NetBSD/sys/arch/amiga/dev/fd.c

1551 lines
31 KiB
C

/*-
* Copyright (c) 1993, 1994 Charles Hannum.
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
/*
* Copyright (c) 1994 Brad Pepers
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brad Pepers
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: fd.c,v 1.4 1994/04/22 02:20:48 chopps Exp $
*
*
*/
/*
* floppy interface
*/
#include "fd.h"
#if NFD > 0
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/dkstat.h>
#include <sys/disklabel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <amiga/dev/device.h>
#include <amiga/amiga/cia.h>
#include <amiga/amiga/custom.h>
#define UNIT(x) (minor(x) & 3)
#define b_cylin b_resid
#define FDBLK 512
#define MAX_SECTS 22
#define IMMED_WRITE 0
int fdattach();
struct driver fddriver = {
fdattach, "fd",
};
/* defines */
#define MFM_SYNC 0x4489
#define DSKLEN_DMAEN (1<<15)
#define DSKLEN_WRITE (1<<14)
/* drive type values */
#define FD_NONE 0xffffffff
#define FD_DD_3 0x00000000 /* double-density 3.5" (880K) */
#define FD_HD_3 0xaaaaaaaa /* high-density 3.5" (1760K) */
#define FD_DD_5 0x55555555 /* double-density 5.25" (440K) */
struct fd_type {
int id;
char *name;
int tracks;
int heads;
int read_size;
int write_size;
int gap_size;
int sect_mult;
int precomp1;
int precomp2;
int step_delay;
int side_time;
int settle_time;
};
struct fd_type drive_types[] = {
/* id name tr he rdsz wrsz gap sm pc1 pc2 sd st st */
{ FD_DD_3, "DD 3.5\"", 80, 2, 14716, 13630, 414, 1, 80, 161, 3, 2, 18 },
{ FD_HD_3, "HD 3.5\"", 80, 2, 29432, 27260, 828, 2, 80, 161, 3, 2, 18 },
{ FD_DD_5, "DD 5.25\"",40, 2, 14716, 13630, 414, 1, 40, 80, 3, 2, 18 },
{ FD_NONE, "No Drive", 0, }
};
int num_dr_types = sizeof(drive_types) / sizeof(drive_types[0]);
/*
* Per drive structure.
* N per controller (presently 4) (DRVS_PER_CTLR)
*/
#define DRVS_PER_CTLR 4
struct fd_data {
int fdu; /* This unit number */
struct buf head; /* Head of buf chain */
struct buf rhead; /* Raw head of buf chain */
int type; /* Drive type */
struct fd_type *ft; /* Pointer to type descriptor */
int flags;
#define FDF_OPEN 0x01 /* it's open */
int skip;
int sects; /* number of sectors in a track */
int size; /* size of disk in sectors */
int side; /* current side disk is on */
int dir; /* current direction of stepping */
int cyl; /* current cylinder disk is on */
int buf_track;
int buf_dirty;
char *buf_data;
char *buf_labels;
int write_cnt;
};
/*
* Per controller structure.
*/
struct fdc_data
{
int fdcu; /* our unit number */
struct fd_data *fd; /* drive we are currently doing work for */
int motor_fdu; /* drive that has its motor on */
int state;
int saved;
int retry;
struct fd_data fd_data[DRVS_PER_CTLR];
};
struct fdc_data fdc_data[NFD];
/*
* Throughout this file the following conventions will be used:
*
* fd is a pointer to the fd_data struct for the drive in question
* fdc is a pointer to the fdc_data struct for the controller
* fdu is the floppy drive unit number
* fdcu is the floppy controller unit number
* fdsu is the floppy drive unit number on that controller. (sub-unit)
*/
typedef int fdu_t;
typedef int fdcu_t;
typedef int fdsu_t;
typedef struct fd_data *fd_p;
typedef struct fdc_data *fdc_p;
/*
* protos.
