NetBSD/sys/dev/raidframe/rf_parityloggingdags.c
2005-02-27 00:26:58 +00:00

654 lines
25 KiB
C

/* $NetBSD: rf_parityloggingdags.c,v 1.14 2005/02/27 00:27:45 perry Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
DAGs specific to parity logging are created here
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityloggingdags.c,v 1.14 2005/02/27 00:27:45 perry Exp $");
#include "rf_archs.h"
#include "opt_raid_diagnostic.h"
#if RF_INCLUDE_PARITYLOGGING > 0
#include <dev/raidframe/raidframevar.h>
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_debugMem.h"
#include "rf_paritylog.h"
#include "rf_general.h"
#include "rf_parityloggingdags.h"
/******************************************************************************
*
* creates a DAG to perform a large-write operation:
*
* / Rod \ / Wnd \
* H -- NIL- Rod - NIL - Wnd ------ NIL - T
* \ Rod / \ Xor - Lpo /
*
* The writes are not done until the reads complete because if they were done in
* parallel, a failure on one of the reads could leave the parity in an inconsistent
* state, so that the retry with a new DAG would produce erroneous parity.
*
* Note: this DAG has the nasty property that none of the buffers allocated for reading
* old data can be freed until the XOR node fires. Need to fix this.
*
* The last two arguments are the number of faults tolerated, and function for the
* redundancy calculation. The undo for the redundancy calc is assumed to be null
*
*****************************************************************************/
void
rf_CommonCreateParityLoggingLargeWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
int nfaults,
int (*redFunc) (RF_DagNode_t *))
{
RF_DagNode_t *nodes, *wndNodes, *rodNodes = NULL, *syncNode, *xorNode,
*lpoNode, *blockNode, *unblockNode, *termNode;
int nWndNodes, nRodNodes, i;
RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
RF_AccessStripeMapHeader_t *new_asm_h[2];
int nodeNum, asmNum;
RF_ReconUnitNum_t which_ru;
char *sosBuffer, *eosBuffer;
RF_PhysDiskAddr_t *pda;
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
if (rf_dagDebug)
printf("[Creating parity-logging large-write DAG]\n");
RF_ASSERT(nfaults == 1);/* this arch only single fault tolerant */
dag_h->creator = "ParityLoggingLargeWriteDAG";
/* alloc the Wnd nodes, the xor node, and the Lpo node */
nWndNodes = asmap->numStripeUnitsAccessed;
RF_MallocAndAdd(nodes, (nWndNodes + 6) * sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
wndNodes = &nodes[i];
i += nWndNodes;
xorNode = &nodes[i];
i += 1;
lpoNode = &nodes[i];
i += 1;
blockNode = &nodes[i];
i += 1;
syncNode = &nodes[i];
i += 1;
unblockNode = &nodes[i];
i += 1;
termNode = &nodes[i];
i += 1;
dag_h->numCommitNodes = nWndNodes + 1;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
if (nRodNodes > 0)
RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
/* begin node initialization */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWndNodes + 1, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes + 1, 0, 0, dag_h, "Nil", allocList);
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
/* initialize the Rod nodes */
for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
if (new_asm_h[asmNum]) {
pda = new_asm_h[asmNum]->stripeMap->physInfo;
while (pda) {
rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
rodNodes[nodeNum].params[0].p = pda;
rodNodes[nodeNum].params[1].p = pda->bufPtr;
rodNodes[nodeNum].params[2].v = parityStripeID;
rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
nodeNum++;
pda = pda->next;
}
}
}
RF_ASSERT(nodeNum == nRodNodes);
/* initialize the wnd nodes */
pda = asmap->physInfo;
for (i = 0; i < nWndNodes; i++) {
rf_InitNode(&wndNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
RF_ASSERT(pda != NULL);
wndNodes[i].params[0].p = pda;
wndNodes[i].params[1].p = pda->bufPtr;
wndNodes[i].params[2].v = parityStripeID;
wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
}
/* initialize the redundancy node */
rf_InitNode(xorNode, rf_wait, RF_TRUE, redFunc, rf_NullNodeUndoFunc, NULL, 1, 1, 2 * (nWndNodes + nRodNodes) + 1, 1, dag_h, "Xr ", allocList);
xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < nWndNodes; i++) {
xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
}
for (i = 0; i < nRodNodes; i++) {
xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
}
xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr; /* xor node needs to get
* at RAID information */
/* look for an Rod node that reads a complete SU. If none, alloc a
* buffer to receive the parity info. Note that we can't use a new
* data buffer because it will not have gotten written when the xor
* occurs. */
for (i = 0; i < nRodNodes; i++)
if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
break;
if (i == nRodNodes) {
RF_MallocAndAdd(xorNode->results[0],
rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
} else {
xorNode->results[0] = rodNodes[i].params[1].p;
}
/* initialize the Lpo node */
rf_InitNode(lpoNode, rf_wait, RF_FALSE, rf_ParityLogOverwriteFunc, rf_ParityLogOverwriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpo", allocList);
lpoNode->params[0].p = asmap->parityInfo;
lpoNode->params[1].p = xorNode->results[0];
RF_ASSERT(asmap->parityInfo->next == NULL); /* parityInfo must
* describe entire
* parity unit */
/* connect nodes to form graph */
/* connect dag header to block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect the block node to the Rod nodes */
RF_ASSERT(blockNode->numSuccedents == nRodNodes + 1);
for (i = 0; i < nRodNodes; i++) {
RF_ASSERT(rodNodes[i].numAntecedents == 1);
blockNode->succedents[i] = &rodNodes[i];
rodNodes[i].antecedents[0] = blockNode;
rodNodes[i].antType[0] = rf_control;
}
/* connect the block node to the sync node */
/* necessary if nRodNodes == 0 */
RF_ASSERT(syncNode->numAntecedents == nRodNodes + 1);
blockNode->succedents[nRodNodes] = syncNode;
syncNode->antecedents[0] = blockNode;
syncNode->antType[0] = rf_control;
/* connect the Rod nodes to the syncNode */
for (i = 0; i < nRodNodes; i++) {
rodNodes[i].succedents[0] = syncNode;
syncNode->antecedents[1 + i] = &rodNodes[i];
syncNode->antType[1 + i] = rf_control;
}
/* connect the sync node to the xor node */
RF_ASSERT(syncNode->numSuccedents == nWndNodes + 1);
RF_ASSERT(xorNode->numAntecedents == 1);
syncNode->succedents[0] = xorNode;
xorNode->antecedents[0] = syncNode;
xorNode->antType[0] = rf_trueData; /* carry forward from sync */
/* connect the sync node to the Wnd nodes */
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numAntecedents == 1);
syncNode->succedents[1 + i] = &wndNodes[i];
wndNodes[i].antecedents[0] = syncNode;
wndNodes[i].antType[0] = rf_control;
}
/* connect the xor node to the Lpo node */
RF_ASSERT(xorNode->numSuccedents == 1);
RF_ASSERT(lpoNode->numAntecedents == 1);
xorNode->succedents[0] = lpoNode;
lpoNode->antecedents[0] = xorNode;
lpoNode->antType[0] = rf_trueData;
/* connect the Wnd nodes to the unblock node */
RF_ASSERT(unblockNode->numAntecedents == nWndNodes + 1);
for (i = 0; i < nWndNodes; i++) {
RF_ASSERT(wndNodes->numSuccedents == 1);
wndNodes[i].succedents[0] = unblockNode;
unblockNode->antecedents[i] = &wndNodes[i];
unblockNode->antType[i] = rf_control;
}
/* connect the Lpo node to the unblock node */
RF_ASSERT(lpoNode->numSuccedents == 1);
lpoNode->succedents[0] = unblockNode;
unblockNode->antecedents[nWndNodes] = lpoNode;
unblockNode->antType[nWndNodes] = rf_control;
/* connect unblock node to terminator */
RF_ASSERT(unblockNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
unblockNode->succedents[0] = termNode;
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
}
/******************************************************************************
*
* creates a DAG to perform a small-write operation (either raid 5 or pq), which is as follows:
*
* Header
* |
* Block
* / | ... \ \
* / | \ \
* Rod Rod Rod Rop
* | \ /| \ / | \/ |
* | | | /\ |
* Wnd Wnd Wnd X
* | \ / |
* | \ / |
* \ \ / Lpo
* \ \ / /
* +-> Unblock <-+
* |
* T
*
*
* R = Read, W = Write, X = Xor, o = old, n = new, d = data, p = parity.
