NetBSD/sys/dev/scsipi/if_se.c
1998-01-12 09:49:10 +00:00

1166 lines
29 KiB
C

/* $NetBSD: if_se.c,v 1.13 1998/01/12 09:49:14 thorpej Exp $ */
/*
* Copyright (c) 1997 Ian W. Dall <ian.dall@dsto.defence.gov.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Ian W. Dall.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for Cabletron EA41x scsi ethernet adaptor.
*
* Written by Ian Dall <ian.dall@dsto.defence.gov.au> Feb 3, 1997
*
* Acknowledgement: Thanks are due to Philip L. Budne <budd@cs.bu.edu>
* who reverse engineered the the EA41x. In developing this code,
* Phil's userland daemon "etherd", was refered to extensively in lieu
* of accurate documentation for the device.
*
* This is a weird device! It doesn't conform to the scsi spec in much
* at all. About the only standard command supported in inquiry. Most
* commands are 6 bytes long, but the recv data is only 1 byte. Data
* must be received by periodically polling the device with the recv
* command.
*
* This driver is also a bit unusual. It must look like a network
* interface and it must also appear to be a scsi device to the scsi
* system. Hence there are cases where there are two entry points. eg
* sestart is to be called from the scsi subsytem and se_ifstart from
* the network interface subsystem. In addition, to facilitate scsi
* commands issued by userland programs, there are open, close and
* ioctl entry points. This allows a user program to, for example,
* display the ea41x stats and download new code into the adaptor ---
* functions which can't be performed through the ifconfig interface.
* Normal operation does not require any special userland program.
*/
#include "bpfilter.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/proc.h>
#include <sys/conf.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_ctron_ether.h>
#include <dev/scsipi/scsiconf.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#ifdef NETATALK
#include <netatalk/at.h>
#endif
#if defined(CCITT) && defined(LLC)
#include <sys/socketvar.h>
#include <netccitt/x25.h>
#include <netccitt/pk.h>
#include <netccitt/pk_var.h>
#include <netccitt/pk_extern.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#define SETIMEOUT 1000
#define SEOUTSTANDING 4
#define SERETRIES 4
#define SE_PREFIX 4
#define ETHER_CRC 4
#define SEMINSIZE 60
/* Make this big enough for an ETHERMTU packet in promiscuous mode. */
#define MAX_SNAP (ETHERMTU + sizeof(struct ether_header) + \
SE_PREFIX + ETHER_CRC)
/* 10 full length packets appears to be the max ever returned. 16k is OK */
#define RBUF_LEN (16 * 1024)
/* Tuning parameters:
* The EA41x only returns a maximum of 10 packets (regardless of size).
* We will attempt to adapt to polling fast enough to get RDATA_GOAL packets
* per read
*/
#define RDATA_MAX 10
#define RDATA_GOAL 8
/* se_poll and se_poll0 are the normal polling rate and the minimum
* polling rate respectively. se_poll0 should be chosen so that at
* maximum ethernet speed, we will read nearly RDATA_MAX packets. se_poll
* should be chosen for reasonable maximum latency.
