589 lines
14 KiB
C
589 lines
14 KiB
C
/*
|
|
* Copyright (c) 1988 University of Utah.
|
|
* Copyright (c) 1982, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah Hdr: clock.c 1.18 91/01/21
|
|
* from: @(#)clock.c 7.6 (Berkeley) 5/7/91
|
|
* $Id: clock.c,v 1.10 1994/05/17 10:35:21 cgd Exp $
|
|
*/
|
|
|
|
#include "param.h"
|
|
#include "kernel.h"
|
|
#include "../dev/hilreg.h"
|
|
#include "clockreg.h"
|
|
|
|
#include "../include/psl.h"
|
|
#include "../include/cpu.h"
|
|
|
|
#if defined(GPROF) && defined(PROFTIMER)
|
|
#include "sys/gprof.h"
|
|
#endif
|
|
|
|
int clkstd[1];
|
|
|
|
static int month_days[12] = {
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
struct bbc_tm *gmt_to_bbc();
|
|
u_char bbc_registers[13];
|
|
u_char write_bbc_reg(), read_bbc_reg();
|
|
struct hil_dev *bbcaddr = NULL;
|
|
|
|
/*
|
|
* Machine-dependent clock routines.
|
|
*
|
|
* cpu_initclocks() restarts the real-time clock, which provides
|
|
* hardclock interrupts to kern_clock.c.
|
|
*
|
|
* Inittodr initializes the time of day hardware which provides
|
|
* date functions.
|
|
*
|
|
* Resettodr restores the time of day hardware after a time change.
|
|
*
|
|
* A note on the real-time clock:
|
|
* We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
|
|
* This is because the counter decrements to zero after N+1 enabled clock
|
|
* periods where N is the value loaded into the counter.
|
|
*/
|
|
|
|
clockattach() {}
|
|
|
|
setstatclockrate()
|
|
{
|
|
|
|
/* Not today. */
|
|
}
|
|
|
|
/*
|
|
* Start the real-time clock.
|
|
*/
|
|
cpu_initclocks()
|
|
{
|
|
register struct clkreg *clk;
|
|
|
|
clkstd[0] = IIOV(0x5F8000);
|
|
clk = (struct clkreg *) clkstd[0];
|
|
|
|
clk->clk_cr2 = CLK_CR1;
|
|
clk->clk_cr1 = CLK_RESET;
|
|
clk->clk_cr2 = CLK_CR3;
|
|
clk->clk_cr3 = 0;
|
|
clk->clk_msb1 = (CLK_INTERVAL-1) >> 8 & 0xFF;
|
|
clk->clk_lsb1 = (CLK_INTERVAL-1) & 0xFF;
|
|
clk->clk_msb2 = 0;
|
|
clk->clk_lsb2 = 0;
|
|
clk->clk_msb3 = 0;
|
|
clk->clk_lsb3 = 0;
|
|
clk->clk_cr2 = CLK_CR1;
|
|
clk->clk_cr1 = CLK_IENAB;
|
|
}
|
|
|
|
/*
|
|
* Returns number of usec since last recorded clock "tick"
|
|
* (i.e. clock interrupt).
|
|
*/
|
|
clkread()
|
|
{
|
|
register struct clkreg *clk = (struct clkreg *) clkstd[0];
|
|
register int high, low;
|
|
|
|
high = clk->clk_msb1;
|
|
low = clk->clk_lsb1;
|
|
if (high != clk->clk_msb1)
|
|
high = clk->clk_msb1;
|
|
|
|
high = (CLK_INTERVAL-1) - ((high << 8) | low);
|
|
/*
|
|
* Pending interrupt indicates that the counter has wrapped
|
|
* since we went to splhigh(). Need to compensate.
|
|
*/
|
|
if (clk->clk_sr & CLK_INT1)
|
|
high += CLK_INTERVAL;
|
|
return((high * tick) / CLK_INTERVAL);
|
|
}
|
|
|
|
#include "clock.h"
|
|
#if NCLOCK > 0
|
|
/*
|
|
* /dev/clock: mappable high resolution timer.