* When the access spans a stripe unit boundary and is less than one SU in size, there will
* be two Rop -- X -- Wnp branches. I call this the "double-XOR" case.
* The second output from each Rod node goes to the X node. In the double-XOR
* case, there are exactly 2 Rod nodes, and each sends one output to one X node.
* There is one Rod -- Wnd -- T branch for each stripe unit being updated.
*
* The block and unblock nodes are unused. See comment above CreateFaultFreeReadDAG.
*
* Note: this DAG ignores all the optimizations related to making the RMWs atomic.
* it also has the nasty property that none of the buffers allocated for reading
* old data & parity can be freed until the XOR node fires. Need to fix this.
*
* A null qfuncs indicates single fault tolerant
*****************************************************************************/
void
rf_CommonCreateParityLoggingSmallWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_RedFuncs_t * pfuncs,
RF_RedFuncs_t * qfuncs)
{
RF_DagNode_t *xorNodes, *blockNode, *unblockNode, *nodes;
RF_DagNode_t *readDataNodes, *readParityNodes;
RF_DagNode_t *writeDataNodes, *lpuNodes;
RF_DagNode_t *unlockDataNodes = NULL, *termNode;
RF_PhysDiskAddr_t *pda = asmap->physInfo;
int numDataNodes = asmap->numStripeUnitsAccessed;
int numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
int i, j, nNodes, totalNumNodes;
RF_ReconUnitNum_t which_ru;
int (*func) (RF_DagNode_t * node), (*undoFunc) (RF_DagNode_t * node);
int (*qfunc) (RF_DagNode_t * node);
char *name, *qname;
RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
#ifdef RAID_DIAGNOSTIC
long nfaults = qfuncs ? 2 : 1;
#endif /* RAID_DIAGNOSTIC */
if (rf_dagDebug)
printf("[Creating parity-logging small-write DAG]\n");
RF_ASSERT(numDataNodes > 0);
RF_ASSERT(nfaults == 1);
dag_h->creator = "ParityLoggingSmallWriteDAG";
/* DAG creation occurs in three steps: 1. count the number of nodes in
* the DAG 2. create the nodes 3. initialize the nodes 4. connect the
* nodes */
/* Step 1. compute number of nodes in the graph */
/* number of nodes: a read and write for each data unit a redundancy
* computation node for each parity node a read and Lpu for each
* parity unit a block and unblock node (2) a terminator node if
* atomic RMW an unlock node for each data unit, redundancy unit */
totalNumNodes = (2 * numDataNodes) + numParityNodes + (2 * numParityNodes) + 3;
nNodes = numDataNodes + numParityNodes;
dag_h->numCommitNodes = numDataNodes + numParityNodes;
dag_h->numCommits = 0;
dag_h->numSuccedents = 1;
/* Step 2. create the nodes */
RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
(RF_DagNode_t *), allocList);
i = 0;
blockNode = &nodes[i];
i += 1;
unblockNode = &nodes[i];
i += 1;
readDataNodes = &nodes[i];
i += numDataNodes;
readParityNodes = &nodes[i];
i += numParityNodes;
writeDataNodes = &nodes[i];
i += numDataNodes;
lpuNodes = &nodes[i];
i += numParityNodes;
xorNodes = &nodes[i];
i += numParityNodes;
termNode = &nodes[i];
i += 1;
RF_ASSERT(i == totalNumNodes);
/* Step 3. initialize the nodes */
/* initialize block node (Nil) */
rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
/* initialize unblock node (Nil) */
rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nNodes, 0, 0, dag_h, "Nil", allocList);
/* initialize terminatory node (Trm) */
rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
/* initialize nodes which read old data (Rod) */
for (i = 0; i < numDataNodes; i++) {
rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rod", allocList);
RF_ASSERT(pda != NULL);
readDataNodes[i].params[0].p = pda; /* physical disk addr
* desc */
readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
* data */
readDataNodes[i].params[2].v = parityStripeID;
readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
readDataNodes[i].propList[0] = NULL;
readDataNodes[i].propList[1] = NULL;
}
/* initialize nodes which read old parity (Rop) */
pda = asmap->parityInfo;
i = 0;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, nNodes, 1, 4, 0, dag_h, "Rop", allocList);