* In practice, if we are being saturated with min length packets, we
* can't poll fast enough. Polling with zero delay actually
* worsens performance. se_poll0 is enforced to be always at least 1
*/
#define SE_POLL 40 /* default in milliseconds */
#define SE_POLL0 10 /* default in milliseconds */
int se_poll = 0; /* Delay in ticks set at attach time */
int se_poll0 = 0;
int se_max_received = 0; /* Instrumentation */
#define PROTOCMD(p, d) \
((d) = (p))
#define PROTOCMD_DECL(name, val) \
static const struct scsi_ctron_ether_generic name = val
#define PROTOCMD_DECL_SPECIAL(name, val) \
static const struct __CONCAT(scsi_,name) name = val
/* Command initializers for commands using scsi_ctron_ether_generic */
PROTOCMD_DECL(ctron_ether_send, {CTRON_ETHER_SEND});
PROTOCMD_DECL(ctron_ether_add_proto, {CTRON_ETHER_ADD_PROTO});
PROTOCMD_DECL(ctron_ether_get_addr, {CTRON_ETHER_GET_ADDR});
PROTOCMD_DECL(ctron_ether_set_media, {CTRON_ETHER_SET_MEDIA});
PROTOCMD_DECL(ctron_ether_set_addr, {CTRON_ETHER_SET_ADDR});
PROTOCMD_DECL(ctron_ether_set_multi, {CTRON_ETHER_SET_MULTI});
PROTOCMD_DECL(ctron_ether_remove_multi, {CTRON_ETHER_REMOVE_MULTI});
/* Command initializers for commands using their own structures */
PROTOCMD_DECL_SPECIAL(ctron_ether_recv, {CTRON_ETHER_RECV});
PROTOCMD_DECL_SPECIAL(ctron_ether_set_mode, {CTRON_ETHER_SET_MODE});
struct se_softc {
struct device sc_dev;
struct ethercom sc_ethercom; /* Ethernet common part */
struct scsipi_link *sc_link; /* contains our targ, lun, etc. */
char *sc_tbuf;
char *sc_rbuf;
int protos;
#define PROTO_IP 0x01
#define PROTO_ARP 0x02
#define PROTO_REVARP 0x04
#define PROTO_AT 0x08
#define PROTO_AARP 0x10
int sc_debug;
int sc_flags;
#define SE_NEED_RECV 0x1
int sc_last_timeout;
};
cdev_decl(se);
#ifdef __BROKEN_INDIRECT_CONFIG
static int sematch __P((struct device *, void *, void *));
#else
static int sematch __P((struct device *, struct cfdata *, void *));
#endif
static void seattach __P((struct device *, struct device *, void *));
static void se_ifstart __P((struct ifnet *));
static void sestart __P((void *));
static void sedone __P((struct scsipi_xfer *));
static int se_ioctl __P((struct ifnet *, u_long, caddr_t));
static void sewatchdog __P((struct ifnet *));
static __inline u_int16_t ether_cmp __P((void *, void *));
static void se_recv __P((void *));
static struct mbuf *se_get __P((struct se_softc *, char *, int));
static int se_read __P((struct se_softc *, char *, int));
static int se_reset __P((struct se_softc *));
static int se_add_proto __P((struct se_softc *, int));
static int se_get_addr __P((struct se_softc *, u_int8_t *));
static int se_set_media __P((struct se_softc *, int));
static int se_init __P((struct se_softc *));
static int se_set_multi __P((struct se_softc *, u_int8_t *));
static int se_remove_multi __P((struct se_softc *, u_int8_t *));
#if 0
static int sc_set_all_multi __P((struct se_softc *, int));
#endif
static void se_stop __P((struct se_softc *));
static __inline int se_scsipi_cmd __P((struct scsipi_link *sc_link,
struct scsipi_generic *scsipi_cmd,
int cmdlen, u_char *data_addr, int datalen,
int retries, int timeout, struct buf *bp,
int flags));
static void se_delayed_ifstart __P((void *));
static int se_set_mode(struct se_softc *, int, int);
struct cfattach se_ca = {
sizeof(struct se_softc), sematch, seattach
};
extern struct cfdriver se_cd;
struct scsipi_device se_switch = {
NULL, /* Use default error handler */
sestart, /* have a queue, served by this */
NULL, /* have no async handler */
sedone, /* deal with stats at interrupt time */
};
struct scsipi_inquiry_pattern se_patterns[] = {
{T_PROCESSOR, T_FIXED,
"CABLETRN", "EA412", ""},
{T_PROCESSOR, T_FIXED,
"Cabletrn", "EA412", ""},
};
/*
* Compare two Ether/802 addresses for equality, inlined and
* unrolled for speed.
