NetBSD/sys/arch/pica/pica/vm_machdep.c

482 lines
13 KiB
C

/* $NetBSD: vm_machdep.c,v 1.2 1996/07/16 23:25:04 thorpej Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: vm_machdep.c 1.21 91/04/06
*
* from: @(#)vm_machdep.c 8.3 (Berkeley) 1/4/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/user.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#if 0
#include <vm/vm_object.h>
#endif
#include <machine/pte.h>
#include <machine/cpu.h>
vm_offset_t kmem_alloc_wait_align();
/*
* Finish a fork operation, with process p2 nearly set up.
* Copy and update the kernel stack and pcb, making the child
* ready to run, and marking it so that it can return differently
* than the parent. Returns 1 in the child process, 0 in the parent.
* We currently double-map the user area so that the stack is at the same
* address in each process; in the future we will probably relocate
* the frame pointers on the stack after copying.
*/
cpu_fork(p1, p2)
register struct proc *p1, *p2;
{
register struct user *up = p2->p_addr;
register pt_entry_t *pte;
register int i;
extern struct proc *machFPCurProcPtr;
p2->p_md.md_regs = up->u_pcb.pcb_regs;
p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED;
/*
* Cache the PTEs for the user area in the machine dependent
* part of the proc struct so cpu_switch() can quickly map in
* the user struct and kernel stack. Note: if the virtual address
* translation changes (e.g. swapout) we have to update this.
*/
pte = kvtopte(up);
for (i = 0; i < UPAGES; i++) {
p2->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
pte++;
}
/*
* Copy floating point state from the FP chip if this process
* has state stored there.
*/
if (p1 == machFPCurProcPtr)
MachSaveCurFPState(p1);
/*
* Copy pcb and stack from proc p1 to p2.
* We do this as cheaply as possible, copying only the active
* part of the stack. The stack and pcb need to agree;
*/
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
/* cache segtab for ULTBMiss() */
p2->p_addr->u_pcb.pcb_segtab = (void *)p2->p_vmspace->vm_pmap.pm_segtab;
/*
* Arrange for a non-local goto when the new process
* is started, to resume here, returning nonzero from setjmp.
*/
#ifdef DIAGNOSTIC
if (p1 != curproc)
panic("cpu_fork: curproc");
#endif
if (copykstack(up)) {
/*
* Return 1 in child.
*/
return (1);
}
return (0);
}
/*
* Finish a swapin operation.
* We neded to update the cached PTEs for the user area in the
* machine dependent part of the proc structure.
*/
void
cpu_swapin(p)
register struct proc *p;
{
register struct user *up = p->p_addr;
register pt_entry_t *pte;
register int i;
/*
* Cache the PTEs for the user area in the machine dependent
* part of the proc struct so cpu_switch() can quickly map in
* the user struct and kernel stack.
*/
pte = kvtopte(up);
for (i = 0; i < UPAGES; i++) {
p->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
pte++;
}
}
/*
* cpu_exit is called as the last action during exit.
* We release the address space and machine-dependent resources,
* including the memory for the user structure and kernel stack.
* Once finished, we call switch_exit, which switches to a temporary
* pcb and stack and never returns. We block memory allocation
* until switch_exit has made things safe again.
*/
void cpu_exit(p)
struct proc *p;
{
extern struct proc *machFPCurProcPtr;
if (machFPCurProcPtr == p)
machFPCurProcPtr = (struct proc *)0;
vmspace_free(p->p_vmspace);
(void) splhigh();
kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
switch_exit();
/* NOTREACHED */
}
/*
* Dump the machine specific header information at the start of a core dump.
*/
cpu_coredump(p, vp, cred)
struct proc *p;
struct vnode *vp;
struct ucred *cred;
{
extern struct proc *machFPCurProcPtr;
/*
* Copy floating point state from the FP chip if this process
* has state stored there.
*/
if (p == machFPCurProcPtr)
MachSaveCurFPState(p);
return (vn_rdwr(UIO_WRITE, vp, (caddr_t)p->p_addr, ctob(UPAGES),
(off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *)NULL,
p));
}
/*
* Move pages from one kernel virtual address to another.
* Both addresses are assumed to reside in the Sysmap,
* and size must be a multiple of CLSIZE.
*/
pagemove(from, to, size)
register caddr_t from, to;
int size;
{
register pt_entry_t *fpte, *tpte;
if (size % CLBYTES)
panic("pagemove");
fpte = kvtopte(from);
tpte = kvtopte(to);
if(((int)from & machCacheAliasMask) != ((int)to & machCacheAliasMask)) {
MachHitFlushDCache(from, size);
}
while (size > 0) {
MachTLBFlushAddr(from);
MachTLBUpdate(to, *fpte);
*tpte++ = *fpte;
fpte->pt_entry = PG_NV | PG_G;
fpte++;
size -= NBPG;
from += NBPG;
to += NBPG;
}
}
extern vm_map_t phys_map;
/*
* Map an IO request into kernel virtual address space. Requests fall into
* one of five catagories:
*
* B_PHYS|B_UAREA: User u-area swap.
* Address is relative to start of u-area (p_addr).
* B_PHYS|B_PAGET: User page table swap.
* Address is a kernel VA in usrpt (Usrptmap).
* B_PHYS|B_DIRTY: Dirty page push.
* Address is a VA in proc2's address space.
* B_PHYS|B_PGIN: Kernel pagein of user pages.
* Address is VA in user's address space.
* B_PHYS: User "raw" IO request.
* Address is VA in user's address space.