|
|
*
|
|
* This code implements a 32-bit recycling counter (with a 4 usec period)
|
|
* using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
|
|
* RO into a user's address space to achieve low overhead (no system calls),
|
|
* high-precision timing.
|
|
*
|
|
* Note that timer 3 is also used for the high precision profiling timer
|
|
* (PROFTIMER code above). Care should be taken when both uses are
|
|
* configured as only a token effort is made to avoid conflicting use.
|
|
*/
|
|
#include "sys/proc.h"
|
|
#include "sys/resourcevar.h"
|
|
#include "sys/ioctl.h"
|
|
#include "sys/malloc.h"
|
|
#include "vm/vm.h"
|
|
#include "clockioctl.h"
|
|
#include "miscfs/specfs/specdev.h"
|
|
#include "sys/vnode.h"
|
|
#include "sys/mman.h"
|
|
|
|
int clockon = 0; /* non-zero if high-res timer enabled */
|
|
#ifdef PROFTIMER
|
|
int profprocs = 0; /* # of procs using profiling timer */
|
|
#endif
|
|
#ifdef DEBUG
|
|
int clockdebug = 0;
|
|
#endif
|
|
|
|
/*ARGSUSED*/
|
|
clockopen(dev, flags)
|
|
dev_t dev;
|
|
{
|
|
#ifdef PROFTIMER
|
|
#ifdef GPROF
|
|
/*
|
|
* Kernel profiling enabled, give up.
|
|
*/
|
|
if (profiling)
|
|
return(EBUSY);
|
|
#endif
|
|
/*
|
|
* If any user processes are profiling, give up.
|
|
*/
|
|
if (profprocs)
|
|
return(EBUSY);
|
|
#endif
|
|
if (!clockon) {
|
|
startclock();
|
|
clockon++;
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
clockclose(dev, flags)
|
|
dev_t dev;
|
|
{
|
|
(void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
|
|
stopclock();
|
|
clockon = 0;
|
|
return(0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
clockioctl(dev, cmd, data, flag, p)
|
|
dev_t dev;
|
|
caddr_t data;
|
|
struct proc *p;
|
|
{
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case CLOCKMAP:
|
|
error = clockmmap(dev, (caddr_t *)data, p);
|
|
break;
|
|
|
|
case CLOCKUNMAP:
|
|
error = clockunmmap(dev, *(caddr_t *)data, p);
|
|
break;
|
|
|
|
case CLOCKGETRES:
|
|
*(int *)data = CLK_RESOLUTION;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
clockmap(dev, off, prot)
|
|
dev_t dev;
|
|
{
|
|
return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
|
|
}
|
|
|
|
clockmmap(dev, addrp, p)
|
|
dev_t dev;
|
|
caddr_t *addrp;
|
|
struct proc *p;
|
|
{
|
|
int error;
|
|
struct vnode vn;
|
|
struct specinfo si;
|
|
int flags;
|
|
|
|
flags = MAP_SHARED;
|
|
if (*addrp)
|
|
flags |= MAP_FIXED;
|
|
else
|
|
*addrp = (caddr_t)0x1000000; /* XXX */
|
|
vn.v_type = VCHR; /* XXX */
|
|
vn.v_specinfo = &si; /* XXX */
|
|
vn.v_rdev = dev; /* XXX */
|
|
error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
|
|
PAGE_SIZE, VM_PROT_ALL, VM_PROT_ALL, flags,
|
|
(caddr_t)&vn, 0);
|
|
return(error);
|
|
}
|
|
|
|
clockunmmap(dev, addr, p)
|
|
dev_t dev;
|
|
caddr_t addr;
|
|
struct proc *p;
|
|
{
|
|
int rv;
|
|
|
|
if (addr == 0)
|
|
return(EINVAL); /* XXX: how do we deal with this? */
|
|
rv = vm_deallocate(&p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
|
|
return(rv == KERN_SUCCESS ? 0 : EINVAL);
|
|
}
|
|
|
|
startclock()
|
|
{
|
|
register struct clkreg *clk = (struct clkreg *)clkstd[0];
|
|
|
|
clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
|
|
clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
|
|
|
|
clk->clk_cr2 = CLK_CR3;
|
|
clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
|
|
clk->clk_cr2 = CLK_CR1;
|
|
clk->clk_cr1 = CLK_IENAB;
|
|
}
|
|
|
|
stopclock()
|
|
{
|
|
register struct clkreg *clk = (struct clkreg *)clkstd[0];
|
|
|
|
clk->clk_cr2 = CLK_CR3;
|
|
clk->clk_cr3 = 0;
|
|
clk->clk_cr2 = CLK_CR1;
|
|
clk->clk_cr1 = CLK_IENAB;
|
|
}
|
|
#endif
|
|
|
|
#ifdef PROFTIMER
|
|
/*
|
|
* This code allows the hp300 kernel to use one of the extra timers on
|
|
* the clock chip for profiling, instead of the regular system timer.