* Note: use this like bcmp()
*/
static __inline u_int16_t
ether_cmp(one, two)
void *one, *two;
{
register u_int16_t *a = (u_int16_t *) one;
register u_int16_t *b = (u_int16_t *) two;
register u_int16_t diff;
diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]);
return (diff);
}
#define ETHER_CMP ether_cmp
static int
sematch(parent, match, aux)
struct device *parent;
#ifdef __BROKEN_INDIRECT_CONFIG
void *match;
#else
struct cfdata *match;
#endif
void *aux;
{
struct scsipibus_attach_args *sa = aux;
int priority;
(void)scsipi_inqmatch(&sa->sa_inqbuf,
(caddr_t)se_patterns, sizeof(se_patterns) / sizeof(se_patterns[0]),
sizeof(se_patterns[0]), &priority);
return (priority);
}
/*
* The routine called by the low level scsi routine when it discovers
* a device suitable for this driver.
*/
static void
seattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct se_softc *sc = (void *)self;
struct scsipibus_attach_args *sa = aux;
struct scsipi_link *sc_link = sa->sa_sc_link;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int8_t myaddr[ETHER_ADDR_LEN];
printf("\n");
SC_DEBUG(sc_link, SDEV_DB2, ("seattach: "));
/*
* Store information needed to contact our base driver
*/
sc->sc_link = sc_link;
sc_link->device = &se_switch;
sc_link->device_softc = sc;
if (sc_link->openings > SEOUTSTANDING)
sc_link->openings = SEOUTSTANDING;
se_poll = (SE_POLL * hz) / 1000;
se_poll = se_poll? se_poll: 1;
se_poll0 = (SE_POLL0 * hz) / 1000;
se_poll0 = se_poll0? se_poll0: 1;
/*
* Initialize and attach a buffer
*/
sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header),
M_DEVBUF, M_NOWAIT);
if (sc->sc_tbuf == 0)
panic("seattach: can't allocate transmit buffer");
sc->sc_rbuf = malloc(RBUF_LEN, M_DEVBUF, M_NOWAIT);/* A Guess */
if (sc->sc_rbuf == 0)
panic("seattach: can't allocate receive buffer");
se_get_addr(sc, myaddr);
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = se_ifstart;
ifp->if_ioctl = se_ioctl;
ifp->if_watchdog = sewatchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, myaddr);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
}
static __inline int
se_scsipi_cmd(sc_link, scsipi_cmd, cmdlen, data_addr, datalen,
retries, timeout, bp, flags)
struct scsipi_link *sc_link;
struct scsipi_generic *scsipi_cmd;
int cmdlen;
u_char *data_addr;
int datalen;
int retries;
int timeout;
struct buf *bp;
int flags;
{
int error;
int s = splbio();
error = scsipi_command(sc_link, scsipi_cmd, cmdlen, data_addr,
datalen, retries, timeout, bp, flags);
splx(s);
return (error);
}
/* Start routine for calling from scsi sub system */
static void
sestart(v)
void *v;
{
struct se_softc *sc = (struct se_softc *) v;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s = splnet();
se_ifstart(ifp);
(void) splx(s);
}
static void
se_delayed_ifstart(v)
void *v;
{
struct ifnet *ifp = v;
int s = splnet();
ifp->if_flags &= ~IFF_OACTIVE;
se_ifstart(ifp);
splx(s);
}
/*
* Start transmission on the interface.
* Always called at splnet().