*/
static int delay __P((int));
void encode __P((u_long, u_long *, u_long *));
void fd_step __P((void));
void fd_seek __P((fd_p, int));
void correct __P((u_long *));
void fd_probe __P((fd_p));
void fd_turnon __P((fdc_p, fdu_t));
void fd_turnoff __P((fdc_p));
void track_read __P((fdc_p, fd_p, int));
void fd_timeout __P((fdc_p));
void fd_motor_to __P((fdcu_t));
void fd_motor_on __P((fdc_p, fdu_t));
void track_write __P((fdc_p, fd_p));
void amiga_write __P((fd_p));
void fd_calibrate __P((fd_p));
void encode_block __P((u_long *, u_char *, int, u_long *));
void fd_select_dir __P((fd_p, int));
void fd_pseudointr __P((fdc_p));
void fd_select_side __P((fd_p, int));
u_long scan_sync __P((u_long, u_long, int));
u_long encode_long __P((u_long, u_long *));
u_long loop_read_id __P((int));
u_long get_drive_id __P((int));
int fdstate __P((fdc_p));
int retrier __P((fdc_p));
int amiga_read __P((fd_p));
int get_drive_type __P((u_long));
/* device routines */
int Fdopen __P((dev_t, int));
int fdsize __P((dev_t));
int fdioctl __P((dev_t, int, caddr_t, int, struct proc *));
int fdclose __P((dev_t, int));
int fdattach __P((struct amiga_device *));
void fdintr __P((fdcu_t));
void fdstart __P((fdc_p));
void fdstrategy __P((struct buf *bp));
#define DEVIDLE 0
#define FINDWORK 1
#define DOSEEK 2
#define DO_IO 3
#define DONE_IO 4
#define WAIT_READ 5
#define WAIT_WRITE 6
#define DELAY_WRITE 7
#define RECALCOMPLETE 8
#define STARTRECAL 9
#define RESETCTLR 10
#define SEEKWAIT 11
#define RECALWAIT 12
#define MOTORWAIT 13
#undef DEBUG
#ifdef DEBUG
char *fdstates[] =
{
"DEVIDLE",
"FINDWORK",
"DOSEEK",
"DO_IO",
"DONE_IO",
"WAIT_READ",
"WAIT_WRITE",
"DELAY_WRITE",
"RECALCOMPLETE",
"STARTRECAL",
"RESETCTLR",
"SEEKWAIT",
"RECALWAIT",
"MOTORWAIT",
};
#define TRACE0(arg) if (fd_debug == 1) printf(arg)
#define TRACE1(arg1,arg2) if (fd_debug == 1) printf(arg1,arg2)
#else /* !DEBUG */
#define TRACE0(arg)
#define TRACE1(arg1,arg2)
#endif /* !DEBUG */
extern int hz;
unsigned char *raw_buf = NULL;
#ifdef DEBUG
int fd_debug = 1;
#else
int fd_debug = 0;
#endif
/*
* Floppy Support Routines
*/
#define MOTOR_ON (ciab.prb &= ~CIAB_PRB_MTR)
#define MOTOR_OFF (ciab.prb |= CIAB_PRB_MTR)
#define SELECT(mask) (ciab.prb &= ~mask)
#define DESELECT(mask) (ciab.prb |= mask)
#define SELMASK(drive) (1 << (3 + (drive & 3)))
/*
* Delay for a number of milliseconds
* - tried ciab.tod but seems to miss values and screw up
* - stupid busy loop for now
*/
static int
delay(delay_ms)
int delay_ms;
{
long cnt, inner;
int val;
DELAY (delay_ms * 1000 * 25); /* NOTE: DELAY seems to run too fast */
return(val);
}
/*
* motor control stuff
*/
void
fd_motor_to(fdcu)
fdcu_t fdcu;
{
printf("timeout starting motor\n"); /* XXXX */
fdc_data[fdcu].motor_fdu = -2;
}
void
fd_motor_on(fdc, fdu)
fdc_p fdc;
fdu_t fdu;
{
int i;
/* deselect all drives */
for (i = 0; i < DRVS_PER_CTLR; i++)
DESELECT(SELMASK(i));
/* turn on the unit's motor */
MOTOR_ON;
SELECT(SELMASK(fdu));
timeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu, hz);
while (ciaa.pra & CIAA_PRA_RDY)
;
untimeout((timeout_t)fd_motor_to, (caddr_t)fdc->fdcu);
fdc->motor_fdu = fdu;
}
void
fd_turnoff(fdc)
fdc_p fdc;
{
int i;
if (fdc->motor_fdu != -1) {
/* deselect all drives */
for (i = 0; i < DRVS_PER_CTLR; i++)
DESELECT(SELMASK(i));
/* turn off the unit's motor */
MOTOR_OFF;
SELECT(SELMASK(fdc->motor_fdu));
MOTOR_ON;
DESELECT(SELMASK(fdc->motor_fdu));
}
fdc->motor_fdu = -1;
}
void
fd_turnon(fdc, fdu)
fdc_p fdc;
fdu_t fdu;
{
if (fdc->motor_fdu == fdu)
return;
fd_turnoff(fdc);
fd_motor_on(fdc, fdu);
}
/*
* Step the drive once in its current direction
*/
void
fd_step()
{
ciab.prb &= ~CIAB_PRB_STEP;
ciab.prb |= CIAB_PRB_STEP;
}
/*
* Select the side to use for a particular drive.