|
|
* The advantage of this is that the profiling timer can be turned up to
|
|
* a higher interrupt rate, giving finer resolution timing. The profclock
|
|
* routine is called from the lev6intr in locore, and is a specialized
|
|
* routine that calls addupc. The overhead then is far less than if
|
|
* hardclock/softclock was called. Further, the context switch code in
|
|
* locore has been changed to turn the profile clock on/off when switching
|
|
* into/out of a process that is profiling (startprofclock/stopprofclock).
|
|
* This reduces the impact of the profiling clock on other users, and might
|
|
* possibly increase the accuracy of the profiling.
|
|
*/
|
|
int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
|
|
int profscale = 0; /* Scale factor from sys clock to prof clock */
|
|
char profon = 0; /* Is profiling clock on? */
|
|
|
|
/* profon values - do not change, locore.s assumes these values */
|
|
#define PRF_NONE 0x00
|
|
#define PRF_USER 0x01
|
|
#define PRF_KERNEL 0x80
|
|
|
|
initprofclock()
|
|
{
|
|
#if NCLOCK > 0
|
|
struct proc *p = curproc; /* XXX */
|
|
|
|
/*
|
|
* If the high-res timer is running, force profiling off.
|
|
* Unfortunately, this gets reflected back to the user not as
|
|
* an error but as a lack of results.
|
|
*/
|
|
if (clockon) {
|
|
p->p_stats->p_prof.pr_scale = 0;
|
|
return;
|
|
}
|
|
/*
|
|
* Keep track of the number of user processes that are profiling
|
|
* by checking the scale value.
|
|
*
|
|
* XXX: this all assumes that the profiling code is well behaved;
|
|
* i.e. profil() is called once per process with pcscale non-zero
|
|
* to turn it on, and once with pcscale zero to turn it off.
|
|
* Also assumes you don't do any forks or execs. Oh well, there
|
|
* is always adb...
|
|
*/
|
|
if (p->p_stats->p_prof.pr_scale)
|
|
profprocs++;
|
|
else
|
|
profprocs--;
|
|
#endif
|
|
/*
|
|
* The profile interrupt interval must be an even divisor
|
|
* of the CLK_INTERVAL so that scaling from a system clock
|
|
* tick to a profile clock tick is possible using integer math.
|
|
*/
|
|
if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
|
|
profint = CLK_INTERVAL;
|
|
profscale = CLK_INTERVAL / profint;
|
|
}
|
|
|
|
#ifdef GPROF
|
|
/*
|
|
* profclock() is expanded in line in lev6intr() unless profiling kernel.
|
|
* Assumes it is called with clock interrupts blocked.
|
|
*/
|
|
profclock(frame)
|
|
struct clockframe *frame;
|
|
{
|
|
/*
|
|
* Came from user mode.
|
|
* If this process is being profiled record the tick.