*/
static void
se_ifstart(ifp)
struct ifnet *ifp;
{
struct se_softc *sc = ifp->if_softc;
struct scsi_ctron_ether_generic send_cmd;
struct mbuf *m, *m0;
int len, error;
u_char *cp;
/* Don't transmit if interface is busy or not running */
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == 0)
return;
#if NBPFILTER > 0
/* If BPF is listening on this interface, let it see the
* packet before we commit it to the wire.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/* We need to use m->m_pkthdr.len, so require the header */
if ((m0->m_flags & M_PKTHDR) == 0)
panic("ctscstart: no header mbuf");
len = m0->m_pkthdr.len;
/* Mark the interface busy. */
ifp->if_flags |= IFF_OACTIVE;
/* Chain; copy into linear buffer we allocated at attach time. */
cp = sc->sc_tbuf;
for (m = m0; m != NULL; ) {
bcopy(mtod(m, u_char *), cp, m->m_len);
cp += m->m_len;
MFREE(m, m0);
m = m0;
}
if (len < SEMINSIZE) {
#ifdef SEDEBUG
if (sc->sc_debug)
printf("se: packet size %d (%d) < %d\n", len,
cp - (u_char *)sc->sc_tbuf, SEMINSIZE);
#endif
bzero(cp, SEMINSIZE - len);
len = SEMINSIZE;
}
/* Fill out SCSI command. */
PROTOCMD(ctron_ether_send, send_cmd);
_lto2b(len, send_cmd.length);
/* Send command to device. */
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *)&send_cmd, sizeof(send_cmd),
sc->sc_tbuf, len, SERETRIES,
SETIMEOUT, NULL, SCSI_NOSLEEP|SCSI_DATA_OUT);
if (error) {
printf("%s: not queued, error %d\n",
sc->sc_dev.dv_xname, error);
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_OACTIVE;
} else
ifp->if_opackets++;
if (sc->sc_flags & SE_NEED_RECV) {
sc->sc_flags &= ~SE_NEED_RECV;
se_recv((void *) sc);
}
}
/*
* Called from the scsibus layer via our scsi device switch.
*/
static void
sedone(xs)
struct scsipi_xfer *xs;
{
int error;
struct se_softc *sc = xs->sc_link->device_softc;
struct scsipi_generic *cmd = xs->cmd;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
error = !(xs->error == XS_NOERROR);
s = splnet();
if(IS_SEND(cmd)) {
if (xs->error == XS_BUSY) {
printf("se: busy, retry txmit\n");
timeout(se_delayed_ifstart, ifp, hz);
} else {
ifp->if_flags &= ~IFF_OACTIVE;
/* the generic scsipi_done will call
* sestart (through scsipi_free_xs).
*/
}
} else if(IS_RECV(cmd)) {
/* RECV complete */
/* pass data up. reschedule a recv */
/* scsipi_free_xs will call start. Harmless. */
if (error) {
/* Reschedule after a delay */
timeout(se_recv, (void *)sc, se_poll);
} else {
int n, ntimeo;
n = se_read(sc, xs->data, xs->datalen - xs->resid);
if (n > se_max_received)
se_max_received = n;
if (n == 0)
ntimeo = se_poll;
else if (n >= RDATA_MAX)
ntimeo = se_poll0;
else {
ntimeo = sc->sc_last_timeout;
ntimeo = (ntimeo * RDATA_GOAL)/n;
ntimeo = (ntimeo < se_poll0?
se_poll0: ntimeo);
ntimeo = (ntimeo > se_poll?
se_poll: ntimeo);
}
sc->sc_last_timeout = ntimeo;
if (ntimeo == se_poll0 &&
ifp->if_snd.ifq_head)
/* Output is pending. Do next recv
* after the next send. */
sc->sc_flags |= SE_NEED_RECV;
else {
timeout(se_recv, (void *)sc, ntimeo);
}
}
}
splx(s);
}
static void
se_recv(v)
void *v;
{
/* do a recv command */
struct se_softc *sc = (struct se_softc *) v;
struct scsi_ctron_ether_recv recv_cmd;
int error;
PROTOCMD(ctron_ether_recv, recv_cmd);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *)&recv_cmd, sizeof(recv_cmd),
sc->sc_rbuf, RBUF_LEN, SERETRIES, SETIMEOUT, NULL,
SCSI_NOSLEEP|SCSI_DATA_IN);
if (error)
timeout(se_recv, (void *)sc, se_poll);
}
/*
* We copy the data into mbufs. When full cluster sized units are present
* we copy into clusters.
*/
static struct mbuf *
se_get(sc, data, totlen)
struct se_softc *sc;
char *data;
int totlen;
{
struct mbuf *m;
struct mbuf *top, **mp;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int len, pad;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
m->m_data += pad;
len = MHLEN - pad;
top = 0;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (0);
}
len = MLEN;
}
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m_freem(top);
return (0);
}
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
bcopy(data, mtod(m, caddr_t), len);
data += len;
totlen -= len;
*mp = m;
mp = &m->m_next;
}
return (top);
}
/*
* Pass packets to higher levels.