* The drive must have been calibrated at some point before this.
* The drive must also be active and the motor must be running.
*/
void
fd_select_side(fd, side)
fd_p fd;
int side;
{
if (fd->side == side)
return;
/* select the requested side */
if (side == 0)
ciab.prb &= ~CIAB_PRB_SIDE;
else
ciab.prb |= CIAB_PRB_SIDE;
delay(fd->ft->side_time);
fd->side = side;
}
/*
* Select the direction to use for the current particular drive.
*/
void
fd_select_dir(fd, dir)
fd_p fd;
int dir;
{
if (fd->dir == dir)
return;
/* select the requested direction */
if (dir == 0)
ciab.prb &= ~CIAB_PRB_DIR;
else
ciab.prb |= CIAB_PRB_DIR;
delay(fd->ft->settle_time);
fd->dir = dir;
}
/*
* Seek the drive to track 0.
* The drive must be active and the motor must be running.
* Returns standard floppy error code. /* XXXX doesn't return anything
*/
void
fd_calibrate(fd)
fd_p fd;
{
fd_select_dir(fd, 1);
/* loop until we hit track 0 */
while (ciaa.pra & CIAA_PRA_TK0) {
fd_step();
delay(4);
}
/* set known values */
fd->cyl = 0;
delay (fd->ft->settle_time);
}
/*
* Seek the drive to the requested track.
* The drive must be active and the motor must be running.
*/
void
fd_seek(fd, track)
fd_p fd;
int track;
{
int cyl, side;
int dir, cnt;
cyl = track >> 1;
side = (track % 2) ^ 1;
if (fd->cyl == -1)
fd_calibrate(fd);
fd_select_side(fd, side);
if (cyl < fd->cyl) {
dir = 1;
cnt = fd->cyl - cyl;
} else {
dir = 0;
cnt = cyl - fd->cyl;
}
fd_select_dir(fd, dir);
if (cnt) {
while (cnt) {
fd_step();
delay(fd->ft->step_delay);
--cnt;
}
delay(fd->ft->settle_time);
}
fd->cyl = cyl;
}
void
encode(data, dest, csum)
u_long data;
u_long *dest, *csum;
{
u_long data2;
data &= 0x55555555;
data2 = data ^ 0x55555555;
data |= ((data2 >> 1) | 0x80000000) & (data2 << 1);
if (*(dest - 1) & 0x00000001)
data &= 0x7FFFFFFF;
*csum ^= data;
*dest = data;
}
u_long
encode_long(data, dest)
u_long data;
u_long *dest;
{
u_long csum;
csum = 0;
encode(data >> 1, dest, &csum);
encode(data, dest + 1, &csum);
return(csum & 0x55555555);
}
void
encode_block(dest, from, len, csum)
u_long *dest, *csum;
u_char *from;
int len;
{
int cnt, to_cnt = 0;
u_long data, *src;
to_cnt = 0;
src = (u_long *)from;
/* odd bits */
for (cnt = 0; cnt < len / 4; cnt++) {
data = src[cnt] >> 1;
encode(data, dest + to_cnt++, csum);
}
/* even bits */
for (cnt = 0; cnt < len / 4; cnt++) {
data = src[cnt];
encode(data, dest + to_cnt++, csum);
}
*csum &= 0x55555555;
}
void
correct(raw)
u_long *raw;
{
u_char data, *ptr;
ptr = (u_char *)raw;
data = *ptr;
if (*(ptr - 1) & 0x01) { /* XXXX will choke on old GVP's */
*ptr = data & 0x7f;
return;
}
if (data & 0x40)
return;
*ptr |= 0x80;
}
/*
* amiga_write converts track/labels data to raw track data
*/
void
amiga_write(fd)
fd_p fd;
{
u_long *raw, csum, format;
u_char *data, *labels;
int cnt, track;
raw = (u_long *)raw_buf; /* XXXX never used while intr? */
/* XXXX never waits after here? */
data = fd->buf_data;
labels = fd->buf_labels;
track = fd->buf_track;
/* gap space */
for (cnt = fd->ft->gap_size; cnt; cnt--)
*raw++ = 0xaaaaaaaa;
/* sectors */
for (cnt = 0; cnt < fd->sects; cnt++) {
*raw = 0xaaaaaaaa;
correct(raw);
++raw;
*raw++ = 0x44894489;
format = 0xff000000 | (track << 16) | (cnt << 8) | (fd->sects - cnt);
csum = encode_long(format,raw);
raw += 2;
encode_block(raw, labels + cnt * 16, 16, &csum);
raw += 8;
csum = encode_long(csum, raw);
raw += 2;
csum = 0;
encode_block(raw+2, data + cnt * 512, 512, &csum);
csum = encode_long(csum, raw);
correct (raw+2);
raw += 256 + 2;
}
*raw = 0xaaa80000;
correct(raw);
}
#define get_word(raw) (*(u_short *)(raw))
#define get_long(raw) (*(u_long *)(raw))
#define decode_long(raw) \
(((get_long(raw) & 0x55555555) << 1) | \
(get_long((raw)+4) & 0x55555555))
#define MFM_NOSYNC 1
#define MFM_HEADER 2
#define MFM_DATA 3
#define MFM_TRACK 4
/*
* scan_sync - looks for the next start of sector marked by a sync. When
* sect != 0, can't be certain of a starting sync.
