridge;
if (sc->sc_panel != NULL && sc->sc_panel->funcs != NULL && sc->sc_panel->funcs->prepare != NULL)
sc->sc_panel->funcs->prepare(sc->sc_panel);
return 0;
}
void anxdp0_dump(void);
void
anxdp0_dump(void)
{
extern struct cfdriver anxdp_cd;
struct anxdp_softc * const sc = device_lookup_private(&anxdp_cd, 0);
size_t i;
if (sc == NULL)
return;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_1,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_1));
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_2,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_2));
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, ANXDP_SYS_CTL_3));
for (i = 0x000; i < 0xb00; i += 4)
device_printf(sc->sc_dev, "%03zx 0x%08x\n", i,
bus_space_read_4(sc->sc_bst, sc->sc_bsh, i));
}