*/
static int
se_read(sc, data, datalen)
register struct se_softc *sc;
char *data;
int datalen;
{
struct mbuf *m;
struct ether_header *eh;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int n;
n = 0;
while (datalen >= 2) {
int len = _2btol(data);
data += 2;
datalen -= 2;
if (len == 0)
break;
#ifdef SEDEBUG
if (sc->sc_debug) {
printf("se_read: datalen = %d, packetlen = %d, proto = 0x%04x\n", datalen, len,
ntohs(((struct ether_header *)data)->ether_type));
}
#endif
if (len <= sizeof(struct ether_header) ||
len > MAX_SNAP) {
#ifdef SEDEBUG
printf("%s: invalid packet size %d; dropping\n",
sc->sc_dev.dv_xname, len);
#endif
ifp->if_ierrors++;
goto next_packet;
}
/* Don't need crc. Must keep ether header for BPF */
m = se_get(sc, data, len - ETHER_CRC);
if (m == 0) {
#ifdef SEDEBUG
if (sc->sc_debug)
printf("se_read: se_get returned null\n");
#endif
ifp->if_ierrors++;
goto next_packet;
}
if ((ifp->if_flags & IFF_PROMISC) != 0) {
m_adj(m, SE_PREFIX);
}
ifp->if_ipackets++;
/* We assume that the header fit entirely in one mbuf. */
eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface.
* If so, hand off the raw packet to BPF.
*/
if (ifp->if_bpf) {
bpf_mtap(ifp->if_bpf, m);
/* Note that the interface cannot be in
* promiscuous mode if there are no BPF
* listeners. And if we are in promiscuous
* mode, we have to check if this packet is
* really ours.
*/
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
ETHER_CMP(eh->ether_dhost, LLADDR(ifp->if_sadl))) {
m_freem(m);
goto next_packet;
}
}
#endif
/* Pass the packet up, with the ether header sort-of removed. */
m_adj(m, sizeof(struct ether_header));
ether_input(ifp, eh, m);
next_packet:
data += len;
datalen -= len;
n++;
}
return (n);
}
static void
sewatchdog(ifp)
struct ifnet *ifp;
{
struct se_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++ifp->if_oerrors;
se_reset(sc);
}
static int
se_reset(sc)
struct se_softc *sc;
{
int error;
int s = splnet();
#if 0
/* Maybe we don't *really* want to reset the entire bus
* because the ctron isn't working. We would like to send a
* "BUS DEVICE RESET" message, but don't think the ctron
* understands it.
*/
error = se_scsipi_cmd(sc->sc_link, 0, 0, 0, 0, SERETRIES, 2000, NULL,
SCSI_RESET);
#endif
error = se_init(sc);
splx(s);
return (error);
}
static int
se_add_proto(sc, proto)
struct se_softc *sc;
int proto;
{
int error;
struct scsi_ctron_ether_generic add_proto_cmd;
u_int8_t data[2];
_lto2b(proto, data);
#ifdef SEDEBUG
if (sc->sc_debug)
printf("se: adding proto 0x%02x%02x\n", data[0], data[1]);
#endif
PROTOCMD(ctron_ether_add_proto, add_proto_cmd);
_lto2b(sizeof(data), add_proto_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &add_proto_cmd, sizeof(add_proto_cmd),
data, sizeof(data), SERETRIES, SETIMEOUT, NULL, SCSI_DATA_OUT);
return (error);
}
static int
se_get_addr(sc, myaddr)
struct se_softc *sc;
u_int8_t *myaddr;
{
int error;
struct scsi_ctron_ether_generic get_addr_cmd;
PROTOCMD(ctron_ether_get_addr, get_addr_cmd);
_lto2b(ETHER_ADDR_LEN, get_addr_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &get_addr_cmd, sizeof(get_addr_cmd),
myaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, SCSI_DATA_IN);
printf("%s: ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(myaddr));
return (error);
}
static int
se_set_media(sc, type)
struct se_softc *sc;
int type;
{
int error;