*/
u_long
scan_sync(raw, end, sect)
u_long raw, end;
int sect;
{
u_short data;
if (sect == 0) {
while (raw < end) {
data = get_word(raw);
if (data == 0x4489)
break;
raw += 2;
}
if (raw > end)
return(0);
}
while (raw < end) {
data = get_word(raw);
if (data != 0x4489)
break;
raw += 2;
}
if (raw > end)
return(0);
return(raw);
}
/*
* amiga_read reads a raw track of data into a track buffer
*/
int
amiga_read(fd)
fd_p fd;
{
u_char *track_data, *label_data;
u_long raw, end, val1, val2, csum, data_csum;
u_long *data, *labels;
int scnt, cnt, format, tnum, sect, snext;
track_data = fd->buf_data;
label_data = fd->buf_labels;
raw = (u_long)raw_buf; /* XXXX see above about glb */
end = raw + fd->ft->read_size;
for (scnt = fd->sects-1; scnt >= 0; scnt--) {
if ((raw = scan_sync(raw, end, scnt == fd->sects-1)) == 0) {
/* XXXX */
printf("can't find sync for sector %d\n", scnt);
return(1);
}
val1 = decode_long(raw);
format = (val1 >> 24) & 0xFF;
tnum = (val1 >> 16) & 0xFF;
sect = (val1 >> 8) & 0xFF;
snext = (val1) & 0xFF;
labels = (u_long *)(label_data + (sect << 4));
csum = 0;
val1 = get_long(raw);
raw += 4;
csum ^= val1;
val1 = get_long(raw);
raw += 4;
csum ^= val1;
for (cnt = 0; cnt < 4; cnt++) {
val1 = get_long(raw+16);
csum ^= val1;
val1 &= 0x55555555;
val2 = get_long(raw);
raw += 4;
csum ^= val2;
val2 &= 0x55555555;
val2 = val2 << 1;
val1 |= val2;
*labels++ = val1;
}
csum &= 0x55555555;
raw += 16;
val1 = decode_long(raw);
raw += 8;
if (val1 != csum) {
/* XXXX */
printf("MFM_HEADER %d: %08x,%08x\n", scnt,
val1, csum);
return(MFM_HEADER);
}
/* verify track */
if (tnum != fd->buf_track) {
/* XXXX */
printf("MFM_TRACK %d: %d, %d\n", scnt, tnum,
fd->buf_track);
return(MFM_TRACK);
}
data_csum = decode_long(raw);
raw += 8;
data = (u_long *)(track_data + (sect << 9));
csum = 0;
for (cnt = 0; cnt < 128; cnt++) {
val1 = get_long(raw + 512);
csum ^= val1;
val1 &= 0x55555555;
val2 = get_long(raw);
raw += 4;
csum ^= val2;
val2 &= 0x55555555;
val2 = val2 << 1;
val1 |= val2;
*data++ = val1;
}
csum &= 0x55555555;
raw += 512;
if (data_csum != csum) {
printf(
"MFM_DATA: f=%d t=%d s=%d sn=%d sc=%d %lx, %lx\n",
format, tnum, sect, snext, scnt, data_csum, csum);
return(MFM_DATA);
}
}
return(0);
}
/*
* Return unit ID number of given disk
* XXXX This function doesn't return anything.