|
|
*/
|
|
if (CLKF_USERMODE(frame)) {
|
|
if (p->p_stats.p_prof.pr_scale)
|
|
addupc(CLKF_PC(frame), &curproc->p_stats.p_prof, 1);
|
|
}
|
|
/*
|
|
* Came from kernel (supervisor) mode.
|
|
* If we are profiling the kernel, record the tick.
|
|
*/
|
|
else if (profiling < 2) {
|
|
register int s = CLKF_PC(frame) - s_lowpc;
|
|
|
|
if (s < s_textsize)
|
|
kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
|
|
}
|
|
/*
|
|
* Kernel profiling was on but has been disabled.
|
|
* Mark as no longer profiling kernel and if all profiling done,
|
|
* disable the clock.
|
|
*/
|
|
if (profiling && (profon & PRF_KERNEL)) {
|
|
profon &= ~PRF_KERNEL;
|
|
if (profon == PRF_NONE)
|
|
stopprofclock();
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the time of day register, based on the time base which is, e.g.
|
|
* from a filesystem.
|
|
*/
|
|
inittodr(base)
|
|
time_t base;
|
|
{
|
|
u_long timbuf = base; /* assume no battery clock exists */
|
|
static int bbcinited = 0;
|
|
|
|
/* XXX */
|
|
if (!bbcinited) {
|
|
if (badbaddr(&BBCADDR->hil_stat))
|
|
printf("WARNING: no battery clock\n");
|
|
else
|
|
bbcaddr = BBCADDR;
|
|
bbcinited = 1;
|
|
}
|
|
|
|
/*
|
|
* bbc_to_gmt converts and stores the gmt in timbuf.
|
|
* If an error is detected in bbc_to_gmt, or if the filesystem
|
|
* time is more recent than the gmt time in the clock,
|
|
* then use the filesystem time and warn the user.
|
|
*/
|
|
if (!bbc_to_gmt(&timbuf) || timbuf < base) {
|
|
printf("WARNING: bad date in battery clock\n");
|
|
timbuf = base;
|
|
}
|
|
if (base < 5*SECYR) {
|
|
printf("WARNING: preposterous time in file system");
|
|
timbuf = 6*SECYR + 186*SECDAY + SECDAY/2;
|
|
printf(" -- CHECK AND RESET THE DATE!\n");
|
|
}
|
|
|
|
/* Battery clock does not store usec's, so forget about it. */
|
|
time.tv_sec = timbuf;
|
|
}
|
|
|
|
resettodr()
|
|
{
|
|
register int i;
|
|
register struct bbc_tm *tmptr;
|
|
|
|
tmptr = gmt_to_bbc(time.tv_sec);
|
|
|
|
decimal_to_bbc(0, 1, tmptr->tm_sec);
|
|
decimal_to_bbc(2, 3, tmptr->tm_min);
|
|
decimal_to_bbc(4, 5, tmptr->tm_hour);
|
|
decimal_to_bbc(7, 8, tmptr->tm_mday);
|
|
decimal_to_bbc(9, 10, tmptr->tm_mon);
|
|
decimal_to_bbc(11, 12, tmptr->tm_year);
|
|
|
|
/* Some bogusness to deal with seemingly broken hardware. Nonsense */
|
|
bbc_registers[5] = ((tmptr->tm_hour / 10) & 0x03) + 8;
|
|
|
|
write_bbc_reg(15, 13); /* reset prescalar */
|
|
|
|
for (i = 0; i <= NUM_BBC_REGS; i++)
|
|
if (bbc_registers[i] != write_bbc_reg(i, bbc_registers[i])) {
|
|
printf("Cannot set battery backed clock\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct bbc_tm *
|
|
gmt_to_bbc(tim)
|
|
long tim;