struct scsi_ctron_ether_generic set_media_cmd;
PROTOCMD(ctron_ether_set_media, set_media_cmd);
set_media_cmd.byte3 = type;
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &set_media_cmd, sizeof(set_media_cmd),
0, 0, SERETRIES, SETIMEOUT, NULL, 0);
return (error);
}
static int
se_set_mode(sc, len, mode)
struct se_softc *sc;
int len;
int mode;
{
int error;
struct scsi_ctron_ether_set_mode set_mode_cmd;
PROTOCMD(ctron_ether_set_mode, set_mode_cmd);
set_mode_cmd.mode = mode;
_lto2b(len, set_mode_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &set_mode_cmd, sizeof(set_mode_cmd),
0, 0, SERETRIES, SETIMEOUT, NULL, 0);
return (error);
}
static int
se_init(sc)
struct se_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct scsi_ctron_ether_generic set_addr_cmd;
int error;
#if NBPFILTER > 0
if (ifp->if_flags & IFF_PROMISC) {
error = se_set_mode(sc, MAX_SNAP, 1);
}
else
#endif
error = se_set_mode(sc, ETHERMTU + sizeof(struct ether_header),
0);
if (error != 0)
return (error);
PROTOCMD(ctron_ether_set_addr, set_addr_cmd);
_lto2b(ETHER_ADDR_LEN, set_addr_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &set_addr_cmd, sizeof(set_addr_cmd),
LLADDR(ifp->if_sadl), ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL,
SCSI_DATA_OUT);
if (error != 0)
return (error);
if ((sc->protos & PROTO_IP) &&
(error = se_add_proto(sc, ETHERTYPE_IP)) != 0)
return (error);
if ((sc->protos & PROTO_ARP) &&
(error = se_add_proto(sc, ETHERTYPE_ARP)) != 0)
return (error);
if ((sc->protos & PROTO_REVARP) &&
(error = se_add_proto(sc, ETHERTYPE_REVARP)) != 0)
return (error);
#ifdef NETATALK
if ((sc->protos & PROTO_AT) &&
(error = se_add_proto(sc, ETHERTYPE_AT)) != 0)
return (error);
if ((sc->protos & PROTO_AARP) &&
(error = se_add_proto(sc, ETHERTYPE_AARP)) != 0)
return (error);
#endif
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == IFF_UP) {
ifp->if_flags |= IFF_RUNNING;
se_recv(sc);
ifp->if_flags &= ~IFF_OACTIVE;
se_ifstart(ifp);
}
return (error);
}
static int
se_set_multi(sc, addr)
struct se_softc *sc;
u_int8_t *addr;
{
struct scsi_ctron_ether_generic set_multi_cmd;
int error;
if (sc->sc_debug)
printf("%s: set_set_multi: %s\n", sc->sc_dev.dv_xname,
ether_sprintf(addr));
PROTOCMD(ctron_ether_set_multi, set_multi_cmd);
_lto2b(sizeof(addr), set_multi_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &set_multi_cmd, sizeof(set_multi_cmd),
addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, SCSI_DATA_OUT);
return (error);
}
static int
se_remove_multi(sc, addr)
struct se_softc *sc;
u_int8_t *addr;
{
struct scsi_ctron_ether_generic remove_multi_cmd;
int error;
if (sc->sc_debug)
printf("%s: se_remove_multi: %s\n", sc->sc_dev.dv_xname,
ether_sprintf(addr));
PROTOCMD(ctron_ether_remove_multi, remove_multi_cmd);
_lto2b(sizeof(addr), remove_multi_cmd.length);
error = se_scsipi_cmd(sc->sc_link,
(struct scsipi_generic *) &remove_multi_cmd,
sizeof(remove_multi_cmd),
addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, SCSI_DATA_OUT);
return (error);
}
#if 0 /* not used --thorpej */
static int
sc_set_all_multi(sc, set)
struct se_softc *sc;
int set;
{
int error = 0;
u_int8_t *addr;
struct ethercom *ac = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (ETHER_CMP(enm->enm_addrlo, enm->enm_addrhi)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
/* We have no way of adding a range to this device.