*/
u_long
loop_read_id(unit)
int unit;
{
u_long id;
u_long id_bit;
id = 0;
/* loop and read disk ID */
for (id_bit = 0x80000000; id_bit; id_bit >>= 1) {
SELECT(SELMASK(unit));
/* read and store value of DSKRDY */
if (ciaa.pra & CIAA_PRA_RDY)
id |= id_bit;
DESELECT(SELMASK(unit));
}
}
u_long
get_drive_id(unit)
int unit;
{
int t;
u_long id, id_bit;
u_char mask1, mask2;
volatile u_char *a_ptr;
volatile u_char *b_ptr;
id = 0;
a_ptr = &ciaa.pra;
b_ptr = &ciab.prb;
mask1 = ~(1 << (3 + unit));
mask2 = 1 << (3 + unit);
*b_ptr &= ~CIAB_PRB_MTR;
*b_ptr &= mask1;
*b_ptr |= mask2;
*b_ptr |= CIAB_PRB_MTR;
*b_ptr &= mask1;
*b_ptr |= mask2;
for (id_bit = 0x80000000; id_bit; id_bit >>= 1) {
*b_ptr &= mask1;
if ((*a_ptr) & CIAA_PRA_RDY)
id |= id_bit;
*b_ptr |= mask2;
}
/* all amigas have internal drives at 0. */
if (unit == 0 && id == FD_NONE)
return(FD_DD_3);
return(id);
#if 0
/* set up for ID */
MOTOR_ON;
SELECT(SELMASK(unit));
DESELECT(SELMASK(unit));
MOTOR_OFF;
SELECT(SELMASK(unit));
DESELECT(SELMASK(unit));
return loop_read_id(unit); /* XXXX gotta fix loop_read_id() if use */
#endif
}
int
get_drive_type(u_long id)
{
int type;
for (type = 0; type < num_dr_types; type++)
if (drive_types[type].id == id)
return(type);
return(-1);
}
void
fd_probe(fd)
fd_p fd;
{
u_long id;
int type, data;
fd->ft = NULL;
id = get_drive_id(fd->fdu);
type = get_drive_type(id);
/* get_drive_id shuts off the motor */
/* XXXX fdc_data[0] only as long as there is one controller */
if (fd->fdu == fdc_data[0].motor_fdu)
fdc_data[0].motor_fdu = -1;
if (type == -1) {
/* XXXX */
printf("fd_probe: unsupported drive type %08x found\n", id);
return;
}
fd->type = type;
fd->ft = &drive_types[type];
if (fd->ft->tracks == 0) {
/* XXXX */
printf("no drive type %d\n", type);
}
fd->side = -1;
fd->dir = -1;
fd->cyl = -1;
fd->sects = 11 * drive_types[type].sect_mult;
fd->size = fd->sects *
drive_types[type].tracks *
drive_types[type].heads;
fd->flags = 0;
}
void
track_read(fdc, fd, track)
fdc_p fdc;
fd_p fd;
int track;
{
u_long len;
fd->buf_track = track;
fdc->state = WAIT_READ;
fd_seek(fd, track);
len = fd->ft->read_size >> 1;
/* setup adkcon bits correctly */
custom.adkcon = ADKF_MSBSYNC;
custom.adkcon = ADKF_SETCLR | ADKF_WORDSYNC | ADKF_FAST;
custom.dsksync = MFM_SYNC;
custom.dsklen = 0;
delay(fd->ft->side_time);
timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
custom.dskpt = (u_char *)kvtop(raw_buf);
custom.dsklen = len | DSKLEN_DMAEN;
custom.dsklen = len | DSKLEN_DMAEN;
}
void
track_write(fdc, fd)
fdc_p fdc;
fd_p fd;
{
int track;
u_long len;
u_short adk;
amiga_write(fd);
track = fd->buf_track;
fd->write_cnt += 1;
fdc->saved = fdc->state;
fdc->state = WAIT_WRITE;
fd_seek(fd, track);
len = fd->ft->write_size >> 1;
if ((ciaa.pra & CIAA_PRA_WPRO) == 0)
return;
/* clear adkcon bits */
custom.adkcon = ADKF_PRECOMP1 | ADKF_PRECOMP0 | ADKF_WORDSYNC |
ADKF_MSBSYNC;
/* set appropriate adkcon bits */
adk = ADKF_SETCLR | ADKF_FAST | ADKF_MFMPREC;
if (track >= fd->ft->precomp2)
adk |= ADKF_PRECOMP1;
else if (track >= fd->ft->precomp1)
adk |= ADKF_PRECOMP0;
custom.adkcon = adk;
custom.dsklen = DSKLEN_WRITE;
delay(fd->ft->side_time);
timeout((timeout_t)fd_timeout, (caddr_t)fdc, 2 * hz);
custom.dskpt = (u_char *)kvtop(raw_buf); /* XXXX again raw */
custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
custom.dsklen = len | DSKLEN_DMAEN | DSKLEN_WRITE;
}
/*
* Floppy Device Code
*/
int
fdattach(ad)
struct amiga_device *ad;
{
int fdcu = 0;
fdc_p fdc = fdc_data + fdcu;
int i;
unsigned long id;
int type;
fdc->fdcu = fdcu;
fdc->state = FINDWORK;
fdc->fd = NULL;
fdc->motor_fdu = -1;
for (i = 0; i < DRVS_PER_CTLR; i++) {
fdc->fd_data[i].fdu = i;
fdc->fd_data[i].flags = 0;