|
|
{
|
|
register int i;
|
|
register long hms, day;
|
|
static struct bbc_tm rt;
|
|
|
|
day = tim / SECDAY;
|
|
hms = tim % SECDAY;
|
|
|
|
/* Hours, minutes, seconds are easy */
|
|
rt.tm_hour = hms / 3600;
|
|
rt.tm_min = (hms % 3600) / 60;
|
|
rt.tm_sec = (hms % 3600) % 60;
|
|
|
|
/* Number of years in days */
|
|
for (i = STARTOFTIME - 1900; day >= days_in_year(i); i++)
|
|
day -= days_in_year(i);
|
|
rt.tm_year = i;
|
|
|
|
/* Number of months in days left */
|
|
if (leapyear(rt.tm_year))
|
|
days_in_month(FEBRUARY) = 29;
|
|
for (i = 1; day >= days_in_month(i); i++)
|
|
day -= days_in_month(i);
|
|
days_in_month(FEBRUARY) = 28;
|
|
rt.tm_mon = i;
|
|
|
|
/* Days are what is left over (+1) from all that. */
|
|
rt.tm_mday = day + 1;
|
|
|
|
return(&rt);
|
|
}
|
|
|
|
bbc_to_gmt(timbuf)
|
|
u_long *timbuf;
|
|
{
|
|
register int i;
|
|
register u_long tmp;
|
|
int year, month, day, hour, min, sec;
|
|
|
|
read_bbc();
|
|
|
|
sec = bbc_to_decimal(1, 0);
|
|
min = bbc_to_decimal(3, 2);
|
|
|
|
/*
|
|
* Hours are different for some reason. Makes no sense really.
|
|
*/
|
|
hour = ((bbc_registers[5] & 0x03) * 10) + bbc_registers[4];
|
|
day = bbc_to_decimal(8, 7);
|
|
month = bbc_to_decimal(10, 9);
|
|
year = bbc_to_decimal(12, 11) + 1900;
|
|
|
|
range_test(hour, 0, 23);
|
|
range_test(day, 1, 31);
|
|
range_test(month, 1, 12);
|
|
range_test(year, STARTOFTIME, 2000);
|
|
|
|
tmp = 0;
|
|
|
|
for (i = STARTOFTIME; i < year; i++)
|
|
tmp += days_in_year(i);
|
|
if (leapyear(year) && month > FEBRUARY)
|
|
tmp++;
|
|
|
|
for (i = 1; i < month; i++)
|
|
tmp += days_in_month(i);
|
|
|
|
tmp += (day - 1);
|
|
tmp = ((tmp * 24 + hour) * 60 + min) * 60 + sec;
|
|
|
|
*timbuf = tmp;
|
|
return(1);
|
|
}
|
|
|
|
read_bbc()
|
|
{
|
|
register int i, read_okay;
|
|
|
|
read_okay = 0;
|
|
while (!read_okay) {
|
|
read_okay = 1;
|
|
for (i = 0; i <= NUM_BBC_REGS; i++)
|
|
bbc_registers[i] = read_bbc_reg(i);
|
|
for (i = 0; i <= NUM_BBC_REGS; i++)
|
|
if (bbc_registers[i] != read_bbc_reg(i))
|
|
read_okay = 0;
|
|
}
|
|
}
|
|
|
|
u_char
|
|
read_bbc_reg(reg)
|
|
int reg;
|
|
{
|
|
u_char data = reg;
|
|
|
|
if (bbcaddr) {
|
|
send_hil_cmd(bbcaddr, BBC_SET_REG, &data, 1, NULL);
|
|
send_hil_cmd(bbcaddr, BBC_READ_REG, NULL, 0, &data);
|
|
}
|
|
return(data);
|
|
}
|
|
|
|
u_char
|
|
write_bbc_reg(reg, data)
|
|
u_int data;
|
|
{
|
|
u_char tmp;
|
|
|
|
tmp = (u_char) ((data << HIL_SSHIFT) | reg);
|
|
|
|
if (bbcaddr) {
|
|
send_hil_cmd(bbcaddr, BBC_SET_REG, &tmp, 1, NULL);
|
|
send_hil_cmd(bbcaddr, BBC_WRITE_REG, NULL, 0, NULL);
|
|
send_hil_cmd(bbcaddr, BBC_READ_REG, NULL, 0, &tmp);
|
|
}
|
|
return(tmp);
|
|
}
|