* stepping through all addresses in the range is
* typically not possible. The only real alternative
* is to go into promicuous mode and filter by hand.
*/
return (ENODEV);
}
addr = enm->enm_addrlo;
if ((error = set ? se_set_multi(sc, addr) :
se_remove_multi(sc, addr)) != 0)
return (error);
ETHER_NEXT_MULTI(step, enm);
}
return (error);
}
#endif /* not used */
static void
se_stop(sc)
struct se_softc *sc;
{
/* Don't schedule any reads */
untimeout(se_recv, sc);
/* How can we abort any scsi cmds in progress? */
}
/*
* Process an ioctl request.
*/
static int
se_ioctl(ifp, cmd, data)
register struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
register struct se_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if ((error = se_set_media(sc, CMEDIA_AUTOSENSE) != 0))
return (error);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
sc->protos |= (PROTO_IP | PROTO_ARP | PROTO_REVARP);
if ((error = se_init(sc)) != 0)
break;
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)LLADDR(ifp->if_sadl);
else
bcopy(ina->x_host.c_host,
LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
/* Set new address. */
error = se_init(sc);
break;
}
#endif
#ifdef NETATALK
case AF_APPLETALK:
sc->protos |= (PROTO_AT | PROTO_AARP);
if ((error = se_init(sc)) != 0)
break;
break;
#endif
default:
error = se_init(sc);
break;
}
break;
#if defined(CCITT) && defined(LLC)
case SIOCSIFCONF_X25:
ifp->if_flags |= IFF_UP;
ifa->ifa_rtrequest = cons_rtrequest; /* XXX */
error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
if (error == 0)
error = se_init(sc);
break;
#endif /* CCITT && LLC */
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
se_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
error = se_init(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
error = se_init(sc);
}
#ifdef SEDEBUG
if (ifp->if_flags & IFF_DEBUG)
sc->sc_debug = 1;
else
sc->sc_debug = 0;
#endif
break;
case SIOCADDMULTI:
if (ether_addmulti(ifr, &sc->sc_ethercom) == ENETRESET)
error = se_set_multi(sc, ifr->ifr_addr.sa_data);
else
error = 0;
break;
case SIOCDELMULTI:
if (ether_delmulti(ifr, &sc->sc_ethercom) == ENETRESET)
error = se_remove_multi(sc, ifr->ifr_addr.sa_data);
else
error = 0;
break;
default:
error = EINVAL;
break;
}
splx(s);
return (error);
}
#define SEUNIT(z) (minor(z))
/*
* open the device.
*/
int
seopen(dev, flag, fmt, p)
dev_t dev;
int flag, fmt;
struct proc *p;
{
int unit;
struct se_softc *sc;
struct scsipi_link *sc_link;
unit = SEUNIT(dev);
if (unit >= se_cd.cd_ndevs)
return (ENXIO);
sc = se_cd.cd_devs[unit];
if (sc == NULL)
return (ENXIO);
sc_link = sc->sc_link;
SC_DEBUG(sc_link, SDEV_DB1,
("scopen: dev=0x%x (unit %d (of %d))\n", dev, unit,
se_cd.cd_ndevs));
sc_link->flags |= SDEV_OPEN;
SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n"));
return (0);
}
/*
* close the device.. only called if we are the LAST
* occurence of an open device
*/
int
seclose(dev, flag, fmt, p)
dev_t dev;
int flag, fmt;
struct proc *p;
{
struct se_softc *sc = se_cd.cd_devs[SEUNIT(dev)];
SC_DEBUG(sc->sc_link, SDEV_DB1, ("closing\n"));
sc->sc_link->flags &= ~SDEV_OPEN;
return (0);
}
/*
* Perform special action on behalf of the user
* Only does generic scsi ioctls.
*/
int
seioctl(dev, cmd, addr, flag, p)
dev_t dev;
u_long cmd;
caddr_t addr;
int flag;
struct proc *p;
{
register struct se_softc *sc = se_cd.cd_devs[SEUNIT(dev)];
return (scsipi_do_ioctl(sc->sc_link, dev, cmd, addr, flag, p));
}