fdc->fd_data[i].buf_track = -1;
fdc->fd_data[i].buf_dirty = 0;
fdc->fd_data[i].buf_data =
malloc(MAX_SECTS * 512, M_DEVBUF, 0);
fdc->fd_data[i].buf_labels =
malloc(MAX_SECTS * 16, M_DEVBUF, 0);
if (fdc->fd_data[i].buf_data == NULL ||
fdc->fd_data[i].buf_labels == NULL) {
printf("Cannot alloc buffer memory for fd device\n");
return(0);
}
id = get_drive_id(i);
type = get_drive_type(id);
if (type != -1 && drive_types[type].tracks != 0) {
printf("floppy drive %d: %s\n", i,
drive_types[type].name);
}
}
raw_buf = (char *)alloc_chipmem(30000);
if (raw_buf == NULL) {
printf("Cannot alloc chipmem for fd device\n");
return 0;
}
/* enable disk DMA */
custom.dmacon = DMAF_SETCLR | DMAF_DISK;
/* enable interrupts for IRQ_DSKBLK */
ciaa.icr = CIA_ICR_IR_SC | CIA_ICR_FLG;
custom.intena = INTF_SETCLR | INTF_SOFTINT;
/* enable disk block interrupts */
custom.intena = INTF_SETCLR | INTF_DSKBLK;
return(1);
}
int
Fdopen(dev, flags)
dev_t dev;
int flags;
{
fdcu_t fdcu;
fdc_p fdc;
fdu_t fdu;
fd_p fd;
fdcu = 0;
fdc = fdc_data + fdcu;
fdu = UNIT(dev);
fd = fdc->fd_data + fdu;
/* check bounds */
if (fdu >= DRVS_PER_CTLR)
return(ENXIO);
/*
* XXXX don't probe if device is currently selected
* it may be in the middle of a DMA transfer and fd_probe
* will deselect all drives
*/
if (fdc->motor_fdu < 0)
fd_probe(fd);
#if 0
else
printf ("fd: Fdopen called with a drive selected\n");
#endif
if (fd->ft == NULL || fd->ft->tracks == 0)
return(ENXIO);
fd->flags |= FDF_OPEN;
fd->write_cnt = 0;
return(0);
}
int
fdclose(dev, flags)
dev_t dev;
int flags;
{
struct buf *dp,*bp;
fdcu_t fdcu;
fdc_p fdc;
fdu_t fdu;
fd_p fd;
fdcu = 0;
fdc = fdc_data + fdcu;
fdu = UNIT(dev);
fd = fdc->fd_data + fdu;
/* wait until activity is done for this drive */
/* XXXX ACK! sleep.. */
do {
dp = &(fd->head);
bp = dp->b_actf;
} while (bp);
/* XXXX */
printf("wrote %d tracks (%d)\n", fd->write_cnt, fd->buf_dirty);
fd->buf_track = -1;
fd->buf_dirty = 0;
fd->flags &= ~FDF_OPEN;
return(0);
}
int
fdioctl(dev, cmd, data, flag, p)
dev_t dev;
int cmd, flag;
caddr_t data;
struct proc *p;
{
struct disklabel *fd_label;
fdcu_t fdcu;
fdc_p fdc;
fdu_t fdu;
fd_p fd;
int error;
fdcu = 0;
fdc = fdc_data + fdcu;
fdu = UNIT(dev);
fd = fdc->fd_data + fdu;
error = 0;
if (cmd != DIOCGDINFO)
return (EINVAL);
fd_label = (struct disklabel *)data;
bzero(fd_label, sizeof(fd_label));
fd_label->d_magic = DISKMAGIC;
fd_label->d_type = DTYPE_FLOPPY;
strncpy(fd_label->d_typename, "fd", sizeof(fd_label->d_typename) - 1);
strcpy(fd_label->d_packname, fd->ft->name);
fd_label->d_rpm = 300 / fd->ft->sect_mult;
fd_label->d_secsize = 512;
fd_label->d_nsectors = fd->sects;
fd_label->d_ntracks = fd->ft->heads;
fd_label->d_ncylinders = fd->ft->tracks;
fd_label->d_secpercyl = fd_label->d_nsectors * fd_label->d_ntracks;
fd_label->d_secperunit= fd_label->d_ncylinders * fd_label->d_secpercyl;
fd_label->d_magic2 = DISKMAGIC;
fd_label->d_partitions[0].p_offset = 0;
fd_label->d_partitions[0].p_size = fd_label->d_secperunit;
fd_label->d_partitions[0].p_fstype = FS_UNUSED;
fd_label->d_npartitions = 1;
fd_label->d_checksum = 0;
fd_label->d_checksum = dkcksum(fd_label);
return(0);
}
int
fdsize(dev)
dev_t dev;
{
/* check UNIT? */
return((fdc_data + 0)->fd_data[UNIT(dev)].size);
}
void
fdstrategy(bp)
struct buf *bp;
{
fdcu_t fdcu;
fdc_p fdc;
fdu_t fdu;
fd_p fd;
long nblocks, blknum;
struct buf *dp;
int s;
fdcu = 0;
fdc = fdc_data + fdcu;
fdu = UNIT(bp->b_dev);
fd = fdc->fd_data + fdu;
if (bp->b_blkno < 0) {
/* XXXX */
printf("fdstrat error: fdu = %d, blkno = %d, bcount = %d\n",
fdu, bp->b_blkno, bp->b_bcount);
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
biodone(bp);
return;
}
/*
* Set up block calculations.
*/
blknum = (unsigned long) bp->b_blkno * DEV_BSIZE / FDBLK;
nblocks = fd->sects * fd->ft->tracks * fd->ft->heads;
if (blknum + (bp->b_bcount / FDBLK) > nblocks) {
nblocks -= blknum;
if (nblocks == 0) {
bp->b_resid = bp->b_bcount;
goto done;
}
if (nblocks < 0) {
bp->b_error = EINVAL;
bp->b_flags |= B_ERROR;
done:
biodone(bp);
return;
}
bp->b_bcount = dbtob(nblocks);
}
bp->b_cylin = blknum; /* set here for disksort */
dp = &(fd->head);
s = splbio();
disksort(dp, bp);
untimeout((timeout_t)fd_turnoff, (caddr_t)fdc); /* a good idea */
fdstart(fdc);
splx(s);
}
/*
* We have just queued something.. if the controller is not busy
* then simulate the case where it has just finished a command
* So that it (the interrupt routine) looks on the queue for more
* work to do and picks up what we just added.
* If the controller is already busy, we need do nothing, as it
* will pick up our work when the present work completes
*/
void
fdstart(fdc)
fdc_p fdc;
{
int s;
s = splbio();
if (fdc->state == FINDWORK)
fdintr(fdc->fdcu);
splx(s);
}
/*
* just ensure it has the right spl
*/
void
fd_pseudointr(fdc)
fdc_p fdc;
{
int s;
s = splbio();
fdintr(fdc->fdcu);
splx(s);
}
void
fd_timeout(fdc)
fdc_p fdc;
{
struct buf *dp,*bp;
fd_p fd;
fd = fdc->fd;
dp = &fd->head;
bp = dp->b_actf;
if (fd == NULL) {
printf ("fd_timeout called with no active drive?\n");
return;
}
/* XXXX */
printf("fd%d: Operation timeout; state %d\n", fd->fdu, fdc->state);
if (bp) {
retrier(fdc);
#if 0 /* XXX retrier already set fdc->state? */
fdc->state = DONE_IO;
#endif
if (fdc->retry < 6)
fdc->retry = 6;
} else {
fdc->fd = NULL;
fdc->state = FINDWORK;
}
fd_pseudointr(fdc);
}
/*
* keep calling the state machine until it returns a 0
* ALWAYS called at SPLBIO
*/
void
fdintr(fdcu)
fdcu_t fdcu;
{
fdc_p fdc;
fdc = fdc_data + fdcu;
while (fdstate(fdc))
;
}
/*
* The controller state machine.
* if it returns a non zero value, it should be called again immediatly
*/
int
fdstate(fdc)
fdc_p fdc;
{
struct buf *dp,*bp;
int track, read, sec, i;
u_long blknum;
fd_p fd;
fd = fdc->fd;
if (fd == NULL) {
/* search for a unit do work with */
for (i = 0; i < DRVS_PER_CTLR; i++) {
fd = fdc->fd_data + i;
dp = &(fd->head);
bp = dp->b_actf;
if (bp) {
fdc->fd = fd;
break;
}
}
if (fdc->fd)
return(1);
fdc->state = FINDWORK;
TRACE1("[fdc%d IDLE]\n", fdc->fdcu);
return(0);
}
dp = &(fd->head);
bp = dp->b_actf;
blknum = (u_long)bp->b_blkno * DEV_BSIZE / FDBLK + fd->skip / FDBLK;
track = blknum / fd->sects;
sec = blknum % fd->sects;
read = bp->b_flags & B_READ;
TRACE1("fd%d", fd->fdu);
TRACE1("[%s]", fdstates[fdc->state]);
TRACE1("(0x%x) ", fd->flags);
TRACE1("%d\n", fd->buf_track);
untimeout((timeout_t)fd_turnoff, (caddr_t)fdc);
timeout((timeout_t)fd_turnoff, (caddr_t)fdc, 4 * hz);
switch (fdc->state) {
case FINDWORK:
if (!bp) {
if (fd->buf_dirty) {
track_write(fdc, fd);
return(0);
}
fdc->fd = NULL;
return(1);
}
fdc->state = DOSEEK;
fdc->retry = 0;
fd->skip = 0;
return(1);
case DOSEEK:
fd_turnon(fdc, fd->fdu);
/*
* If not started, error starting it
*/
if (fdc->motor_fdu != fd->fdu) {
/* XXXX */
printf("motor not on!\n");
}
/*
* If track not in buffer, read it in
*/
if (fd->buf_track != track) {
TRACE1("do track %d\n", track);
if (fd->buf_dirty) {
track_write(fdc, fd);
return (0);
} else {
if (read || sec != 0 ||
((bp->b_bcount - fd->skip)/FDBLK) % fd->sects) {
track_read(fdc, fd, track);
return(0);
}
/*
* if writing a full track, don't bother reading
* in the old track - we're just going to overwrite
* it all anyway.
*/
fd_seek (fd, track);
fd->buf_track = track;
/* clear sector labels */
bzero(fd->buf_labels, MAX_SECTS * 16);
}
}
fdc->state = DO_IO;
return(1);
case DO_IO:
if (read)
bcopy(&fd->buf_data[sec * FDBLK],
bp->b_un.b_addr + fd->skip, FDBLK);
else {
bcopy(bp->b_un.b_addr + fd->skip,
&fd->buf_data[sec * FDBLK], FDBLK);
fd->buf_dirty = 1;
if (IMMED_WRITE) {
fdc->state = DONE_IO;
track_write(fdc, fd);
return(0);
}
}
case DONE_IO:
fd->skip += FDBLK;
if (fd->skip < bp->b_bcount)
fdc->state = DOSEEK;
else {
fd->skip = 0;
if (bp == NULL)
printf ("fd: fdstate DONE_IO bp == NULL\n");
else {
bp->b_resid = 0;
dp->b_actf = bp->b_actf;
biodone(bp);
}
fdc->state = FINDWORK;
}
return(1);
case WAIT_READ:
untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
custom.dsklen = 0;
if (amiga_read(fd) == 0) {
fdc->retry = 0;
fdc->state = DO_IO;
return(1);
}
if (fdc->retry++ < 6) {
track_read(fdc, fd, track);
return(0);
}
if (bp) {
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
bp->b_resid = bp->b_bcount - fd->skip;
dp->b_actf = bp->b_actf;
fd->skip = 0;
biodone(bp);
}
fdc->state = FINDWORK;
return (1);
case WAIT_WRITE:
untimeout((timeout_t)fd_timeout, (caddr_t)fdc);
custom.dsklen = 0;
fdc->state = fdc->saved;
fd->buf_dirty = 0;
/*
* post-write delay - should delay only if changing sides
* after a write?
*/
delay (4);
return(1);
default:
/* XXXX */
printf("Unexpected FD int->%d\n", fdc->state);
return 0;
}
/* Come back immediatly to new state */
return(1);
}
int
retrier(fdc)
fdc_p fdc;
{
struct buf *dp,*bp;
fd_p fd;
fd = fdc->fd;
dp = &(fd->head);
bp = dp->b_actf;
#if 0
switch(fdc->retry) {
case 0:
case 1:
case 2:
fdc->state = SEEKCOMPLETE;
break;
case 3:
case 4:
case 5:
fdc->state = STARTRECAL;
break;
case 6:
fdc->state = RESETCTLR;
break;
case 7:
break;
default:
#endif
/* XXXX */
printf("fd%d: hard error\n", fd->fdu);
if (bp == NULL)
printf ("fd: retrier bp == NULL\n");
else {
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
bp->b_resid = bp->b_bcount - fd->skip;
dp->b_actf = bp->b_actf;
fd->skip = 0;
biodone(bp);
}
fdc->state = FINDWORK;
return(1);
#if 0
fdc->retry++;
return(1);
#endif
}
#endif