readParityNodes[i].params[0].p = pda;
readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList); /* buffer to hold old
* parity */
readParityNodes[i].params[2].v = parityStripeID;
readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
readParityNodes[i].propList[0] = NULL;
pda = pda->next;
}
/* initialize nodes which write new data (Wnd) */
pda = asmap->physInfo;
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(pda != NULL);
rf_InitNode(&writeDataNodes[i], rf_wait, RF_TRUE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, nNodes, 4, 0, dag_h, "Wnd", allocList);
writeDataNodes[i].params[0].p = pda; /* physical disk addr
* desc */
writeDataNodes[i].params[1].p = pda->bufPtr; /* buffer holding new
* data to be written */
writeDataNodes[i].params[2].v = parityStripeID;
writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
pda = pda->next;
}
/* initialize nodes which compute new parity */
/* we use the simple XOR func in the double-XOR case, and when we're
* accessing only a portion of one stripe unit. the distinction
* between the two is that the regular XOR func assumes that the
* targbuf is a full SU in size, and examines the pda associated with
* the buffer to decide where within the buffer to XOR the data,
* whereas the simple XOR func just XORs the data into the start of
* the buffer. */
if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
func = pfuncs->simple;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->SimpleName;
if (qfuncs) {
qfunc = qfuncs->simple;
qname = qfuncs->SimpleName;
}
} else {
func = pfuncs->regular;
undoFunc = rf_NullNodeUndoFunc;
name = pfuncs->RegularName;
if (qfuncs) {
qfunc = qfuncs->regular;
qname = qfuncs->RegularName;
}
}
/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
* nodes, and raidPtr */
if (numParityNodes == 2) { /* double-xor case */
for (i = 0; i < numParityNodes; i++) {
rf_InitNode(&xorNodes[i], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, 7, 1, dag_h, name, allocList); /* no wakeup func for
* xor */
xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
xorNodes[i].params[0] = readDataNodes[i].params[0];
xorNodes[i].params[1] = readDataNodes[i].params[1];
xorNodes[i].params[2] = readParityNodes[i].params[0];
xorNodes[i].params[3] = readParityNodes[i].params[1];
xorNodes[i].params[4] = writeDataNodes[i].params[0];
xorNodes[i].params[5] = writeDataNodes[i].params[1];
xorNodes[i].params[6].p = raidPtr;
xorNodes[i].results[0] = readParityNodes[i].params[1].p; /* use old parity buf as
* target buf */
}
} else {
/* there is only one xor node in this case */
rf_InitNode(&xorNodes[0], rf_wait, RF_TRUE, func, undoFunc, NULL, 1, nNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
for (i = 0; i < numDataNodes + 1; i++) {
/* set up params related to Rod and Rop nodes */
xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer pointer */
}
for (i = 0; i < numDataNodes; i++) {
/* set up params related to Wnd and Wnp nodes */
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0]; /* pda */
xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1]; /* buffer pointer */
}
xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr; /* xor node needs to get
* at RAID information */
xorNodes[0].results[0] = readParityNodes[0].params[1].p;
}
/* initialize the log node(s) */
pda = asmap->parityInfo;
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(pda);
rf_InitNode(&lpuNodes[i], rf_wait, RF_FALSE, rf_ParityLogUpdateFunc, rf_ParityLogUpdateUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Lpu", allocList);
lpuNodes[i].params[0].p = pda; /* PhysDiskAddr of parity */
lpuNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer to
* parity */
pda = pda->next;
}
/* Step 4. connect the nodes */
/* connect header to block node */
RF_ASSERT(dag_h->numSuccedents == 1);
RF_ASSERT(blockNode->numAntecedents == 0);
dag_h->succedents[0] = blockNode;
/* connect block node to read old data nodes */
RF_ASSERT(blockNode->numSuccedents == (numDataNodes + numParityNodes));