*
* All requests are (re)mapped into kernel VA space via the phys_map
*/
vmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr;
register vm_size_t sz;
struct proc *p;
int off;
vm_offset_t kva;
register vm_offset_t pa;
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
addr = bp->b_saveaddr = bp->b_un.b_addr;
off = (int)addr & PGOFSET;
p = bp->b_proc;
sz = round_page(bp->b_bcount + off);
kva = kmem_alloc_wait_align(phys_map, sz, (vm_size_t)addr & machCacheAliasMask);
bp->b_un.b_addr = (caddr_t) (kva + off);
sz = atop(sz);
while (sz--) {
pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map),
(vm_offset_t)addr);
if (pa == 0)
panic("vmapbuf: null page frame");
pmap_enter(vm_map_pmap(phys_map), kva, trunc_page(pa),
VM_PROT_READ|VM_PROT_WRITE, TRUE);
addr += PAGE_SIZE;
kva += PAGE_SIZE;
}
}
/*
* Free the io map PTEs associated with this IO operation.
* We also invalidate the TLB entries and restore the original b_addr.
*/
vunmapbuf(bp)
register struct buf *bp;
{
register caddr_t addr = bp->b_un.b_addr;
register vm_size_t sz;
vm_offset_t kva;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
sz = round_page(bp->b_bcount + ((int)addr & PGOFSET));
kva = (vm_offset_t)((int)addr & ~PGOFSET);
kmem_free_wakeup(phys_map, kva, sz);
bp->b_un.b_addr = bp->b_saveaddr;
bp->b_saveaddr = NULL;
}
/*
* SAVE_HINT:
*
* Saves the specified entry as the hint for
* future lookups. Performs necessary interlocks.
*/
#define SAVE_HINT(map,value) \
simple_lock(&(map)->hint_lock); \
(map)->hint = (value); \
simple_unlock(&(map)->hint_lock);
/*
* kmem_alloc_upage:
*
* Allocate pageable memory to the kernel's address map.
* map must be "kernel_map" below.
* (Currently only used when allocating U pages).
*/
vm_offset_t
kmem_alloc_upage(map, size)
vm_map_t map;
register vm_size_t size;
{
vm_offset_t addr;
register int result;
size = round_page(size);
addr = vm_map_min(map);
result = vm_map_find_U(map, NULL, (vm_offset_t) 0,
&addr, size, TRUE);
if (result != KERN_SUCCESS) {
return(0);
}
return(addr);
}
/*
* vm_map_find finds an unallocated region in the target address
* map with the given length aligned on U viritual address.
* The search is defined to be first-fit from the specified address;
* the region found is returned in the same parameter.
*
*/
int
vm_map_find_U(map, object, offset, addr, length, find_space)
vm_map_t map;
vm_object_t object;
vm_offset_t offset;
vm_offset_t *addr; /* IN/OUT */
vm_size_t length;
boolean_t find_space;
{
register vm_offset_t start;
int result;
start = *addr;
vm_map_lock(map);
if (find_space) {
if (vm_map_findspace_align(map, start, length, addr, 0)) {
vm_map_unlock(map);
return (KERN_NO_SPACE);
}
start = *addr;
}
result = vm_map_insert(map, object, offset, start, start + length);
vm_map_unlock(map);
return (result);
}
/*
* Find sufficient space for `length' bytes in the given map, starting at
* `start'. The map must be locked. Returns 0 on success, 1 on no space.
*/
int
vm_map_findspace_align(map, start, length, addr, align)
register vm_map_t map;
register vm_offset_t start;
vm_size_t length;
vm_offset_t *addr;
vm_size_t align;
{
register vm_map_entry_t entry, next;
register vm_offset_t end;
if (start < map->min_offset)
start = map->min_offset;
if (start > map->max_offset)
return (1);
/*
* Look for the first possible address; if there's already
* something at this address, we have to start after it.
*/
if (start == map->min_offset) {
if ((entry = map->first_free) != &map->header)
start = entry->end;
} else {
vm_map_entry_t tmp;
if (vm_map_lookup_entry(map, start, &tmp))
start = tmp->end;
entry = tmp;
}
/*
* Look through the rest of the map, trying to fit a new region in
* the gap between existing regions, or after the very last region.
*/
for (;; start = (entry = next)->end) {
/*
* Find the end of the proposed new region. Be sure we didn't
* go beyond the end of the map, or wrap around the address;
* if so, we lose. Otherwise, if this is the last entry, or
* if the proposed new region fits before the next entry, we
* win.
*/
start = ((start + NBPG -1) & ~(NBPG - 1)); /* Paranoia */
if((start & machCacheAliasMask) <= align) {
start += align - (start & machCacheAliasMask);
}
else {
start = ((start + machCacheAliasMask) & ~machCacheAliasMask);
start += align;
}
end = start + length;
if (end > map->max_offset || end < start)
return (1);
next = entry->next;
if (next == &map->header || next->start >= end)
break;
}
SAVE_HINT(map, entry);
*addr = start;
return (0);
}
/*
* kmem_alloc_wait_align
*
* Allocates pageable memory from a sub-map of the kernel. If the submap
* has no room, the caller sleeps waiting for more memory in the submap.
*
*/
vm_offset_t
kmem_alloc_wait_align(map, size, align)
vm_map_t map;
vm_size_t size;
vm_size_t align;
{
vm_offset_t addr;
size = round_page(size);
for (;;) {
/*
* To make this work for more than one map,
* use the map's lock to lock out sleepers/wakers.
*/
vm_map_lock(map);
if (vm_map_findspace_align(map, 0, size, &addr, align) == 0)
break;
/* no space now; see if we can ever get space */
if (vm_map_max(map) - vm_map_min(map) < size) {
vm_map_unlock(map);
return (0);
}
assert_wait(map, TRUE);
vm_map_unlock(map);
thread_block();
}
vm_map_insert(map, NULL, (vm_offset_t)0, addr, addr + size);
vm_map_unlock(map);
return (addr);
}