for (i = 0; i < numDataNodes; i++) {
blockNode->succedents[i] = &readDataNodes[i];
RF_ASSERT(readDataNodes[i].numAntecedents == 1);
readDataNodes[i].antecedents[0] = blockNode;
readDataNodes[i].antType[0] = rf_control;
}
/* connect block node to read old parity nodes */
for (i = 0; i < numParityNodes; i++) {
blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
RF_ASSERT(readParityNodes[i].numAntecedents == 1);
readParityNodes[i].antecedents[0] = blockNode;
readParityNodes[i].antType[0] = rf_control;
}
/* connect read old data nodes to write new data nodes */
for (i = 0; i < numDataNodes; i++) {
RF_ASSERT(readDataNodes[i].numSuccedents == numDataNodes + numParityNodes);
for (j = 0; j < numDataNodes; j++) {
RF_ASSERT(writeDataNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[j] = &writeDataNodes[j];
writeDataNodes[j].antecedents[i] = &readDataNodes[i];
if (i == j)
writeDataNodes[j].antType[i] = rf_antiData;
else
writeDataNodes[j].antType[i] = rf_control;
}
}
/* connect read old data nodes to xor nodes */
for (i = 0; i < numDataNodes; i++)
for (j = 0; j < numParityNodes; j++) {
RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
readDataNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
xorNodes[j].antecedents[i] = &readDataNodes[i];
xorNodes[j].antType[i] = rf_trueData;
}
/* connect read old parity nodes to write new data nodes */
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(readParityNodes[i].numSuccedents == numDataNodes + numParityNodes);
for (j = 0; j < numDataNodes; j++) {
readParityNodes[i].succedents[j] = &writeDataNodes[j];
writeDataNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
writeDataNodes[j].antType[numDataNodes + i] = rf_control;
}
}
/* connect read old parity nodes to xor nodes */
for (i = 0; i < numParityNodes; i++)
for (j = 0; j < numParityNodes; j++) {
readParityNodes[i].succedents[numDataNodes + j] = &xorNodes[j];
xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
xorNodes[j].antType[numDataNodes + i] = rf_trueData;
}
/* connect xor nodes to write new parity nodes */
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(xorNodes[i].numSuccedents == 1);
RF_ASSERT(lpuNodes[i].numAntecedents == 1);
xorNodes[i].succedents[0] = &lpuNodes[i];
lpuNodes[i].antecedents[0] = &xorNodes[i];
lpuNodes[i].antType[0] = rf_trueData;
}
for (i = 0; i < numDataNodes; i++) {
/* connect write new data nodes to unblock node */
RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
RF_ASSERT(unblockNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
writeDataNodes[i].succedents[0] = unblockNode;
unblockNode->antecedents[i] = &writeDataNodes[i];
unblockNode->antType[i] = rf_control;
}
/* connect write new parity nodes to unblock node */
for (i = 0; i < numParityNodes; i++) {
RF_ASSERT(lpuNodes[i].numSuccedents == 1);
lpuNodes[i].succedents[0] = unblockNode;
unblockNode->antecedents[numDataNodes + i] = &lpuNodes[i];
unblockNode->antType[numDataNodes + i] = rf_control;
}
/* connect unblock node to terminator */
RF_ASSERT(unblockNode->numSuccedents == 1);
RF_ASSERT(termNode->numAntecedents == 1);
RF_ASSERT(termNode->numSuccedents == 0);
unblockNode->succedents[0] = termNode;
termNode->antecedents[0] = unblockNode;
termNode->antType[0] = rf_control;
}
void
rf_CreateParityLoggingSmallWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
RF_RedFuncs_t * pfuncs,
RF_RedFuncs_t * qfuncs)
{
dag_h->creator = "ParityLoggingSmallWriteDAG";
rf_CommonCreateParityLoggingSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, &rf_xorFuncs, NULL);
}
void
rf_CreateParityLoggingLargeWriteDAG(
RF_Raid_t * raidPtr,
RF_AccessStripeMap_t * asmap,
RF_DagHeader_t * dag_h,
void *bp,
RF_RaidAccessFlags_t flags,
RF_AllocListElem_t * allocList,
int nfaults,
int (*redFunc) (RF_DagNode_t *))
{
dag_h->creator = "ParityLoggingSmallWriteDAG";
rf_CommonCreateParityLoggingLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList, 1, rf_RegularXorFunc);
}
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */